EXTENSIONS OF RECURRENT NEURAL NETWORK LANGUAGE MODEL

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan "Honza" Černocký, Sanjeev Khudanpur

> Speech@FIT, Brno University of Technology, Johns Hopkins University

> > 25. 5. 2011

- Introduction
- Model description
- Extensions
- Empirical evaluation
- Current work

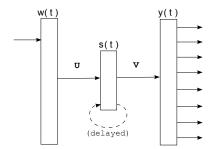
Introduction

- Neural network based LMs outperform standard backoff n-gram models
 - Words are projected into low dimensional space, similar words are automatically clustered together
 - Smoothing is solved implicitly
 - Standard backpropagation algorithm (BP) is used for training
 - In [Mikolov2010], we have shown that recurrent neural network (RNN) architecture is competitive with the standard feedforward architecture

Introduction

- In this presentation, we will show:
 - Importance of "backpropagation through time" (BPTT) [Rumelhart et al. 1986] training algorithm for RNN language models
 - Simple speed-up technique that reduces computational complexity $10 \times$ $100 \times$
 - Results after combining randomly initialized RNN models
 - Comparison of different advanced LM techniques on the same data set
 - Results on large data sets and LVCSR experiments

Model description - recurrent NN

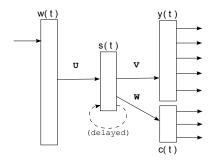


- Input layer w and output layer y have the same dimensionality as the vocabulary
- Hidden layer s is orders of magnitude smaller
- U is the matrix of weights between input and hidden layer, V is the matrix of weights between hidden and output layer

Backpropagation through time

- Training of RNNs by normal backpropagation is not optimal
- Backpropagation through time (BPTT) is efficient algorithm for training recurrent neural networks
- BPTT works by unfolding the recurrent part of the network in time to obtain usual feedforward representation of the network; such deep network is then trained by backpropagation
- For on-line learning, "truncated BPTT" is used

Factorization of the output layer



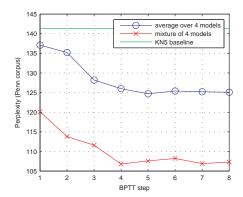
$$P(w_i|history) = P(c_i|\mathbf{s}(t))P(w_i|c_i,\mathbf{s}(t))$$
(1)

- Words are assigned to "classes" based on their unigram frequency
- First, class layer is evaluated; then, only words belonging to the predicted class are evaluated, instead of the whole output layer y [Goodman2001]
 - Provides speedup in some cases more than $100 \times 100 \times$

Empirical evaluation - Setup description

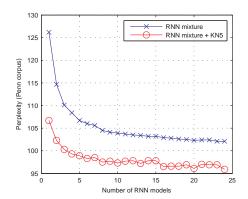
- We have used the Penn Treebank Corpus, with the same vocabulary and data division as other researchers:
 - Sections 0-20: training data, 930K tokens
 - Sections 21-22: validation data, 74K tokens
 - Sections 23-24: test data, 82K tokens
 - Vocabulary size: 10K

Importance of BPTT training



 Importance of BPTT training on Penn Corpus. BPTT=1 corresponds to standard backpropagation.

Combination of randomly initialized RNNs



 By linearly interpolating outputs from randomly initialized RNNs, we obtain better results

Comparison of different language modeling techniques

Model	Perplexity
Kneser-Ney 5-gram	141
Random forest [Xu 2005]	132
Structured LM [Filimonov 2009]	125
Feedforward NN LM	116
Syntactic NN LM [Emami 2004]	110
RNN trained by BP	113
RNN trained by BPTT	106
4x RNN trained by BPTT	98

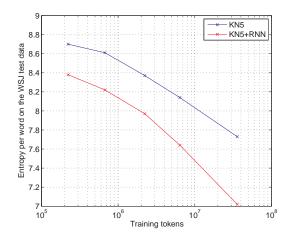
 Comparison of different language modeling techniques on Penn Corpus. Models are interpolated with the baseline 5-gram backoff model.

Speedup with different amount of classes

Classes	RNN	RNN+KN5	Min/epoch	Sec/test
30	134	112	12.8	8.8
100	136	114	9.1	5.6
1000	131	111	16.1	15.7
4000	127	108	44.4	57.8
Full	123	106	154	212

 Values around sqrt (vocabulary size) lead to the largest speed-ups

Improvements with increasing amount of data



The improvement obtained from a single RNN model over the best backoff model increases with more data!

Current work

- Dynamic evaluation for model adaptation
- Combination and comparison of RNNs with many other advanced LM techniques
- More than 50% improvement in perplexity on large data set against modified Kneser-Ney smoothed 5-gram

Current work - ASR

- Almost 20% reduction of WER (Wall Street Journal) with simple ASR system, against backoff 5-gram model (WER $17.2\% \rightarrow 14.4\%$)
- Almost 10% reduction of WER (Broadcast News) with state of the art IBM system, against backoff 4-gram model (WER $13.1\% \rightarrow 12.0\%$)

Toolkit

Overview

 Our experiments can be repeated using toolkit available at http://www.fit.vutbr.cz/~imikolov/rnnlm/ Thanks for attention!