EXTENSIONS OF RECURRENT NEURAL NETWORK LANGUAGE MODEL

Tomas Mikolov'?, Stefan Kombrink', Lukds Burget', Jan “Honza” Cernocky", Sanjeev Khudanpur?

'Brno University of Technology, Speech@FIT, Czech Republic
2 Department of Electrical and Computer Engineering, Johns Hopkins University, USA

{imikolov, kombrink,burget, cernocky}@fit.vutbr.cz, khudanpure@jhu.edu

ABSTRACT

We present several modifications of the original recurrent neural net-
work language model (RNN LM). While this model has been shown
to significantly outperform many competitive language modeling
techniques in terms of accuracy, the remaining problem is the com-
putational complexity. In this work, we show approaches that lead
to more than 15 times speedup for both training and testing phases.
Next, we show importance of using a backpropagation through time
algorithm. An empirical comparison with feedforward networks is
also provided. In the end, we discuss possibilities how to reduce the
amount of parameters in the model. The resulting RNN model can
thus be smaller, faster both during training and testing, and more
accurate than the basic one.

Index Terms— language modeling, recurrent neural networks,
speech recognition

1. INTRODUCTION

Statistical models of natural language are a key part of many systems
today. The most widely known applications are automatic speech
recognition (ASR), machine translation (MT) and optical charac-
ter recognition (OCR). In the past, there was always a struggle be-
tween those who follow the statistical way, and those who claim that
we need to adopt linguistics and expert knowledge to build mod-
els of natural language. The most serious criticism of statistical ap-
proaches is that there is no true understanding occurring in these
models, which are typically limited by the Markov assumption and
are represented by n-gram models. Prediction of the next word is
often conditioned just on two preceding words, which is clearly in-
sufficient to capture semantics. On the other hand, the criticism of
linguistic approaches was even more straightforward: despite all the
efforts of linguists, statistical approaches were dominating when per-
formance in real world applications was a measure.

Thus, there has been a lot of research effort in the field of statis-
tical language modeling. Among models of natural language, neural
network based models seemed to outperform most of the competi-
tion [1] [2], and were also showing steady improvements in state of
the art speech recognition systems [3]. The main power of neural
network based language models seems to be in their simplicity: al-
most the same model can be used for prediction of many types of
signals, not just language. These models perform implicitly cluster-
ing of words in low-dimensional space. Prediction based on this
compact representation of words is then more robust. No additional
smoothing of probabilities is required.

This work was partly supported by European project DIRAC (FP6-
027787), Grant Agency of Czech Republic project No. 102/08/0707, Czech
Ministry of Education project No. MSM0021630528 and by BUT FIT grant
No. FIT-10-S-2.

978-1-4577-0539-7/11/$26.00 ©2011 IEEE

5528

w(t) y(t)

s
i
\

A >
I
7 >

(deia—yed)

Fig. 1. Simple recurrent neural network.

Among many following modifications of the original model, the
recurrent neural network based language model [4] provides further
generalization: instead of considering just several preceding words,
neurons with input from recurrent connections are assumed to repre-
sent short term memory. The model learns itself from the data how
to represent memory. While shallow feedforward neural networks
(those with just one hidden layer) can only cluster similar words,
recurrent neural network (which can be considered as a deep archi-
tecture [5]) can perform clustering of similar histories. This allows
for instance efficient representation of patterns with variable length.

In this work, we show the importance of the Backpropagation
through time algorithm for learning appropriate short term memory.
Then we show how to further improve the original RNN LM by de-
creasing its computational complexity. In the end, we briefly discuss
possibilities of reducing the size of the resulting model.

2. MODEL DESCRIPTION

The recurrent neural network described in [4] is also called Elman
network [6]. Its architecture is shown in Figure 1. The vector x(t) is
formed by concatenating the vector w(t) that represents the current
word while using 1 of N coding (thus its size is equal to the size of
the vocabulary) and vector s(t — 1) that represents output values in
the hidden layer from the previous time step. The network is trained
by using the standard backpropagation and contains input, hidden
and output layers. Values in these layers are computed as follows:

x(t) = [w(t)"s(t — 1)"]" (1)
si(t)=f (Z m(t)uji>)
yk(t) =g (Z Y (ﬂw) (€)

J

ICASSP 2011

Table 1. Comparison of different language modeling techniques on
Penn Corpus. Models are interpolated with KN backoff model.

[Model | PPL |
KNS5 141
Random forest (Peng Xu) [8] 132
Structured LM (Filimonov) [9] 125
Syntactic NN LM (Emami) [10] 107
RNN trained by BP 113
RNN trained by BPTT 106
4x RNN trained by BPTT (mixture) 98

where f(z) and g(z) are sigmoid and softmax activation functions
(the softmax function in the output layer is used to make sure that
the outputs form a valid probability distribution, i.e. all outputs are
greater than 0 and their sum is 1):

Zm
f(z) = 1_’_%7 g(zm) = ﬁ 4)
The cross entropy criterion is used to obtain an error vector in
the output layer, which is then backpropagated to the hidden layer.
The training algorithm uses validation data for early stopping and
to control learning rate. Training iterates over all the training data
in several epochs before convergence is achieved - usually, 10-20
epochs are needed. However, a valid question is whether the simple
backpropagation (BP) is sufficient to train the network properly -
if we assume that the prediction of the next word is influenced by
information which was present several time steps back, there is no
guarantee that the network will learn to keep this information in the
hidden layer. While the network can remember such information, it
is more by luck than by design.

3. BACKPROPAGATION THROUGH TIME

Backpropagation through time (BPTT) [11] can be seen as an exten-
sion of the backpropagation algorithm for recurrent networks. With
truncated BPTT, the error is propagated through recurrent connec-
tions back in time for a specific number of time steps (here referred
to as 7). Thus, the network learns to remember information for sev-
eral time steps in the hidden layer when it is learned by the BPTT.
Additional information and practical advices for implementation of
BPTT algorithm are described in [7].

The data used in the following experiments were obtained from
Penn Tree Bank: sections 0-20 were used as training data (about
930K tokens), sections 21-22 as validation data (74K) and sections
23-24 as test data (82K). The vocabulary is limited to 10K words.
The processing of the data is exactly the same as used by [10] and
other researchers. For a comparison of techniques, see Table 1.
KNS denotes the baseline: interpolated 5-gram model with modified
Kneser Ney smoothing and no count cutoffs.

To improve results, it is often better to train several networks
(that differ either in random initialization of weights or also in the
numbers of parameters) than having one huge network. The combi-
nation of these networks is done by linear interpolation with equal
weights assigned to each model (note similarity to random forests
that are composed of different decision trees [8]). The combination
of various amounts of models is shown in Figure 2.

Figure 3 shows the importance of number of time steps 7 in
BPTT. To reduce noise, results are reported as an average of perplex-
ity given by four models with different RNN configurations (250,

5529

130

—>—— RNN mixture
———— RNN mixture + KN5

125

Perplexity (Penn corpus)

Number of RNN models

Fig. 2. Linear interpolation of different RNN models trained by
BPTT.

145 T T T T
——E— average over 4 models | |
140 —>—— mixture of 4 models
KNS5 baseline
135
@
3
2
g 130
3
c
5
a 125
2
3
2 120
3
o
115
110
105
1 2 3 4 5 6 7 8
BPTT step

Fig. 3. Effect of BPTT training on Penn Corpus. BPTT=I corre-
sponds to standard backpropagation.

300, 350 and 400 neurons in the hidden layer). Also, a combina-
tion of these models is shown (again, linear interpolation was used).
As can be seen, 4-5 steps of BPTT training seems to be sufficient.
Note that while complexity of the training phase increases with the
amount of steps for which the error is propagated back in time, the
complexity of the test phase is constant.

Table 2 shows comparison of the feedforward [12], simple recur-
rent [4] and BPTT-trained recurrent neural network language models
on two corpora. Perplexity is shown on the test sets for configura-
tions of networks that were working the best on the development
sets. We can see that the simple recurrent neural network already
outperforms the standard feedforward network, while BPTT train-
ing provides another significant improvement.

Table 2. Comparison of different neural network architectures on
Penn Corpus (1M words) and Switchboard (4M words).

Penn Corpus Switchboard
Model NN | NN+KN || NN | NN+KN
KNS5 (baseline) - 141 - 92.9
feedforward NN 141 118 85.1 77.5
RNN trained by BP 137 113 81.3 75.4
RNN trained by BPTT | 123 106 77.5 72.5

4. SPEEDUP TECHNIQUES
The time complexity of one training step is proportional to
O=(1+H)xHx1t+HxXV (5)

where H is the size of the hidden layer, V' size of the vocabulary
and 7 the amount of steps we backpropagate the error back in time'.
Usually H << V, so the computational bottleneck is between the
hidden and output layers. This has motivated several researchers
to investigate possibilities how to reduce this huge weight matrix.
Originally, Bengio [1] has merged all low frequency words into one
special token in the output vocabulary, which usually results in 2-3
times speedup without significant degradation of the performance.
This idea was later extended - instead of using unigram distribution
for words that belong to the special token, Schwenk [3] used proba-
bilities from a backoff model for the rare words.

An even more promising approach was based on the assump-
tion that words can be mapped to classes [13] [14]. If we assume
that each word belongs to exactly one class, we can first estimate the
probability distribution over the classes using RNN and then com-
pute the probability of a particular word from the desired class while
assuming unigram distribution of words within the class:

P(w;lhistory) = P(ci|history) P(w;|c;) 6)
This reduces computational complexity to
O=(14+H)xHxt+HXxC, @)

where C' is the number of classes. While this architecture has obvi-
ous advantages over the previously mentioned approaches as C' can
be order of magnitude smaller than V' without sacrificing much of
accuracy, the performance depends heavily on our ability to estimate
classes precisely. The classical Brown clustering is usually not very
useful, as its computational complexity is too high and it is often
faster to estimate the full neural network model.

4.1. Factorization of the output layer

We can go further and assume that the probabilities of words within a
certain class do not depend just on the probability of the class itself,
but also on the history - in context of neural networks, that is the
hidden layer s(¢). We can change Equation 6 to

P(wj|history) = P(ci|s(t))P(ws|ci, s(t)) 8)

The corresponding RNN architecture is shown in Figure 4. This
idea has been already explored by Morin [13] (and in the context
of Maximum Entropy models by Goodman [14]), who extended it
further by assuming that the vocabulary can be represented by a hi-
erarchical binary tree. The drawback of Morin’s approach was the
dependence on WordNet for obtaining word similarity information,
which can be unavailable for certain domains or languages.

In our work, we have implemented simple factorization of the
output layer using classes. Words are assigned to classes proportion-
ally, while respecting their frequencies (this is sometimes referred
to as ’frequency binning’). The amount of classes is a parameter.
For example, if we choose 20 classes, words that correspond to the
first 5% of the unigram probability distribution would be mapped to
class 1 (with Penn Corpus, this would correspond to token ’the’ as

' As suggested to us by Y. Bengio, the 7 term can practically disappear
from the computational complexity, provided that the update of weights is
not done at every time step [11].

5530

(delayed)

o(t)

Fig. 4. RNN with output layer factorized by class layer.

its unigram probability is about 5%), the words that correspond to
the next 5% of the unigram probability mass would be mapped to
class 2, etc. Thus, the first classes can hold just single words, while
the last classes cover thousands of low-frequency words”.

Instead of computing a probability distribution over all words as
it is specified in (3), we first estimate a probability distribution over
the classes and then a distribution over the words from a single class,
the one that contains the predicted word:

alt)=g (Z s (t)wz]->)

J

ye(t) =g (Z Sj(t)vcj) (10
J

The activation function g for both these distributions is again
softmax (Equation 4). Thus, we have the probability distribution
both for classes and for words within class that we are interested
in, and we can evaluate Equation 8. The error vector is computed
for both distributions and then we follow the backpropagation algo-
rithm, so the errors computed in the word-based and the class-based
parts of the network are summed together in the hidden layer. The
advantage of this approach is that the network still uses the whole
hidden layer to estimate a (potentially) full probability distribution
over the full vocabulary, while factorization allows us to evaluate just
a subset of the output layer both during the training and during the
test phases. Based on the results shown in Table 3, we can conclude
that fast evaluation of the output layer via classes leads to around
15 times speedup against model that uses full vocabulary (10K), at
a small cost of accuracy. The non-linear behaviour of reported time
complexity is caused by the constant term (14 H) x H x 7 and also
by suboptimal usage of cache with large matrices. With C' = 1 and
C' =V, the model is equivalent to the full RNN model.

4.2. Compression layer

Alternatively, we can think about the two parts of the original re-
current network separately: first, there is a matrix U responsible for
the input and for the recurrent connections that maintain short term

2 After this paper was written, we have found that Emami [18] has pro-
posed a similar technique for reducing computational complexity, by assign-
ing words into statistically derived classes. The novelty of our approach is
thus in showing that simple frequency binning is adequate to obtain reason-
able performance.

Table 3. Perplexities on Penn corpus with factorization of the output
layer by the class model. All models have the same basic configura-
tion (200 hidden units and BPTT=5). The Full model is a baseline
and does not use classes, but the whole 10K vocabulary.

[Classes [| RNN | RNN+KN5 [Min/epoch | Sec/test |

30 134 112 12.8 8.8
50 136 114 9.8 6.7
100 136 114 9.1 5.6
200 136 113 9.5 6.0
400 134 112 10.9 8.1
1000 131 111 16.1 15.7
2000 128 109 253 28.7
4000 127 108 44.4 57.8
6000 127 109 70 96.5
8000 124 107 107 148
Full 123 106 154 212

memory, and then a matrix V that is used to obtain probability dis-
tribution in the output layer. Both weight matrices share the same
hidden layer, however, while matrix U needs this vector to maintain
all short term memory to store information for possibly several time
steps, matrix V needs only the information contained in the hidden
layer that is needed to calculate probability distribution for the im-
mediately following word®. To reduce the size of the weight matrix
V, we can use an additional compression layer between the hidden
and output layers. We have used sigmoid activation function for the
compression layer, thus this projection is non-linear.

A compression layer not only reduces computational complex-
ity, but also reduces the total amount of parameters, which results
in more compact models. It is also possible to use a similar com-
pression layer between input and hidden layer to further reduce the
size of the models (such layer is usually referred to as a projec-
tion layer). The empirical results show that with growing amount
of training data, the hidden layer needs to be increased to allow the
model to store more information. Thus, the idea of using a com-
pression layer is mostly useful when large amount of training data is
used. We plan to report results with compression layers in the future.

5. CONCLUSION AND FUTURE WORK

We presented to our knowledge the first published results when using
RNN trained by BPTT in the context of statistical language model-
ing. The comparison to standard feedforward neural network based
language models, as well as comparison to BP trained RNN mod-
els shows clearly the potential of the presented model. Furthermore,
we have shown how to obtain significantly better accuracy of RNN
models by combining them linearly. The resulting mixture of RNN
models attains perplexity 96 on the well-known Penn corpus, which
is significantly better than the best previously published result on this
setup [10]. In the future work, we plan to show how to further im-
prove accuracy by combining statically and dynamically evaluated
RNN models [4] and by using complementary language modeling
techniques to obtain even much lower perplexity. In our ongoing
ASR experiments, we have observed good correlation between per-
plexity improvements and word error rate reduction.

Next, we have shown several possibilities how to reduce compu-
tational and space complexity by using classes, factorization of the
output layer and by using compression layers. Combinations of these

3 Alternatively, we can ask if the rank of the matrix V is full.

5531

techniques lead to efficient training on very large corpora - we plan
to describe our current experiments that involve models trained on
much more than 100M words while using non-truncated vocabulary.
Finally, we plan to show that the resulting models can be effi-
ciently used in state of the art systems that use very good baseline
acoustic and language models based on huge amounts of in-domain
data, and that the additional processing cost by using RNN mod-
els does not need to be impractically high by exploiting techniques
described in this paper. For that purpose, we published a freely avail-
able toolkit for training RNN language models which is available at
http://www.fit.vutbr.cz/~imikolov/rnnlm/.

6. REFERENCES

[1] Yoshua Bengio, Rejean Ducharme and Pascal Vincent. 2003.
A neural probabilistic language model. Journal of Machine
Learning Research, 3:1137-1155

[2] Joshua T. Goodman (2001). A bit of progress in language mod-
eling, extended version. Technical report MSR-TR-2001-72.

[3] Holger Schwenk, Jean-Luc Gauvain. Training Neural Network
Language Models On Very Large Corpora. in Proc. Joint Con-
ference HLT/EMNLP, October 2005.

[4] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cemock}'/,
Sanjeev Khudanpur: Recurrent neural network based language
model, In: Proc. INTERSPEECH 2010

[5] Y. Bengio, Y. LeCun. Scaling learning algorithms towards Al.
In Large-Scale Kernel Machines, MIT Press, 2007.

[6] Jeftrey L. Elman. Finding Structure in Time. 1990. Cognitive
Science, 14, 179-211

[7] Mikael Bodén. A Guide to Recurrent Neural Networks and
Backpropagation. In the Dallas project, 2002.

[8] Peng Xu. Random forests and the data sparseness problem in
language modeling, Ph.D. thesis, Johns Hopkins University,
2005.

[9] Denis Filimonov and Mary Harper. 2009. A joint language
model with fine-grain syntactic tags. In EMNLP.

[10] Ahmad Emami, Frederick Jelinek. Exact training of a neural
syntactic language model. In ICASSP 2004.

[11] D. E. Rumelhart, G. E. Hinton, R. J. Williams. 1986. Learn-
ing internal representations by back-propagating errors. Na-
ture, 323:533.536.

[12] Tomas Mikolov, Jiff Kopecky, Lukas Burget, Ondfej Glembek
and Jan Cernocky: Neural network based language models for
highly inflective languages, In: Proc. ICASSP 2009.

[13] F. Morin, Y. Bengio: Hierarchical Probabilistic Neural Net-
work Language Model. AISTATS’2005.

[14] J. Goodman. Classes for fast maximum entropy training. In:
Proc. ICASSP 2001.

[15] A. Alexandrescu, K. Kirchhoff. 2006. Factored neural lan-
guage models. In HLT-NAACL.

[16] Yoshua Bengio and Patrice Simard and Paolo Frasconi. Learn-
ing Long-Term Dependencies with Gradient Descent is Diffi-
cult. IEEE Transactions on Neural Networks, 5, 157-166.

[17] Y. Bengio, J.-S. Senecal. Adaptive Importance Sampling to Ac-
celerate Training of a Neural Probabilistic Language Model.
IEEE Transactions on Neural Networks, 2008.

[18] Ahmad Emami. A Neural Syntactic Language Model. Ph.D.
thesis, Johns Hopkins University, 2006.

