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ABSTRACT
Last year we introduced the Subspace Gaussian Mixture Model
(SGMM), and we demonstrated Word Error Rate improvements
on a fairly small-scale task. Here we describe an extension to the
SGMM, which we call the symmetric SGMM. It makes the model
fully symmetric between the “speech-state vectors” and “speaker
vectors” by making the mixture weights depend on the speaker as
well as the speech state. We had previously avoided this as it intro-
duces difficulties for efficient likelihood evaluation and parameter
estimation, but we have found a way to overcome those difficulties.
We find that the symmetric SGMM can give a very worthwhile
improvement over the previously described model. We will also
describe some larger-scale experiments with the SGMM, and report
on progress toward releasing open-source software that supports
SGMMs.

Index Terms— Speech Recognition, Hidden Markov Models,
Subspace Gaussian Mixture Models

1. INTRODUCTION

The Subspace Gaussian Mixture Model [1, 2] is a modeling ap-
proach based on the Gaussian Mixture Model, where the parameters
of the SGMM are not the GMM parameters, but a more compact set
of parameters that interact to generate the GMM parameters. The
model may be described by the following equations:

p(x|j, s) =

MjX
m=1

cjm

IX
i=1

wjmiN (x; μ
(s)
jmi,Σi) (1)

μ
(s)
jmi = Mivjm + Niv
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expwT

i vjmPI

i′=1 expwT
i′
vjm

. (3)

See the references for further explanation. The Gaussian mixture
weights within the sub-states are controlled by the “weight projec-
tion vectors”wi which determine how the weights vary as a function
of the speech-state vectors vjm. The model is asymmetric because
these weights only depend on the speech-state and not the speaker.
In [2], we describe in detail how we efficiently evaluate likelihoods
with such a model and estimate its parameters.

In this paper we describe a symmetric form of the SGMM. We
modify Equation (3) to the following:

w
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, (4)
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where the vectors ui ∈ R
T (T is the speaker subspace dimension)

now capture the effect of the speaker vectors on the weights. The
difference is that how the mixture weights in the shared GMM struc-
ture can vary with the speaker as well as with the speech-state. Part
of the motivation for this is that as shown by experiments reported
in [1, 2], the fact that the weights vary with the speech-state (con-
trolled by wi) is one of the most important features of the SGMM.
However, symmetrizing the model like this brings up a few practical
problems.

The first problem is how to efficiently evaluate likelihoods with
this model. We address this issue in Section 2. Next we need to
update the model parameters; in Section 3 we present the new ac-
cumulation and update equations, and the changes to the existing
update equations. Space does not permit us to include derivations
here; we have published some brief derivations in a separate techni-
cal report [3]. We present experimental results in Section 4 and in
Section 5 we conclude and mention our progress toward releasing
open-source software that implements these methods. The text be-
tween here and Section 5 will mainly be of interest to those already
familar with the estimation methods used in SGMMs.

2. LIKELIHOOD EVALUATION

The new form of the weights introduces some difficulties for likeli-
hood evaluation, since the denominator of Equation (4) has a difficult
dependency on v(s). Previously the log weights log wjmi were in-
cluded in normalizing factors stored for each Gaussian in the system
(i.e. for each j, m, i). Recomputing all the weights from scratch ev-
ery time we adapt to a new speaker would take an unacceptably long
time. For example, with 100k substates, I = 500, S = T = 40
(S and T are the speech-state and speaker subspace dimensions) this
computation would take 4 seconds at one GFlop. Wemake this faster
by a factor of T , by storing in memory the unadapted weights wjmi

as in Equation (3), and computing the denominator of (4) as a dot
product between these weights and some speaker-specific quantities.
Storing the weights wjmi does introduce a significant memory over-
head; it can nearly double the size of the model in memory. There
is, however, no significant additional time overhead, and in any case
for large vocabulary systems the memory requirements tend to be
dominated by the language model or recognition network.

In the rest of this section we write down the equations we use to
evaluate likelihoods. For each speaker (and 1 ≤ i ≤ I), we compute

b
(s)
i = expu

T
i v

(s)
. (5)

Then, for each j, m we compute the following normalizing factor:

d
(s)
jm =

X
i

wjmib
(s)
i . (6)
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We then have that w(s)
jmi =

wjmib
(s)
i

d
(s)
jm

. We store log d
(s)
jm in memory.

For each frame index t and each pre-selected Gaussian index i, we
compute:

ni(t) = log |detA(s)| − 1
2
xi(t)

T
Σ

−1
i xi(t) + log b

(s)
i , (7)

where only the last term log b
(s)
i is new (other quantities are as de-

fined in [2]; c.f. Eq.(36)). The contribution to the likelihood from
state j, mixture m and Gaussian index i is as follows (c.f. Eq. (37)
of [2]; the last term is new):

log p(x(t),m, i|j) = ni(t) + njmi + zi(t) · vjm − log d
(s)
jm. (8)

3. MODEL ESTIMATION

We are able to obtain auxiliary functions with the same functional
form as those we used to obtain the update equations previously
reported in [2] (see [4] for the original derivations). The term
− log d

(s)
jm in Equation (8) is the problematic new term. We used

Jensen’s inequality in a reverse sense to the way it is normally used,
to move the log function out of a summation; see [3] for details.

3.1. Speaker vector estimation

The auxiliary function we use to optimize v(s) is as follows:
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Here the statistics a
(s)
i are a new quantity which we introduce here

(the other terms are as previously described):

a
(s)
i =
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t∈T (s)

X
j,m

γjmi(t)wjmi

d
(s)
jm

. (10)

Note that d(s)
jm depends on the speaker vector v

(s); this is an iterative
EM process where we start from v(s) = 0, so on the first iteration
d
(s)
jm would equal unity. Typically we just use one or two EM itera-
tions.

The update for v(s) is similar to the update for vjm previously
described, except that we use multiple iterations in the update phase
(we do not bother with this while updating vjm, because it is part of
a larger E-M process in which we do a large number of iterations).
The iterations of speaker vector update are indexed p, with 1 ≤ p ≤
P (e.g., P = 3). We write the p’th iteration of the speaker vector as
v(s,p); if we are on the first iteration of the E-M process we would
be starting from v(s,0) = 0 (or otherwise the previously estimated
value). We first compute H(s), which is the quadratic term in our
“old” update:

H
(s) =

IX
i=1

γ
(s)
i N

T
i Σ

−1
i Ni. (11)

On the p’th iteration we compute the following quantities as the lin-
ear and quadratic terms in a local approximation to the auxiliary

function:
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The quantity w̃
(s,p)
i is an appropriately averaged weight quantity

computed given v(p) as the speaker vector:

w̃
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i ≡
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(s)
i expuT
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The update equation on the p’th iteration is, ignoring the possibil-
ity of non-invertibility, v(s,p) = v(s,p−1) + F(p) −1

g(p), but for
greater robustness we do as follows, where the solve vec function is
as defined in [2]:

v
(s,p) = v

(s,p−1) + solve vec(F(p)
,g

(p)
, 0, K

max). (15)

Note that there is the theoretical possibility of divergence here, but
we do not check for it as we have not seen it happen in practice.

3.2. Speech-state vector and speech-state weight projection esti-
mation

We now require an additional type of statistic in order to update
the speech-state vectors vjm and the speech-state weight projections
wi. This will allow us to handle the term in the auxiliary function
that comes from the denominator of (4). The statistics are:

ajmi =
X

t,j,m,i

γjmi(t)

d
(s[t])
jm

b
(s[t])
i (16)

Here, s[t] represents the speaker active on frame t. Note that the
b
s[t]
i quantities and the alignments γjmi(t) will not have the same
values as the corresponding quantities used to compute a

(s)
i in Equa-

tion (10), because we will compute (16) on a different pass through
the speaker’s data, after v(s) has been estimated.

In the update equations described in [2] for vjm and wi, the
quantity wjmi appears. This needs to be replaced by a quantity
which we write as w̃jmi , which is an appropriately averaged form
of the speaker-specific weights. The statistics ajmi are used to com-
pute this. We define

w̃jmi =
wjmiajmiP
i
wjmiajmi

. (17)

Whenever this quantity appears in the update equations it should al-
ways be computed given the most “updated” values available for
vjm and wi. This means that w̃jmi must be recomputed inside the
loop over p used in [2] in the update ofwi.

The modifications to the updates in [2] simply consist of replac-
ing wjmi with w̃jmi throughout. For vjm this involves changing
Eqations (58) and (59); for wi it involves changing the auxiliary
function of (68), and the update equations (71) and (72).
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3.3. Speaker-space weight projection estimation: overview

We now describe how we estimate the speaker-space weight projec-
tion vectors ui. We experimented with two versions of the weight
projection algorithm, which we call the “more exact” and “less ex-
act” algorithms. Ideally we would like the estimation of ui to be
perfectly symmetric with the estimation of wi. The problem is that
this requires us to have some per-speaker statistics available in the
update phase. Although the amount of statistics we require for each
speaker is fairly compact (just the vectors v(s) and some count-like
quantities of dimension I � 500), we are concerned that for ex-
tremely large corpora these could become difficult to fit in memory
during the update phase. For this reason we also experimented with
a less exact version of the update for ui that avoids storing any per-
speaker quantities.

3.4. Speaker-space weight projection: more exact estimation

For the “more exact” estimation method, we need to store three kinds
of quantities: a

(s)
i , v(s) and si. The first two are speaker-specific

quantities which would have to be stored in the form of a list, one
for each speaker. The count-like quantities a(s)

i are as given by Equa-
tion (10), although we would compute them given the fully-updated
value of the speaker vector v(s). The linear term si is:

si =
X

s

γ
(s)
i v

(s)
. (18)

The counts γ
(s)
i =

P
t∈T (s),j,m

γjmi(t) are already computed for
some of the other update types descibed in [2]. In the update phase,
we maximize the following auxiliary function:

Q(ui) = u
T
i si −

X
s

a
(s)
i expu

T
i v

(s)
. (19)

The optimization process is an iterative one where on each itera-
tion 1 ≤ p ≤ P we compute linear and quadratic terms g

(p)
i and

F
(p)
i and maximize the corresponding quadratic approximation to
the auxiliary function. On each iteration we check that the auxiliary
function did not decrease.

The optimization procedure for a particular value of i is as fol-
lows: Set u(0)

i ← ui (i.e. the value before update). For p = 1 . . . P
(e.g. P = 3), compute:
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X
s
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i exp(u
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i

T

v
(s))v(s) (20)
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i exp(u
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T
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(s))v(s)
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Then the candidate new value of u
(p)
i is utmp = u

(p−1)
i +

F
(p)
i

−1
g

(p)
i , or more safely

u
tmp = u

(p−1)
i + solve vec(F

(p)
i ,g

(p)
i ,0, K

max) (22)

with solve vec as defined in [2], and then we do as follows: while
Q(utmp) < Q(u

(p−1)
i ), withQ defined as in Equation (19), set

u
tmp ← 1

2
(utmp + u

(p−1)). (23)

Then, once the auxiliary function is no longer worse than before, we
set set u(p) ← utmp. After the iteration over p is completed, we set
ûi ← u

(P )
i .

3.5. Speaker-space weight projection: less exact estimation

For the less exact version of the computation of the speaker weight
projections, we avoid storing any lists of speaker-specific quantities
and instead accumulate statistics sufficient to form a local quadratic
approximation of the auxiliary function, which we directly maximize
(without convergence checks) in the update phase. In this case we
store the following statistics:

ti =
X

s

“
γ

(i)
s − a

(s)
i b

(s)
i

”
v

(s) (24)

Ui =
X

s

a
(s)
i b

(s)
i v

(s)
v

(s) T
. (25)

The (weak-sense) auxiliary function we maximize is as follows,
whereΔi is the change in ui:

Q(Δi) = t
T
i Δi −

1

2
ΔT

i UiΔi, (26)

and our update equation is ûi ← ui + Δi, or more generally, to
handle the singular cases,

ûi ← ui + solve vec(Ui, ti,0, K
max), (27)

with the function solve vec as defined in [2].

4. EXPERIMENTAL RESULTS

We report experiments on CallHome English and Switchboard.
Our Callhome English setup is as described in [1, 2]. We used

PLP features with ceptral mean and variance normalization. We
tested with the trigram LM built as described in [2].

GMM: 52.5
#Substates

2700 4k 6k 9k 12k 16k
SGMM: 48.8 48.2 48.0 47.7 47.4 47.5

+spk-vecs: 47.6 47.0 46.4 46.4 46.1 45.9
+symmetric,exact: 46.3 45.6 45.2 44.8 44.5 44.4
+symmetric,inexact 46.5 45.6 45.0 44.6 44.4

Table 1. CallHome English: WERs without CMLLR adaptation

Table 1 shows experiments without CMLLR adaptation; the
only normalization is cepstral mean and variance normalization.
Using the symmetric model reduced WER from 45.9% to 44.4%,
a 1.5% absolute improvement. The inexact update gave the same
improvement as the exact update.

GMM: 49.7
+SAT: 46.0

#Substates
2700 4k 6k 9k 12k 16k

SGMM+spk-vecs: 46.5 45.5 45.2 45.4 44.8 44.7
+symmetric,exact 44.9 44.4 44.1 43.2 42.8 42.9
+symmetric,inexact 45.2 44.1 43.5 43.4 43.3

Table 2. CallHome English: WERs with CMLLR adaptation

Table 2 shows experiments with CMLLR adaptation. The ex-
act update gives 1.9% absolute improvement and the inexact update
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gives 1.4% absolute improvement. Note that these are the same mod-
els as the previous table, tested with CMLLR, and we attribute the
difference between the exact and inexact models on this setup to sta-
tistical noise; further experiments will have to tell us whether, in
general, there is a difference between the exact and inexact updates.

GMM #Gauss per state
20 26 32 34 36 38 40

- 36.8 36.6 36.4 36.4 36.4 36.4
CMLLR 34.8 34.5 34.4 34.3 34.5 34.3
STC 35.4 35.3 35.2
+CMLLR 33.1 32.9 32.9

SGMM #Substates
30k 40k 50k 75k 100k 150k 200k

unadapted 35.7 35.7 35.1 34.7 34.3 33.9 33.7
CMLLR 32.2
+spk-vecs 32.0 31.7 31.4 31.2 30.8
+symmetric 31.9 31.7 31.3 31.0 30.6

Table 3. Switchboard: WERs, with VTLN

GMM #Gauss per state
36

- 39.2
CMLLR 37.0
STC 38.0
+CMLLR 35.2

SGMM #Substates
30k 40k 50k 75k 100k

unadapted 37.9 37.5 37.1 36.6 36.3
CMLLR+spk-vecs 33.9 33.5 33.4
+symmetric 33.8 33.0 33.2

Table 4. Switchboard: WERs, no VTLN

Next we discuss Switchboard experiments. Our Switchboard
system was trained on 278 hours of data from Switchboard I and
II, and CallHome English. Models were tested on the Hub5 Eval01
test set (just over 6 hours long). We used PLP features with cepstral
mean and variance normalization, and Vocal Tract Length Normal-
ization (VTLN). The bigram language model used during decoding
was taken from the AMI RT’07 system described in [5]; we used a
recognition lexicon of 50K words. Our baseline GMM models were
built with HTK [6]. Tables 3 and 4 show results with VTLN, and
without VTLN, respectively. We did the baseline experiments with
Constrained MLLR (CMLLR; a.k.a. fMLLR), and Semi-tied Co-
variance (STC; a.k.a. MLLT). With the SGMMs, we used the exact
update for the ui quantities in the symmetric case. In both cases the
symmetric extension to the model gives a much smaller improve-
ment than on the CallHome setup. We are not sure of the reason for
this. Note that we do not show Speaker Adapted Training (SAT) re-
sults for the GMM baseline because we did not see an improvement
(we tried SAT after STC which would anyway reduce the gains).

Table 5 compares the average acoustic likelihood in the three
passes of decoding, which reveals the effect of the symmetric modi-
fication on the likelihood. The “baseline” rows are the SGMM with
speaker vectors and CMLLR, but without the symmetric modifica-
tion. As expected, the likelihood before adaptation is slightly worse
(because there is a mismatch between the models, which were adap-
tively trained, and the data), but it gets better after adaptation. In
both cases the likelihood improvement per frame, after adaptation,

was about 0.1 (in natural-logarithm units). This makes it hard to in-
terpret the differences in results between the CallHome and Switch-
board setups, because the effect on the likelihoods is so similar. We
intend to do further experiments on other data-sets to find which re-
sults are more typical.

Decoding pass
1 2 3

(no-adapt) +spk-vecs +CMLLR
Call SGMM+spk-vecs -65.44 -63.62 -62.56
Home +symmetric -65.57 -63.50 -62.45
Switch- SGMM+spk-vecs -60.07 -57.78 -58.86
board +symmetric -60.17 -57.68 -56.76

Table 5. Acoustic likelihoods on the three test-time decoding passes

5. CONCLUSIONS

We have described a modification to the Subspace Gaussian Mixture
Model which we call the Symmetric SGMM. This is a very natu-
ral extension which removes an asymmetry in the way the Gaussian
mixture weights were previously computed. The extra computation
is minimal but the memory used for the acoustic model is nearly
doubled. Our experimental results were inconsistent: on one setup
we got a large improvement of 1.5% absolute, and on another setup
it was much smaller.

We would also like to report our progress on releasing open-
source software that supports the SGMMmodeling approach. An of-
ficial announcement, with additional co-authors, will follow within
the next year. We are developing an open-source (Apache-licensed)
C++ speech recognition toolkit that uses the OpenFst library [7].
Most aspects of the toolkit are not related directly to SGMMs, but
SGMMs will be one of the acoustic models the toolkit natively sup-
ports. Most likely the toolkit will already have been released by the
time this is published.
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