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ABSTRACT

In this paper, we describe recent progress in i-vector based speaker
verification. The use of universal background models (UBM) with
full-covariance matrices is suggested and thoroughly experimen-
tally tested. The i-vectors are scored using a simple cosine distance
and advanced techniques such as Probabilistic Linear Discriminant
Analysis (PLDA) and heavy-tailed variant of PLDA (PLDA-HT).
Finally, we investigate into dimensionality reduction of i-vectors be-
fore entering the PLDA-HT modeling. The results are very compet-
itive: on NIST 2010 SRE task, the results of a single full-covariance
LDA-PLDA-HT system approach those of complex fused system.

Index Terms— GMM, speaker recognition, PLDA, heavy-
tailed PLDA, full-covariance UBM, i-vectors

1. INTRODUCTION

Total variability or “i-vector” systems have become the state-of-the-
art technique in the speaker verification field [1]. They provide an
elegant way of reducing the large-dimensional input data to a small-
dimensional feature vector while retaining most of the relevant in-
formation. The technique was originally inspired by Joint Factor
Analysis framework introduced in [2]. The basic principle is that the
i-vector extractor converts sequence of feature frames to the single
low dimensional vector representing the whole utterance.

A large UBM (typically with 2048 Gaussian components) with
diagonal covariance matrices is used to collect statistics for the eval-
uation of i-vectors, which involves a lot of computation. Our idea
was therefore to experiment with smaller UBMs with full-covariance
matrices, in the hope of obtaining more compact representation for
i-vector extraction.

When increasing the number of Gaussians of full-covariance
UBM we have found that the full-covariance system has approxi-
mately the same performance as the system with diagonal covariance
matrix but with 2 to 4 times less Gaussian components. We trained
the full-covariance model till 2048 Gaussian components to mach it
with diagonal system. We also investigated the use of new modeling
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techniques, such as PLDA [3] and heavy-tailed PLDA [4], that have
been recently reported to overcome classical cosine-distance scoring
of i-vectors with normalization [1]. Finally, a classical trick of pat-
tern recognition — reducing the dimensionality of features before
classification — was tested with encouraging results.

This paper is organized as follows: Section 2 describes thor-
oughly the full-covariance paradigm used and gives brief description
and references of i-vector scoring. Section 3 describes our experi-
mental setup and section 4 the results obtained on NIST 2010 SRE
data. We conclude in section 5.

2. THEORY

2.1. Universal background model

Similarly to classical speaker recognition systems, UBM is also the
key element of an i-vector system, as it is necessary for collecting
statistics from speech utterances. UBM contains C Gaussian com-
ponents, and is defined by three sets of parameters: mean vectors
μ

(c), covariance matrices Σ(c) and weights ω(c). In our past work,
as well as that of other labs, covariance matrices Σ(c) are diagonal.

This work investigates into the use of full covariance matrices.
These are however sensitive to (possibly very low) values of off-
diagonal elements, therefore, variance flooring needs to be applied:
we used floor fΣavg where Σavg =

PC
c

Σ(c)/C is the average
covariance matrix and f = 0.1 is reasonable setting. Then we set
Σ̂

(c)
← floor(Σ(c), fΣavg) implemented using floor function de-

fined in [5]:

Function: S̃ = floor(S,F)

1. F = LLT (Cholesky decomposition)
2. T ← L−1S(L−1)T (normalization of target matrix)
3. T = UDUT (Eigenvalue Decomposition - diagonal-
ization of target matrix)

4. Set diagonal matrix D̃ to D floored to 1, i.e. d̃ii =
max(dii, 1)

5. T̃ ← UD̃UT (making the matrix full again)
6. S̃ ← LT̃LT (de-normalization)
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2.2. I-vector extraction

I-vector system aims at modeling overall variability of the training
data and compressing the information to a low-dimensional vector.
The technique is closely related to JFA in the sense that each training
segment acts as a separate speaker. Speaker (and/or channel) mod-
eling techniques are then applied on these low-dimensional vectors.
This way, an i-vector system can be viewed as a front-end for further
modeling.

Let us first state the motivation for the i-vectors. The main idea
is that the speaker- and channel-dependent GMM supervector s can
be modeled as:

s = m + Tw (1)

wherem is the UBM GMM mean supervector, T is a low-rank ma-
trix representing M bases spanning subspace with important vari-
ability in the mean supervector space , and w is a standard normal
distributed vector of sizeM .

For each observation X , our aim is to estimate the parameters of
the posterior probability of w:

p(w|X ) = N (w;wX , L−1
X

). (2)

The i-vector is the MAP point estimate of the variable w, i.e. the
mean wX of the posterior distribution p(w|X ). It maps most of
the relevant information from a variable-length observation X to a
fixed- (small-) dimensional vector. T is referred to as the i-vector
extractor.

The input data for the observation X is given as a set of zero-
and first-order statistics — nX and fX . These are extracted from
F dimensional features using a GMM UBM with C mixture com-
ponents, defined by a mean supervector m, component covariance
matrices Σ(c), and a vector of mixture weights ω. For each Gaus-
sian component c, the statistics are given respectively as:

N
(c)
X

=
X

t

γ
(c)
t (3)

f
(c)
X

=
X

t

γ
(c)
t ot (4)

where ot is the feature vector in time t, and γ
(c)
t is its occupation

probability. The complete zero- and first-order statistics supervec-
tors are fX =

“
f
(1)
X

′

, . . . , f
(C)
X

′
”
′

, and nX =
“
N

(1)
X

, . . . , N
(C)
X

”
′

.

For convenience, we center the first order statistics around the
UBMmeans, which allows us to treat the UBMmeans effectively as
a vector of zeros

f
(c)
X

← f
(c)
X

− N
(c)
X

m
(c)

m
(c) ← 0.

Similarly, we “normalize” the first-order statistics and the matrix T

by the UBM covariances, which again allows us to treat the UBM
covariances as an identity matrix1:

f
(c)
X

← Σ
(c)− 1

2 f
(c)
X

(5)

T
(c) ← Σ

(c)− 1

2 T
(c) (6)

Σ
(c) ← I,

1Part of the factor estimation is a computation of T′
Σ

−1
f , where the

decomposed Σ
−1 can be projected to the neighboring terms, see [6] for de-

tailed formulae.

where Σ(c)− 1

2 is a Cholesky decomposition of an inverse of Σ(c),
andT(c) is a F ×M sub-matrix ofT corresponding to the cmixture
component such that T =

“
T(1)′, . . . ,T(C)′

”′

.

Note that in classical diagonal-covariance system, the normal-
ization in (5) is done by a simple division by standard deviations.

For an observation X , the corresponding i-vector is a point MAP
estimate

wX = L
−1
X T

′
fX , (7)

where L is the precision matrix from Eq. 2 estimated as

LX = I +
CX

c=1

N
(c)
X

T
(c)′

T
(c) (8)

Model hyper-parameters T are estimated using the same EM
algorithm as in case of JFA [6]. For more detailed description of
how to train and evaluate i-vector system see [1, 7].

2.3. Working with full covariance matrices

Full-covariance matrix in UBM plays two roles in an i-vector sys-
tem:

1. in the generation of mixture component occupation probabil-
ities γ

(c)
t used in the collection of statistics (3,4).

2. in the normalization of the first order statistics (5).

The system using full covariance matrix for both is further denoted
FullCov. This system works the best on our test set but which part
of the system is the most important? Is it generation of occupation
probabilities or normalization of first order statistics (see Eq. 5)?
Furthermore the collection of statistics with full-covariance GMM
is very computationally expensive. We were investigating and ana-
lyzing following possibilities:

FULL2DIAG normDiag statistics were collected only with a diag-
onal extracted from the full covariance matrix, normalization
was done using only the same diagonal.

FULL2DIAG normFULL statistics were collected only with a di-
agonal extracted from the full covariance matrix, normaliza-
tion was done using the full matrix.

These simplifications are however rather crude, as full-covariance
model is trained and only the diagonal is extracted. With fixed means
and mixture weights, this can cause quite a change to the model
and frame alignment. Therefore, we have investigated following ap-
proach: in UBM training, first, diagonal covariance UBM is trained.
Then, one iteration of the EM is run with fixed means and mixture
weights, to obtain full-covariance model. In this way, we hope to
get a tandem of coherent diagonal-covariance and full-covariance
models. For utterance X , statistics are collected using the diagonal
model and the normalization is done by full-covariance model. This
is denoted Diag + FullCovNorm.

2.4. Cosine distance

The same technique as in [1] was used. The extracted i-vectors were
scaled down by an LDAmatrix and further normalized i-vectors such
that within-class covariance matrix is identity. Cosine distance of the
two input vectors was used as the raw score:

score (wtarget,wtest) =
〈wtarget,wtest〉

‖wtarget‖‖wtest‖
. (9)
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2.5. PLDA

The fixed-length i-vectors extracted per utterance can be used as in-
put to standard pattern recognition algorithm. We use a Probabilis-
tic Linear Discriminant Analysis Model (PLDA) [3] that provides
a probabilistic framework applicable to fixed-length input vectors.
PLDA can be seen as a special case of Joint Factor Analysis (JFA)
[2] with a single Gaussian component. The i-vectors wX are as-
sumed to be distributed according to the well-known form

wX = m + Vy + Ux + ε (10)

incorporating speakerV and channelU subspaces. Using the PLDA
model, one can directly evaluate the log-likelihood ratio for the hy-
pothesis test corresponding to “the two i-vectors were or were not
generated by the same speaker.” Note that the difference between
enrollment segment (on which a model used to be created) and test
segment (which is scored against the model) vanishes – i-vector scor-
ing is completely symmetrical. The results for PLDA scoring are
denoted PLDA-Gaussian.

2.6. Heavy tailed PLDA

PLDA assumes Gaussian priors of both channel and speaker fac-
tors y and x (Eq. 10). Heavy-tailed version of PLDA introduced
in [4] replaces Gaussian distributions with Student’s t distributions
and was shown to substantially improve the SRE results compared
to JFA. The results for heavy-tailed variant of PLDA are denoted
PLDA-HT.

2.7. LDA dimensionality reduction

Our final contribution is the dimensionality reduction before PLDA
modeling. Based on improved results of many classification tech-
niques when the dimensionality of features is reduced, we decided
to use standard Linear Discriminant Analysis (LDA) to process i-
vectors before being scored by PLDA. The individual speakers in the
development set are considered as classes when estimating LDA pro-
jection matrix. The optimum number of retained dimensions must be
tuned on a development set.

3. EXPERIMENTAL SETUP

3.1. Test Set and Evaluation Metric

NIST SRE 2010 data extended core condition (telephone-telephone)
was used as the evaluation data. The detection cost function (DCF)
is used as a primary evaluation metric. We report two numbers:
DCFOld and DCFNew which correspond to the primary evalua-
tion metric for the NIST speaker recognition evaluation in 2008 and
2010 respectively. The difference is that in 2010 NIST focus more
on lower false alarm scenario. Third operating point - EER is also
reported. For more details see evaluation plans of NIST SRE 2.

3.2. Voice Activity Detection

Speech/silence segmentation is performed by our Hungarian phoneme
recognizer [8], where all phoneme classes are linked to the speech
class. Heuristics based on short term energy are applied to discard
segments with cross-talk for 2-channel files. The interview data we
processed as 1-channel; we took ASR transcripts of the interviewer
and removed his/her speech segments from our segmentation files
based on time-stamps provided by NIST. Details of our VAD are
provided in [9].

2www.itl.nist.gov/iad/mig/tests/sre/

3.3. Feature Extraction

We use MFCC 19 + energy augmented with their delta and dou-
ble delta coefficients, making 60 dimensional feature vectors. The
analysis window has 20 ms with shift of 10 ms. First we remove
silence frames according to VAD and after that we apply short-time
cepstral mean and variance normalization which uses a window of
300 frames. We have found similar performance with Short time
gaussianization, but it is more efficient.

3.4. GMM UBM Training

One gender-independent UBM was represented as a full or diagonal
covariance 2048-component GMM, if not stated otherwise. It was
trained on the NIST SRE 2004 and 2005 telephone data (376 female
speakers in 171 hours of speech, 294 male speakers in 138 hours
of speech). The variance flooring was used in each iteration of EM
algorithm during the UBM training.

3.5. I-vector Extractor Training

Gender-dependent i-vector extractors were trained on the following
telephone data: NIST SRE 2004, 2005, 2006, Switchboard II Phases
2 and 3, Switchboard Cellular Parts 1 and 2, Fisher English Parts 1
and 2 giving 8396 female speakers in 1463 hours of speech, and 6168
male speakers in 1098 hours of speech (both after VAD). The results
are reported with 400 dimensional i-vectors if not stated otherwise.

3.6. LDA/cosine distance, PLDA, PLDA-HT Training

All techniques are trained on the same data as the i-vector extractor,
except for the Fisher data that was excluded, resulting in 1684 female
speakers in 715 hours of speech and 1270 male speakers in 537 hours
of speech.

4. RESULTS

The following experiments investigate in full-covariance UBMs.
Obviously, this model has more parameters than the diagonal one.
We have therefore tested also a classical diagonal-covariance UBM
with more Gaussians and bigger size of i-vectors. The results in
Table 1 present slight improvement by increasing the number of
Gaussians and a little more by increasing the size of i-vector. How-
ever, the full-covariance UBM has superior results to all of them.
It is likely that increasing the size of i-vectors will bring further
improvement, this work is in progress and will be reported in the
final paper.

Analysis of gathering statistics and normalization are also shown
in Table 1. All three techniques including collecting statistics us-
ing the diagonal model and normalization by closely related full-
covariance model (Diag + FullCovNorm) deteriorate the results, of-
ten to the level of diagonal covariance models. All results in Table 1
are reported for Female only with Cosine distance, but the results
for Male and with PLDA modeling have the same trend. For cosine-
distance scoring, LDA reduce the original 400-dimensional i-vectors
to 200-dimensions. The cosine distance scores were normalized us-
ing gender-dependent s-norm with a cohort of 400 speakers having
2 utterances per speaker.

Table 2 reports results for different modeling techniques. Here,
the results are reported for pooled genders on the NIST 2010 SRE
tel-tel task. For the NIST evaluation we have experimented with
the size of the model and found out that the optimal dimensions for
PLDA-Gaussian is 90 for eigen-voices and full-rank (400) for eigen-
channels. The same experiment was repeated with PLDA-HT with
120 dimensional eigen-voices and full-rank eigen-channel. Later,
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we have also tried to reduce dimensionality of i-vectors using LDA
to 90 and model these i-vectors using PLDA with 90 eigen-voices
and 90 eigen-channels (both full-rank). The same was repeated with
dimensionality reduction 120 for PLDA-HT. The last mentioned ex-
periment yielded the best result on this task. The LDA reductions to
90 for PLDA-Gaussian and 120 for PLDA-HT was found to be op-
timal for the telephone condition and new operating point DCFnew

on the development data. The disadvantage of using PLDA-HT is a
factor of 2 or 3 times slower than the PLDA-Gaussian.

Table 1. Results on NIST2010 extended core condition 5 telephone-
telephone, Cosine distance, Female only. Except for “4096 Diag”
experiment, all UBMs had 2048 Gaussian components.

DCFold DCFnew EER[%]
Diag 0.1705 0.5395 3.59
4096 Diag 0.1673 0.5199 3.29
Diag - 800 i-vec 0.1520 0.4956 3.08
Diag + FullCovNorm 0.1729 0.5376 3.46
FullCov 0.1480 0.4802 2.94
FULL2DIAG normFULL 0.1916 0.5617 4.02
FULL2DIAG normDiag 0.1748 0.5443 3.73

Table 2. Different modeling for 400-dimensional i-vector extracted
with full-covariance UBM with 2048 Gaussian components and
LDA reduction. Results on NIST2010 extended core condition (tel-
tel), pooled genders.

DCFold DCFnew EER[%]
Cosine Distance 0.1318 0.4601 2.70
PLDA-Gaussian 0.1408 0.4139 3.24
PLDA-HT 0.0973 0.3855 1.78
LDA90 PLDA-Gaussian 0.1337 0.4132 3.09
LDA120 PLDA-HT 0.0956 0.3421 1.88
ABC NIST 2010 system 0.0868 0.3221 1.90
LPT NIST 2010 system 0.1182 0.4020 2.44

Finally, it was compared to two NIST 2010 SRE systems:

• In ABC system3 [9], the primary submission for telephone
condition is a fusion of 8 different subsystems. The First
group are acoustic systems with different front-ends (feature
extraction, normalization, VAD) and two kinds of modeling
- JFA and i-vector, and cosine distance or PLDA for scoring.
The second group is based on the extraction of speaker adap-
tation matrices from LVCSR system (CMLLR and MLLR).
The matrices are modeled by SVM. The last subsystem is
JFA system which models prosodic information. We have
experimented also with the different kind of quality measures
mainly for the interview and microphone conditions.

• LPT system [10] is a fusion of different acoustic systems,
based on two modeling approaches (JFA, LDA-WCCN i-
vector) two set of features (MFCC, PLP) and different feature
dimensions (60,25). Each single system is a combination of
these three orthogonal, resulting in eight (23) systems in total.

The results of ABC and LPT are in the last two lines in Table 2.
We see that the performance of a single system with PLDA-HT with
LDA dimensionality reduction is close to the performance of our
very complex fused systems.

3System description and presentation can be found on
www.fit.vutbr.cz/research/view pub.php?id=9346

5. CONCLUSIONS

The work we presented aims at the best performance of the single
stand alone system. We have presented full-covariance UBM and
i-vector extraction with different kind of modeling. Our analysis
shows that for the best performance it is necessary to have full-
covariance i-vector without any approximation. The heavy-tailed
variant of PLDA with dimensionality reduction by LDA was shown
to be superior to all previously studied approaches. However recent
results show that unity length normalization of the ivector indicates
that Gauss-PLDA is as effective as HT-PLDA. For more detail anal-
ysis see upcoming Interspeech paper of Daniel Garcia-Romero.

Our curent one system approach the accuracy of more complex
fused systems which were submitted to NIST SRE 2010 evaluation.

In our future work, we will investigate into Gaussian pre-
selection, and efficient covariance matrix modeling approaches
such as semi-tight covariance model to overcome the need of full-
covariance modeling because of the computational complexity of
collecting GMM statistics with full-covariance UBM.
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