
Convolutive Bottleneck Network Features
for LVCSR

Karel Veselý 1, Martin Karafiát 2, František Grézl 3

Speech@FIT, Brno University of Technology
Božetěchova 2, 612 66 Brno, Czech Republic

1 iveselyk@fit.vutbr.cz
2 karafiat@fit.vutbr.cz

3 grezl@fit.vutbr.cz

Abstract—In this paper, we focus on improvements of the bot-
tleneck ANN in a Tandem LVCSR system. First, the influence
of training set size and the ANN size is evaluated. Second, a very
positive effect of linear bottleneck is shown. Finally a Convolutive
Bottleneck Network is proposed as extension of the current state-
of-the-art Universal Context Network. The proposed training
method leads to 5.5% relative reduction of WER, compared
to the Universal Context ANN baseline. The relative improvement
compared to the 5-layer single-bottleneck network is 17.7%.

The dataset ctstrain07 composed of more than 2000 hours
of English Conversational Telephone Speech was used for the ex-
periments. The TNet toolkit with CUDA GPGPU implementation
was used for fast training.

I. INTRODUCTION

In past years, significant research interest was devoted

to the applications of Artificial Neural Networks (ANN)

in Automatic Speech Recognition (ASR) systems.

The idea of Hybrid ASR was first formulated by Bourlard

in the pioneering work [1], where the ANN produces phoneme

posteriors, which are log-transformed and used as emission

probabilities of HMM states. This approach is known as Pure

Hybrid ASR.

Another popular class of Hybrid ASR systems are Tandem

systems [2]. Here, the ANN plays role of discriminative

feature extractor for subsequent GMM-HMM model. In this

case, the ANN is trained to produce vectors of phoneme

or phoneme-state posteriors. Often, the posteriors are post-

processed by PCA. The Tandem system is more complex than

the Pure Hybrid system. The good point is that with Tandem

system, we can easily apply all known GMM-HMM tricks

such as discriminative training and speaker adaptive training.

As described in [3], further accuracy improvement as well

as system simplification (no PCA) can by achieved by using

Tandem with Bottleneck features (BN-features). In this case,

the features are obtained directly from a hidden layer with

low dimensionality. Again, the ANN is trained to classify

phoneme states, therefore we assume that the BN-features

contain concentrated discriminative information.

The state-of-the-art BN-feature systems are based on Uni-

versal Context [4]. Conceptually, it is a tandem of two bottle-

neck ANN classifiers, where the first ANN performs approxi-

mative classification from a short time-context, while the sec-

ond ANN performs more precise decision based on longer

temporal context.

In this paper, we focus on improving the BN-feature extrac-

tor. We train on the ctstrain07 corpus composed of more than

2000 hours of 8KHz Conversational Telephone Speech (CTS).

We can afford to train on such huge dataset thanks to the TNet
toolkit [5] which contains fast implementation of stochastic

gradient descent benefitting from CUDA GPGPU.

All the BN-feature optimizations are proposed in section II.

First, the dataset size and model size are tuned (section II-A).

Then, the Linear bottleneck is proposed (II-B), which is fol-

lowed by brief discussion of Universal Context ANN (II-C).

Finally, the Convolutive Bottleneck Network is proposed

(II-D). The rest of the paper contains the experimental setup

description (section III), results (section IV) and conclusion

(section V).

II. BOTTLENECK FEATURES

A. Scaling the Single Bottleneck System

The performance of any ANN depends on two principal

factors: 1) the amount of training data and 2) the number

of trainable parameters. Theoretically, the perfect model would

have infinite number of trainable parameters, that would

be precisely estimated on infinite amount of training data.

However, this is not practically feasible because the training

algorithm would have infinite running time. Based on the

empirical experience, the training time is nearly linearly de-

pendent on both the set-size and model-size while keeping

the other size fixed.

The same applies for the bottleneck ANNs, only the topol-

ogy is different. Typical Bottleneck ANN is composed of 5

layers, where the middle layer has only a few tens of neurons.

The activations of these neurons are used as features. First,

several different amounts of training data were used to train

fixed topology ANN. Then, several different sized networks

were trained on 1000 hours.

According to the machine learning theory of the frequentist

models [6], we might expect following behavior: By adding

more training data with fixed ANN topology, the performance

improves until the model parameters are reliably estimated.

Adding further data is a waste of time. However, it is still

possible to improve the performance by adding more trainable

parameters, which consequently increases the set-size needed

42978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

for reliable estimation of the parameters. Unfortunately, this

joint enlargement of the ANN training causes quadratic growth

of the training time.

B. Linear Bottleneck

In the pioneering work on bottleneck features (Grézl

et al. [3]) 5-layer bottleneck ANNs with logistic sigmoid units

were used in all the 3 hidden layers including the bottleneck.

It was reported that per-frame classification accuracy (mea-

sured on a cross-validation set) of such 5-layer bottleneck

ANN drops by 3% absolute compared to a 4-layer ANN

without bottleneck. In other words, the presence of a bottle-

neck in the ANN deteriorates the amount of discriminative

information that is propagated through the ANN towards

the posteriors. The respective performance loss was found to

be dependent on the bottleneck size.

Interestingly, we will show that part of this deterioration

can be compensated by using linear units in the bottleneck.

Our typical bottleneck size is 30 units, which represents

an aggressive compression. The hypothesis is that in case

of low bottleneck dimensions, the linear units allow to encode

more discriminative information than the sigmoid units. The

previous statement is empirically supported by the observation

of lower absolute covariances in normalized features for the

case of linear bottleneck.

Now we will focus on what the substitution of a sigmoid

bottleneck by a linear bottleneck means in theory. The prop-

agation through a sigmoid bottleneck can be expressed as:

a3 = W3 σ (W2h1 + b2) + b3 (1)

where σ is logistic sigmoid; a3 is vector of activations

of the 3rd hidden layer; h1 is vector of 1st hidden layer output;

bi is i-th layer bias vector and Wi is i-th layer weight matrix.

The whole situation is shown in Fig. 1.

Figure 1. Illustration of bottleneck in 5-layer ANN

By using linear bottleneck, the propagation (1) simplifies to:

a3 = W3 [W2h1 + b2] + b3 , (2)

by simple rearranging we get:

a3 = [W3W2]h1 + [W3b2 + b3] , (3)

where we see that the propagation through the two bottleneck-

neighbouring layers can be expressed as a propagation through

a single layer, where the weight matrix has limited rank.

C. Universal Context Network

Another possibility to improve the BN-features is to ex-

periment with different forms of hierarchical ANN structures.

Recently, inspired by the idea of Split Time Context intro-

duced by Schwarz [7], the bottleneck networks were extended

to the Universal Context Networks [4].

In the Split Time Context approach, the network hierarchy

has two levels. On the first level, different parts of temporal

trajectories of input features are modeled by separate ANNs.

The second level consists of a merger ANN which fuses

the posteriors from the first level. This hierarchical structure

was found to be beneficial especially in case of limited training

data such as for the TIMIT database.

In the Universal Context approach, the ANN is also hierar-

chical. The primary network is a 5-layer Bottleneck ANN,

that could be used as feature extractor in Tandem system.

However the key point is that part of the primary ANN is used

as feature extractor for the secondary 5-layer Bottleneck

ANN. Time window with time-domain sub-sampling is used

to select outputs from the primary ANN to form the input

of the secondary one. The training of the Universal Context

ANN is done in two phases:

1) First Phase: primary 5-layer Bottleneck ANN is trained

on short time context of 11 frames. The ANN is trimmed

to have the activations of the bottleneck as output.

2) Intermezzo: activations of the bottleneck are mean-

and variance-normalized. Context expansion by concatenation

of frames with time offsets -10 -5 0 5 10 is performed. The

overall time context is now 31 frames.

3) Second Phase: the secondary 5-layer Bottleneck ANN

is trained, while the parameters in the torso-ANN from the first

phase are fixed. Finally the secondary ANN is trimmed in or-

der to produce the activations in the bottleneck, which are

already the final features for GMMs.

The two training steps are shown in Fig. 2, the primary

ANN is on the left (I.), the trimmed parameter-locked ANN

and the secondary ANN are on the right side (II.). The context

expansion CTX between the two networks is also marked.

CTX
-10
-5
0
+5
+10

I. II.

Figure 2. Two phases of the Universal Context network training

The Second phase of the Universal Context ANN training

is not ideal. The fact that some model parameters are fixed

while some are trained is clearly not optimal.

43

D. Convolutive Bottleneck Network

Although it might seem difficult to backpropagate through

the context expansion, the solution is possible. As can be

seen in Fig. 3, the problem can be overcome by putting

the context expansion from between the two networks to the

front of the first ANN, while the first ie. the torso-ANN will

be cloned to 5 instances with shared weights.

CTX
-10

-5

0

+5

+10

shared parameters

fe
at

ur
es

Figure 3. Convolutive Bottleneck Network (CBN) structure

This form of ANN topology can be considered as a Con-

volutional network. It complies with all the three attributes

mentioned by Bishop [6]: 1) local receptive fields – by using

short time context as input for each torso-ANN in globally

longer context, 2) shared parameters and 3) subsampling – by

context expansion with a time-step of 5 frames. Therefore,

such form of ANN topology will be called Convolutive Bot-
tleneck Network (CBN).

The CBN can be trained directly from random initialization.

However taking into account that the CBN is a 7-layer deep
architecture, we might expect gradient vanishing effect [8],

therefore some form of pre-training is advisable. Analogically

with the Universal Context case, the first two layers will be

pre-trained as a trimmed part of 5-layer Bottleneck ANN.

Three training strategies are applicable:

1-Pass: The CBN is trained directly from random initial-

ization.

2-Pass: First, the torso-ANN is pre-trained as in the Uni-

versal Context case, then CBN is built and all the parameters

are trained.

3-Pass: The torso-ANN is pre-trained, then the CBN

network is built. One iteration is performed while keeping

the shared part fixed. In the third pass, all the parameters are

trained.

All the three proposed strategies will be evaluated in the

experimental part.

Another important trick in the training is that the updates

of shared parameters should be scaled down by the inverse

number of sharing of such parameters. In our case we scale

by 1
5 .

The ANNs of both the CBN form as well as the Universal

Context form contain two bottlenecks. These can be composed

of either linear or sigmoidal units. The best combination will

be decided in the experimental part.

III. EXPERIMENTAL SETUP

Database: The initial GMM models were trained on the

ctstrain04 training set which is a subset of h5train03 training

set defined at Cambridge University. It consists of Switch-

board1, Switchboard2 and Call Home English data. Sentences

containing words, which do not occur in the training dictionary

were removed. The total amount of training data was 278

hours.

The ctstrain04 set was further extended by data from Fisher

1 and 2 corpora. The resulting ctstrain07 data set comprises

2000 hours of data. For the ANN training, we were ran-

domly selecting utterances from the ctstrain07 dataset in order

to reach the desired set-size. The disjoint cross-validation set

was also selected from the ctstrain07 set and was fixed to 100

hours.

All the Tandem systems were tested on the Hub5 Eval01
test set. It is composed of 3 subsets of 20 conversations

from Switchboard-1, Switchboard-2 and Switchboard-cellular

corpora, for a total length of more than 6 hours of audio data.

Initial acoustic models: The speech recognition system

is based on HMM cross-word tied-states triphones. The initial

acoustic models were trained from scratch using mixture-up

training on ctstrain04 set. The resulting models contained

≈8500 tied states and 24 Gaussian mixtures per state. Fi-

nally, Heteroscedastic Linear Discriminant Analysis (HLDA)

transform was estimated and models were retrained in the

new space. The PLP features with 13 coefficients and applied

Vocal Tract Length Normalization (VTLN) were expanded

with derivatives Δ, Δ2 and Δ3 and transformed by HLDA

to 39 dimensions. The system with PLP-HLDA features was

used to generate forced alignments for ANN training. There

were 120 labels/target classes corresponding to HMM states

of 40 English phonemes including silence. Each phoneme

is modelled by 3-states.

ANN Parameterization: Long temporal context parame-

terization as proposed in [7] was used. The parameters are 15

log Mel-filterbank outputs derived with 25ms window, 10ms

shift and applied VTLN. The parameters were per-speaker

mean- and variance-normalized. In each band, a temporal

context is taken, scaled by Hamming window and compressed

by Discrete Cosine Transform (DCT). In case of simple 5-

layer Bottleneck ANNs, the temporal context of 31 frames

was used with 16 basis DCT (including C0). For Convolutive

Bottleneck Network or Universal Context Network, the 11-

frame temporal context was used with 6 basis DCT (including

C0). By concatenating DCT coefficients for all 15 bands, we

obtain feature vectors of 240 or 90 coefficients. Such network

inputs were finally globally mean- and variance-normalized.

44

ANN Topologies: The feature-producing bottleneck size

is always 30. The dimensionality of the input is given by

the used parameterization (240 or 90) and the dimensionality

of the output is always 120 (number of phoneme states). The

remaining “free” hidden layer sizes are constrained to be equal

and are calculated to fit the desired number of parameters.

In case of the Convolutive Bottleneck Networks or the Uni-

versal context network, the output of the torso-ANN has

always 80 dimensions.

Three activation functions were used: In hidden layers

the neurons were by default sigmoidal, for some hidden

bottlenecks the neurons were linear. In case of output layer

softmax was used.

ANN Initialization: The weight matrices were initialized

by Normal distribution scaled by 0.1, the biases of sigmoid

units were initialized uniformly from interval -4.1,-3.9 and

the biases of the linear units were set to zero.

ANN Training: Stochastic gradient descent optimizing

cross-entropy loss function was used. The learning rate was

scheduled by the “newbob” algorithm: “The learning rate
is kept fixed as long as the single epoch increment in cross-
validation frame accuracy is higher than 0.5%. For the subse-
quent epochs, the learning rate is being halved till the cross-
validation increment is inferior to stopping threshold 0.1%.”
The ANN weight updates were performed per blocks of 512

frames with various initial learning rates depending on the

ANN architecture.

Features for ASR: The BN-features produced by different

ANNs were transformed by Maximum Likelihood Linear

Transform (MLLT), which considers HMM states as classes.

The transformed bottleneck features were used either raw, ex-

panded by derivative Δ or concatenated with PLP-HLDA fea-

tures. The final features were mean- and variance-normalized.

New models were trained by single pass retraining from

the PLP-HLDA initial acoustic models. Next, 18 maximum

likelihood iterations followed to better settle new HMMs in the

new feature space.

The test set was decoded with bigram language model

taken from AMI speech recognition system for NIST Rich

Transcriptions 2007 [9], while the CMU dictionary was used.

IV. RESULTS

A. Scaling Single Bottleneck System

In the first set of experiments, we evaluated the influence

of adding more training data, with fixed ANN topology. In

Fig. 4, we see that adding more data always improves cross-

validation frame accuracy (left y-axis). However, the improve-

ment by adding data beyond 1000 hours is small. On the right

y-axis, we see that the epoch duration grows linearly with

the set-size. The topology was 5-layer ANN with 1 million pa-

rameters. The 1000 hours subset had optimal performance/time

ratio and is used for further experiments.

In the second round of experiments, we optimized the model

size. As can be seen in Tab. I, by adding several million

of parameters (1st column), the cross-validation frame accu-

racy (cvAcc) always improves. However the Word Error Rate

0 200 400 600 800 1000 1200 1400 1600 1800 2000
45

46

47

48

49

50

51

52

53

54

55

C
V

 F
ra

m
e

A
cc

ur
ac

y
[%

]

Training−set size [hours]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

1

2

3

4

5

6

7

8

9

10

E
po

ch
 ti

m
e

[h
ou

rs
]

CV Frame Accuracy
Epoch time

Figure 4. Training 5-layer BN ANN with different set-sizes.

(WER) stops decreasing when using more than 3 million pa-

rameters, therefore 3 million parameters will be our preferred
model-size.

Table I
5-LAYER BN ANN WITH DIFFERENT PARAMETER COUNTS, 1000 HOURS

Size Dim cvAcc [%] WER [%] time/iter
1M 2381 52.5 33.9 2h52min
2M 4762 53.6 33.7 4h22min
3M 7143 54.2 32.8 6h13min
4M 9524 55.0 32.7 7h58min
5M 11905 55.0 – 9h46min
6M 14286 55.3 – 11h44min

The topology pattern is 240,Dim,30,Dim,120, where Dim

is second column of Tab. I.

B. Linear Bottleneck

In the following experiment, the Sigmoidal bottleneck was

replaced by Linear bottleneck. In Tab. II, we see that 1M

ANN with Linear-BN has slightly lower WER than much

larger 3M Sigmoid-BN ANN. Moreover, the 3M Linear-

BN ANN performs better than all the previous networks.

From the results, we clearly see that the linear bottleneck is

Table II
LINEAR VS. SIGMOIDAL BOTTLENECK, 1000 HOURS

Size linear BN sigmoidal BN
cvAcc [%] WER [%] cvAcc [%] WER [%]

1M 53.8 32.7 52.5 33.9
3M 56.2 32.1 54.2 32.8

beneficial and leads to WER reduction.

C. Convolutive Bottleneck Networks

After all the experiments with 5-layer single-bottleneck

ANNs, we started to experiment with 7-layer Convolutional

Bottleneck Networks (CBN).

45

Bottleneck types: In the CBN there, are two bottlenecks

which can be either Sigmoidal or Linear. Several tens of ANNs

were trained in order to decide which combination is the best.

The networks were trained directly from random initialization,

while a reduced dataset of 100 hours was used. As can

0 2 4 6 8 10 12 14 16
52

53

54

55

56

57

58

Learning Rate

C
V

 F
ra

m
e

A
cc

ur
ac

y

lin−lin
sig−lin
sig−sig

Figure 5. Final Cross-Validation Frame Accuracies as functions of initial
learning rate.

be seen in Fig. 5 the CBNs with Linear bottlenecks are

particularly sensitive to the choice of the initial learning rate.

The highest cross-validation frame accuracy was achieved with

a combination of Sigmoidal and Linear bottlenecks for shared-

part output and feature-producing bottleneck respectively, for

initial learning rate1 of 4. The maxima from all the three curves

were taken and WER was evaluated. The results are in Tab. III,

Table III
DIFFERENT BOTTLENECK-TYPE COMBINATIONS

Bottlenecks Learning rate cvAcc [%] WER [%]
SigSig 15 56.0 31.3
SigLin 4 56.2 30.7
LinLin 3 55.8 30.5

where we see contradictory results. Although the combination

of sigmoidal and linear bottlenecks (SigLin) had the best

Cross-Validation Frame Accuracy, the best WER was achieved

in case of the two linear bottlenecks (LinLin), which had

contrarily the worst Cross-Validation Frame Accuracy. This

paradox would deserve more analysis. The LinLin model was

used for further experiments.

Multi-pass training: In the next set of experiments, we

have evaluated the effect of pre-training. All three strategies

proposed in Sec. II-D were evaluated on the CBN LinLin

and 100h dataset. As can be seen in Tab. IV, the lowest

WER was achieved with the 3-Pass strategy with the absolute

improvement of 0.8% when compared to the 1-Pass baseline.

1In the stochastic gradient descent implementation in TNet, the gradient
is divided by blocksize as default setting, this is the reason why the learning
rate values are higher than usually.

Table IV
MULTI-PASS TRAINING OF CBN (LINLIN), 100 HOURS

Strategy cvAcc [%] WER [%]
1-Pass 55.8 30.5
2-Pass 55.6 30.0
3-Pass 55.4 29.7

Again, we observe the same contradiction, that the best WER

is achieved in case of the worst Cross-Validation Frame

Accuracy.

D. Final Evaluation

In the final set of experiments, we wanted to evaluate all

the modifications either to the ANN structure or to the training

procedure.

Three Tandem systems were trained by Maximum Likeli-

hood for each ANN. The first system used plain BN-features,

the second used BN-features extended by time derivatives Δ
and the third one used concatenation of plain BN-features with

PLP-HLDA features.

The systems were evaluated on the eval01 test set. The

results in Tab. V are divided into four vertical blocks:

The first block represents the standard 5-layer single-

bottleneck ANN with 3 million parameters trained on 1000

hours dataset, this will be the baseline.

In the second block, there are three Universal Context

ANNs, where first, a smaller network with 1.5 million pa-

rameters was trained on 100 hours dataset. Here we see that

despite of training smaller network on smaller dataset, the

Universal Context ANN always outperforms the baseline by

more than 1.5% absolute. In the next row, the dataset-size was

extended to the ideal size of 1000 hours, then the model-size

was extended to the optimal 3 million parameters.

In the third block, the two sigmoidal bottlenecks in the UC

system were replaced by the two linear bottlenecks. Here we

see further improvement of 1% absolute for plain BN-features.

In the fourth block, the UC network was expanded

to the Convolutional Bottleneck Network, where on the first

line the ANN was trained directly from the random initial-

ization. Finally the effect of pre-training of the shared torso-

ANN is shown in the last line. Here, we see that in case

of CBN the pre-training is important and leads to absolute

improvement of 0.6% in case of the plain BN-features.

In the last row of the Tab. V we see that the BN-features

features are no longer complementary with the PLP-HLDA

and the WER improvement from the feature fusion is only

0.1% which is not significant.

Finally it should be stated that the WER of the alignment-

producing baseline GMM-HMM system was 37.2%.

V. CONCLUSION

In this paper, we presented advanced techniques to bot-

tleneck feature optimization. We have shown that for large

datasets, it is feasible to fully train 3 million ANN parameters

46

Table V
FINAL TANDEM SYSTEM EVALUATION ON THE EVAL01 TEST SET

Type Bottle- Size Data Phases cvAcc eval01 WER [%]
necks [%] NN NN+Δ NN+PLP

5L Sig 3M 1000h - 54.3 32.8 32.5 31.1

UC SigSig 1.5M 100h 2 53.8 31.3 30.2 29.4
UC SigSig 1.5M 1000h 2 57.0 29.7 29.1 28.5
UC SigSig 3M 1000h 2 58.5 28.6 27.9 27.9

UC LinLin 3M 1000h 2 60.2 27.6 27.3 27.1

CBN LinLin 3M 1000h 1 60.9 27.6 27.7 27.1
CBN LinLin 3M 1000h 2 60.8 27.0 26.8 26.7

on 1000 hours of training data in a 3-day time, when consider-

ing 12 iterations ≈6 hours each, as shown in Tab. I. This is now

possible with GPGPU training. Also, we have shown that

replacing Sigmoidal bottleneck with Linear one leads to WER

reduction, however such ANN is more difficult to train and

initial learning rate has to be tuned. Finally, the idea of Con-

volutional Bottleneck Network was presented and studied.

The optimal CBN has two linear bottlenecks and is trained

with the shared-part pre-training.

The relative WER improvement compared to the previously

published Universal Context ANN is 5.5%. If we compare

to the 5-layer single-bottleneck network of the same number

of parameters, the relative improvement is 17.7%. Both im-

provements refer to the systems with plain BN-features trained

by Maximum Likelihood.

In the future, we will focus on tuning of the GMM-

HMM part of the Tandem. First, it is possible to use more

advanced language model, for example 4-gram or Recurrent

Neural Network LM [10]. Also, the GMM-HMM model can

be trained discriminatively by fMPE and speaker-adapted by

CMLLR. Furthermore, it is still possible to improve the ANN

model. Since we are dealing with a 7-layer deep architecture,

it might be beneficial to pre-train the ANN by Restricted

Boltzmann Machines [11]. Another very promising results

were recently reported on the Deep Sparse Rectifier Neural

Networks [12].

ACKNOWLEDGMENT

This work was partly supported by Technology Agency

of the Czech Republic grant No. TA01011328, Czech Min-

istry of Education project No. MSM0021630528, Grant

Agency of Czech Republic project No. 102/08/0707 and No.

102/09/P635, and by Czech Ministry of Trade and Commerce

project No. FR-TI1/034.

REFERENCES

[1] H. A. Bourlard and N. Morgan, Connectionist Speech Recognition: A
Hybrid Approach. Norwell, MA, USA: Kluwer Academic Publishers,
1993.

[2] H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem connectionist
feature extraction for conventional HMM systems,” in Proc. ICASSP’00,
vol. 3, 2000, pp. 1635–1638.

[3] F. Grézl, M. Karafiát, S. Kontár, and J. Černocký, “Probabilistic and
bottle-neck features for lvcsr of meetings,” in Proc. ICASSP’07, 2007,
pp. 757–760.

[4] F. Grézl and M. Karafiát, “Hierarchical neural net architectures for
feature extraction in asr,” in Proc. INTERSPEECH’10, 2010, pp. 1201–
1204.

[5] K. Veselý, L. Burget, and F. Grézl, “Parallel training of neural networks
for speech recognition,” in Proc. INTERSPEECH’10, 2010, pp. 2934–
2937.

[6] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed., ser.
Information Science and Statistics. Springer, 2007.

[7] P. Schwarz, P. Matějka, and J. Černocký, “Towards lower error rates in
phoneme recognition,” Lecture Notes in Computer Science, vol. 2004,
no. 3206, pp. 465–472, 2004.

[8] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation 9(8):1735-1780, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] T. Hain, V. Wan, L. Burget, M. Karafiát, J. Dines, J. Vepa, G. Garau,
and M. Lincoln, “The ami system for the transcription of speech in
meetings,” in Proc. ICASSP’07, 2007, pp. 357–360.

[10] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur,
“Recurrent neural network based language model,” in Proc. INTER-
SPEECH’10, vol. 2010, 2010, pp. 1045–1048.

[11] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets,” in Neural Computation, vol. 18, 2006.

[12] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. AISTATS’10, ser. W&CP, vol. 15 (draft). JMLR,
2010.

47

