
RECURRENT NEURAL NETWORK LANGUAGE MODELING
APPLIED TO THE BRNO AMI/AMIDA 2009 MEETING

RECOGNIZER SETUP

Stefan Kombrink, Tomáš Mikolov
Doctoral Degree Programme (2,4), FIT BUT

E-mail: kombrink@stud.fit.vutbr.cz,imikolov@stud.fit.vutbr.cz

Supervised by: Lukáš Burget
E-mail: burget@fit.vutbr.cz

Abstract: In this paper we use recurrent neural network (RNN) based language models to improve
our 2009 English meeting recognizer originated from the AMI/AMIDA project, which to date was the
most advanced speech recognition setup of the Speech@FIT. On the baseline setup using the original
language models we decrease word error rate (WER) from 20.3% to 19.1%. When language models
in the system are replaced by models trained on a tiny subset of the original language model data,
WER drops from 22.2% to 20.4%. Adding data sampled from two RNN models for language model
training improves the overall system, yielding the performance of the original baseline (20.2%).

Keywords: automatic speech recognition, language modeling, recurrent neural networks

1 INTRODUCTION

Neural network (NN) based language models as previously proposed by [2] had been continuously
reported to outperform other language modeling techniques. The best results so far yielded RNN
based language models as proposed before in [9] and extended later in [10]. The RNN is very similar
to approaches based on feed-forward networks, except that a recurrency between hidden and input
layer is being added, allowing the hidden neurons to remember information about the entire history
processed so far and thus track a potentially infinite history.

w(t)

s(t)

y(t)

(delayed)

c(t)

U V

W

Figure 1: Simple recurrent neu-
ral network with output layer
factorized by a class layer.

Neural networks in language modeling offer the following advan-
tages over competing approaches: In contrary to commonly used
n-gram language models, there is no neccessity of smoothing in
cases of sparse training data. Due to the projection of the entire
vocabulary into a small hidden layer, semantically similar words
get clustered. This explains, why data sampled from the distribu-
tion defined by RNN models can contain frequent n-grams, which
may have never been seen during training: Words get substituted
by other words which the RNN learned to be related. Whereas no
such relation could be learned by a standard n-gram model using
the original sparse training data, we already showed in [1] how we
can incorporate some of the improvements gained by RNN lan-
guage models into systems which use just standard n-gram lan-
guage models by generating a large amount of additional training
data from the RNN distribution.

The RNN language model operates as a predictive model for the next word given the previous one.

P3 P5

PLP VTLN WB−>NB VTLN SAT MPE

P4

PLP HLDA MPE
Decoding, 3gram

P1 P2

Confusion networks

P5.b

RNN rescoring

P5.a

PLPHLDA+SBN_NN VTLN SAT fMPE
CMLLR+MLLR Adaptation

Lattice Rescoring

PLPHLDA+SBN_NN VTLN SAT fMPE
Lattice gener, 2gram

Lattice expan. 2gram−>3gram−>4gram

Lattice gener, 2gram
Lattice expan. 2gram−>3gram−>4gram

PLP VTLN
VTLN estimation

Figure 2: Structure of the Automated Speech Recognition (ASR) System.

It processes every sentence w1w2...wn word by word, yielding the summed log-likelihood:

logP(w1w2...wn) =
n

∑
i=1

logPrnn(wi|w1w2...wi−1) (1)

By assuming, that words can be mapped to classes, we utilize the RNN to estimate a probability
distribution over classes and hence assume a unigram distribution of words within a class1. The
utilized RNN architecture is shown in figure 1, where s(t) is the hidden layer using the sigmoid
and y(t), c(t) are the output layers using softmax activation functions, respectively. Each words is
assigned a class based on its frequency (also known as frequency binning), where the number of
classes is a parameter. This is done mainly to reduce computational complexity, but also leads to
slight improvements in accuracy. The probability of a word wt in class ct given a history h can be
expressed in terms of the joint probability of two distributions:

P(wt |h) = P(ct |h)P(wt |ct) = P(ct |s(t))P(wt |s(t)) (2)

The hidden state vector s(t) is assumed to encode the entire history of words processed so far. Finally,
the probability of the next word can be predicted by propagation through the RNN as shown in [10].

2 SETUP

2.1 BASELINE SYSTEM

Our baseline speech recognition system is described in figure 2. It uses acoustic and language models
from the AMIDA Rich Transcription 2009 system [7]. The original system structure has been recon-
figured in order to be able to generate word lattices. Furthermore, we extended the block scheme by
another complementary branch (P4) which we found beneficial in the system for NIST RT07 evalua-
tion [8].

The entire system runs in five passes (P1-P5): Initial decoding in P1 uses PLP features with HLDA [6].
The output was used for the estimation of Vocal Tract Length Normalization (VTLN) warping fac-
tors in P2 and per-speaker CMLLR [4] adaptation in P3. In P3, MEL-filter banks over the warped
spectrum were generated and forwarded through a stacked bottleneck NN (SBN_NN) [3]. The fol-
lowing MLLT transformations used features suitable for diagonal covariance modeling [5]. This NN
based features were further concatenated with standard PLP/VTLN/HLDA 69-dimensional features.
Lattices were generated using the bigram RT09 language and HMM MPE trained acoustic models.
Finally, these lattices were expanded by higher order ngrams (3-gram and subsequently 4-gram) and
a new ASR one-best output was decoded. In P4, PLP/VTLN based MPE models were adapted by
CMLLR on a per-speaker base using the P3 ASR output. In P5, P3 lattices were rescored with

1It is assumed that each word belongs to exactly one class, but less classes exist than words.

adapted models using P4 output. For our experiments, we used three variants (see table 2) of our
baseline system, which were identical to the baseline setup except that the original n-gram language
models (RT09) have been substituted by newly build ones.

2.2 LANGUAGE MODELS

Corpus Words RT09 RT11 RNN/rnn

Web data 931M ! – –
HUB4-LM96 152M ! 33M –
Fisher 1+2 21M ! ! !

Swbd+CHE 3.4M ! ! !

Meetings 2.1M ! ! !

Total 1.1G 1.1G 60M 26.5M

Model PPL Data
VarApx1 94.2 100M words from rnn
VarApx2 89.6 200M words from RNN

RT11 82.5 see left table
VA 82.4 interp. VarApx1+VarApx2

RT11+VA 76.6 interpolated RT11+VA
RT09 72.2 see left table

RT09+VA 69.2 interpolated RT09+VA

Table 1: Language Models - utilized corpora (left) and interpolated model perplexities (right)

In the left part of table 1 we show the corpora used for training the language models2. We trained two
RNNs using backpropagation through time of depth 6 on a subset (AMI meetings + Fisher1/2 + Call-
Home English + Switchboard) of the original training data. The small model (rnn) used 350 hidden
units and 39k words, the large one (RNN) full vocabulary (65k words) and 500 hidden units. In the
right part we show an overview of n-gram models used in building the derived systems in decreasing
order of perplexity. We generated two training data files using the small and the large RNN language
model using what we proposed earlier in [1] as variational approximation. The LMs trained on that
data (VarApx1 and VarApx2) were interpolated (VarApx), which still reduced perplexity consider-
ably. The RT11 model, which used additional 33M words of train data to increase the vocabulary by
parts of the Hub4 corpus. For the RT11 and RT09 4-grams modified Kneser-Ney smoothing has been
used, for all other 2-gram, 3-gram and 4-gram LMs Goodman-Turing discounting was used. The
rt06seval data set (30k words) served as validation data in RNN training and for tuning interpolation
weights for all n-gram models.

3 EXPERIMENTS

All experiment have been carried out using the large RNN model, which showed better performance
than the small one. Furthermore, the small RNN model was not adaptable i.e. adaptation in fact
degraded recognition performance.

3.1 N-BEST RESCORING

First, the 4-gram lattices which originally served as input for the confusion network (CN) generation,
were taken instead to extract n-bests. As shown in table 2, column 1+2, 1-best extraction from these
lattices came already very close to the baseline. The RNN model processed each sentence in the
n-best list and estimated an updated log-likelihood score for each n-best hypothesis s:

logP(s) = n ·wp+
n

∑
i=1

asci + lms
n

∑
i=1

logPx(wi|h) (3)

where n is the number of words, wp is the word insertion penalty, asci is the acoustic score for
word wi, h the history w1...wi−1 and lms the language model scale applied in the generation of the
input lattices. Px is a placeholder for the combined probability estimate of standard 4-gram and RNN

2The web data actually consists of four separate data sets described more thoroughly in [8].

Model 4-gram CN RNN Adapt #n-grams
RT09 20.3 20.2 19.6 19.1 51.2M

RT09+VA 20.4 20.2 – – 76.7M
RT11 22.2 22.0 20.7 20.4 14.4M

RT11+VA 21.5 21.3 20.5 20.2 46.5M

Table 2: Baseline and derived systems and their word error rates (WER)

models, which was either obtained by linear interpolation (eq. 4) or by linear interpolation of log
likelihood estimates (eq. 5):

Px(wi|h) = λPrnn(wi|h)+(1−λ)Pngram(wi|h) (4)

logPx(wi|h) = λ logPrnn(wi|h)+(1−λ) logPngram(wi|h) (5)

The interpolation weight λ for the RNN model usually yielded optimal performance around 0.75, ex-
cept for the RT09 system, whose language model is trained on much more data (mostly the retrieved
web data shown in table 1) than the RNN models, where it still was around 0.5. It might be notewor-
thy, that performance using lattices generated from the RT11+VA system appeared to be less sensitive
to changes of λ than when lattices from the RT11 system have been used. The results of the following
1-best extraction for the various system setups can be seen in the forth column of table 2. In overall,
no consistent differences between both interpolation methods could be observed, hence we report the
results for linear interpolation only.

3.2 ADAPTATION

10
−4

10
−3

10
−2

10
−1

10
0

10
1

65

70

75

80

85

90

95

100

105

110

Learning Rate Factor

P
P

L

validation PPL

1−best PPL

WER − optimal valid PPL

WER − initial valid PPL

WER − optimal 1−best PPL

19.6

19.4

19.1

19.2

19.2

Figure 3: Adaptation learning rate and final
WER.

The effect of the learning rate setting on adaptation
has been examined using the RT09 system, where the
largest improvement could be observed. As shown
in figure 3, we ran an exhaustive grid search over
a wide range of the learning rate, and observed the
PPL on the recognition output (dashed red curve) and
on the validation data (blue curve). The initial learn-
ing rate in RNN training has been 0.1, and the X-
axis denotes a multiplicative factor used to set the
learning rate for one iteration of retraining. Three
markers have been placed at learning rates for which
a second RNN rescoring pass was run to compute the
improved WER. In the first case (optimal valid) the
learning rate is set to minimize PPL on validation
data, and in the third case (optimal 1-best) PPL on
the recognition output is minimized. Because perfor-
mances differed considerably, and the learning rates
ranged far from each other, WER was additionally
computed for the learning rate in between (initial valid), where validation PPL again exceeds the
PPL obtained by the unadapted RNN. Similarly, we determined a learning rate for adaptation using
jack-knifing. We split the recognition output into two equally sized parts and determined two learning
rates, whose average led to a slightly pessimistic guess of the learning rate factor of about 10−2.

4 CONCLUSIONS

RNNs show great potential in case just limited amount of training data is available. A light-weight
system finally reaches similar performance, although the baseline system uses about 20 times more

data. But also by combination with standard n-gram models trained on the entire data good improve-
ments are observable. Here, RNN adaptation yields up to 50% of all observed improvement. Varia-
tional approximation provides a simpler way than web data retrieval to build better n-gram models,
although improvements are likely to be smaller. Using such models leads to slightly better perfor-
mance even after RNN rescoring. Speeding up training times would allow the exploitation of the
entire data available, and speeding up the rescoring process would make RNN models more interest-
ing for application in light-weight ASR systems.

ACKNOWLEDGEMENTS

This work was partly supported by European project DIRAC (FP6-027787), Grant Agency of Czech
Republic project No. 102/08/0707, Czech Ministry of Education project No. MSM0021630528 and
by BUT FIT grant No. FIT-10-S-2. Also, we would like to thank Martin Karafiát for fruitful discus-
sions and help with the LVCSR setup.

REFERENCES

[1] A. Deoras, T. Mikolov, S. Kombrink, M. Karafiát and S. Khudanpur. Variational Approximation
of Long-Span Language Models in LVCSR. In IEEE Intl. Conference on Acoustics, Speech and
Signal Processing (ICASSP), Prague, CZ, May 2011. Accepted for publication.

[2] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, J. K, T. Hofmann, T. Poggio, and J. Shawe-
taylor. A neural probabilistic language model. In Journal of Machine Learning Research, 2003.

[3] F. Grezl, M. Karafiát and L. Burget. Investigation into bottle-neck features for meeting speech
recognition.

[4] M. Gales. Maximum Likelihood Linear Transformations for HMM-based Speech Recognition.
Maximum Likelihood Linear Transformations for HMM-based Speech Recognition, Tech. Re-
port, CUED/FINFENG/TR291, Cambridge University, 1997.

[5] R. Gopinath. Constrained Maximum Likelihood Modeling With Gaussian Distributions for
Classification. In Proc. ICASSP, Seattle, USA, 1998.

[6] N. Kumar and A.G. Andreou. Heteroscedastic discriminant analysis and reduced rank HMMs
for improved speech recognition. pages 283–297, 1998.

[7] T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiát, D.v. Leeuwen, M. Lincoln and V. Wan.
The 2007 AMI(DA) system for meeting transcription. In Proc. Rich Transcription 2007 Spring
Meeting Recognition Evaluation Workshop, Baltimore, Maryland USA, May 2007.

[8] T. Hain, L. Burget, J. Dines, N.P. Garner, A.H. El, M. Huijbregts, M. Karafiát, M. Lincoln and
V. Wan. The AMIDA 2009 Meeting Transcription System. In Proc. of INTERSPEECH 2010,
volume 2010, pages 358–361. International Speech Communication Association, 2010.

[9] T. Mikolov, M. Karafiát, L. Burget, J. Černocký and S. Khudanpur. Recurrent neural network
based language model. In Proc. of INTERSPEECH 2010, number 9, pages 1045–1048. Interna-
tional Speech Communication Association, 2010.

[10] T. Mikolov, S. Kombrink, L. Burget, J. Černocký and S. Khudanpur. Extensions of Recurrent
Neural Network Language Models. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Prague, CZ, May 2011. Accepted for publication.

