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Abstract
This paper contains a description of data, systems and fusions
developed by the joint team of Brno University of Technol-
ogy (BUT), Politecnico di Torino (PoliTo) and AGNITIO for
the NIST 2011 Language Recognition Evaluation. The primary
submission was a fusion of one acoustic and three phonotactic
systems, with extensive use of sub-space projections for both
approaches. The results are analysed from the view-point of the
new NIST measure involving theN = 24 worst language pairs.
Some of the results are compared to the MIT-LL submission. As
in our previous work, we conclude that having lots of carefully
processed data is as important as having good algorithms.

1. Introduction
The goal of this paper is to describe the Brno276 system for the
NIST 2011 LRE, which was created in a joint effort by BUT,
Agnitio and PoliTo. The submission name, “Brno276”, reflects
to location where the work was done and the number of lan-
guage pairs.

The Brno276 primary submission included four systems —
one acoustic and three phonotactic:

1. i-vector-2048FG (acoustic i-vector extractor)

2. PHN-HU-i-vector (phonotactic i-vector extractor)

3. PHN-RU-PCA (PCA)

4. PHN-ENG-BT (binary decision tree)

schematically depicted in Figure 1. The details of the systems,
calibration and fusion will be discussed later in the paper. We
also submitted two contrastive systems—see section 7.3. Our
systems make extensive use sub-space projections, mainly in
the form of i-vectors [1].

This work has again confirmed that careful preparation and
pre-processing of training and development data is crucial for a
well performing system. The paper includes our own analysis
and comparison of our results to the ones of MIT Lincoln Lab.1

The paper is organized as follows: Section 2 describes the
construction of data-sets used for training, development and
testing prior to the evaluation, as well as the actual evaluation
data. Section 3 explains the acoustic and phonotactic front-end
system types and section 4 explains their actual setup in our

This work was partly supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. D10PC20015, by Czech
Ministry of Trade and Commerce project No. FR-TI1/034, by Czech
Ministry of Education project No. MSM0021630528 and by European
Regional Development Fund in the IT4Innovations Centre of Excel-
lence project (CZ.1.05/1.1.00/02.0070).

1Published with permission of MIT-LL
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Figure 1: Block diagram of the submitted system.

system. Sections 5 describes the recognizers based on logistic
regression and section 6 covers the fusion, calibration and de-
cision making. Section 7 summarizes the results of individual
systems as well as fusions. The analysis (comparison with MIT-
LL and investigation of phonotactic versus acoustic systems) is
in section 8, and section 9 concludes the paper.

2. Data
2.1. Development data

Table 1 lists the freely or commercially available data (dis-
tributed by the LDC and ELRA) used to train our systems.

There was insufficient data available for the following lan-
guages: Czech, Farsi, Arabic Maghrebi, Mandarin, Russian and
Ukrainian, so we downloaded additional radio data from the fol-
lowing public sources: Radio Free Europe, Radio Free Asia,
Czech Broadcasts, Voice of America (VOA). We performed
phone-call detection [2] and for each language, ran automatic
speaker labelling to prevent repetition of the same speaker in
different sets, in a similar way to our work for NIST LRE
2009 [3].

LDC development data distributed for LRE 2011 was used
with caution:

• on annotated conversations, automatic speaker labelling
was run (like was done for radio-data) to prevent over-
lapping speakers in different sets. We have denoted this
set as Lre11d1 or “trusty data”.

• Entire conversations were split into 30, 10 and 3 sec-
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Table 1: Publicily available databases used to create our TRAIN, DEV and TEST databases.

CF CallFriend
F Fisher English Part 1. and 2.
F Fisher Levantine Arabic
F HKUST Mandarin

SRE Mixer (data from NIST SRE 2004, 2005, 2006, and 2008)
LRE development and evaluation data from previous NIST LRE
OGI OGI-multilingual

OGI22 OGI 22 languages
FAE Foreign Accented English

SpDat SpeechDat-East (http://www.fee.vutbr.cz/SPEECHDAT-E or the ELRA catalog)
SB SwitchBoard

VOA Voice of America radio broadcast
RFEL Radio Free Europe broadcast

AR-IR Iraqi Arabic Conv. Tel. Speech (LDC2006S45)
AR-MSA 2003 NIST Rich Transc. Eval Data (LDC2007S10)
AR-MSA Arabic Broadcast News Speech (LDC2006S46)

ond segments. All splits from one conversation were
assigned together to one of the TRAIN/DEV/TEST set.
This database (Lre11d2) therefore had more data, but
was less reliable. From the results of our 1st contrastive
system, which did not use Lre11d2, we will see that
Lre11d2 did help.

The data was separated into three independent subsets, de-
noted TRAIN, DEV, and TEST. They all contained data from
the 24 target languages — see Table 2. The TRAIN subset had
about 60 000 segments, the DEV subset about 38 000 segments
and the TEST subset about 26 000 segments in total. The DEV
and TEST subsets were split into balanced subsets having nom-
inal durations of 3s, 10s and 30s.

The DEV set is based on our LRE09 development set [4],
and contains data from previous LRE evaluations up to and in-
cluding 2007. The data for the new languages include additional
segments extracted from longer files from CTS and radio data
(which were not contained in the TRAIN set).

The TEST set consisted mainly of NIST LRE09 evaluation
data, plus data for the languages new in the 2011 evaluation.

2.2. Evaluation data

The evaluation data contained 7k to 9k segments, depending
on the condition—the exact numbers per language are given in
Table 3.

3. Front-end types
We used two types of front-end: acoustic and phonotactic.
Here, we give general descriptions of both types, followed by
details of each front-end.

3.1. Acoustic

The acoustic system is based on MFCC/SDC acoustic features.
This section provides a brief summary of the acoustic feature
extraction and UBM training. For more detail, see our previous
work [5, 6].

The inputs to the language recognizer are segments of
recorded speech of varying duration. The voice activity detec-
tion (VAD) is performed by our Hungarian phone recognizer,
with all the phoneme classes linked to the ‘speech’ class.

The acoustic system used the popular shifted-delta-cepstra
(SDC) [7] feature extraction. The feature extraction is simi-
lar to the BUT LRE 2005 system [6]. Every speech segment
is mapped to a variable-length sequence of feature vectors as
follows: After discarding silence portions, every 10ms speech-
frame is mapped to a 56-dimensional feature vector. The fea-
ture vector is the concatenation of an SDC-7-1-3-7 vector and 7
MFCC coefficients (including C0). VTLN, Cepstral mean and
variance normalization and RASTA filtering are applied before
SDC.

Vocal-tract length normalization (VTLN) performs simple
speaker adaptation. We used MAP adaptation from the UBM
(single GMM with 32 diagonal Gaussians trained on Switch-
board) to derive specific models for each warping factor [8].
Models are retrained using an MMI (Maximum Mutual Infor-
mation) criterion. The reference warping factors were generated
by an LVCSR system. The models are trained only on English
data.

A 2048-component, language-independent, maximum-
likelihood GMM was trained with the EM-algorithm on the
pooled acoustic feature vectors of all 24 languages in the
TRAIN data-set. We follow speaker recognition terminology
and refer to this language-independent GMM as the universal
background model, or UBM [9].

3.2. Phonotactic

The phonotactic systems were based on two kinds of phone rec-
ognizers: left-context/right-context hybrids and one based on
GMM/HMM context dependent models. All the recognizers
are able to produce phone strings as well as phone lattices. In
case of lattices, posterior-weighted counts (“soft-counts”) were
used in the subsequent processing [10].

3.2.1. Hybrid phone recognizers

The phone recognizer is based on a hybrid ANN/HMM ap-
proach, where artificial neural networks (ANN) are used to es-
timate posterior probabilities of phonemes from Mel filter bank
log energies using the context of 310ms around the current
frame. Hybrid recognizers were trained for Hungarian and Rus-
sian on the SpeechDat-E databases. For more details, see [11].
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Table 2: Amounts of data in our three databases.

Language TRAIN DEV TEST
#files #hours #files #hours #files #hours

arir 476 17.01 579 2.63 585 2.84
arle 3442 158.74 576 2.52 585 2.66
arma 212 6.83 399 1.77 438 2.05
arms 201 4.72 435 2.71 391 1.96
bang 4084 88.54 633 2.32 563 1.91
czec 2279 19.49 1015 5.49 694 4.02
dari 2410 78.83 579 1.79 1167 3.33
engi 1444 4.72 1174 3.82 1167 3.85
engl 14523 423.33 8170 24.81 2615 8.80
fars 2477 96.63 1718 5.53 1540 4.89
hind 1113 41.79 2222 6.68 1922 6.26
laot 147 3.68 357 1.82 336 1.82
mand 2370 100.55 6281 18.43 2976 9.94
pash 6317 102.35 588 1.87 1185 3.52
pjbc 160 4.36 360 2.17 348 2.10
poli 2098 17.63 772 4.02 489 3.30
russ 8792 122.45 3014 10.26 2247 7.68
slvk 1776 13.55 505 3.26 513 3.41
span 2624 115.08 4784 14.44 1155 3.44
tami 623 19.59 900 2.49 888 2.67
thai 267 7.52 943 3.05 595 2.08
turk 262 9.77 579 1.90 1182 3.43
ukra 967 24.07 572 1.91 1535 4.65
urdu 1266 68.65 1016 3.53 1133 3.41
total 60330 1549.91 38171 129.23 26249 94.00

3.2.2. GMM/HMM phone recognizers

The second type of phone recognizer was based on
GMM/HMM context dependent state clustered triphone models
from an English LVCSR system. The models were trained us-
ing 2000 hours of English telephone conversational speech data
from the Fisher, Switchboard and CallHome databases. The
features are 13 PLP coefficients augmented with their first, sec-
ond and third derivatives projected into 39-dimensional space
using an HLDA transformation. The models are trained dis-
criminatively using fMPE [12] and MPE criterion [13]. VTLN
and CMLLR adaptation are used for both training and recog-
nition in a similar manner to Speaker Adaptation Transform
(SAT). Triphones were used for phone recognition with a bi-
gram phonotactic model trained on English data only.

4. Front-End descriptions
This section lists details of all the different front-end variants.

4.1. i-vector-2048FG

This is an acoustic system inspired by our speaker recognition
system [14] following the popular i-vector paradigm. We used
a full covariance UBM to generate zero and first order statistics
which are used for training the i-vector extractor. The output is
a 600-dimensional vector for every file.

4.2. PHN-RU-PCA

This phonotactic system makes use of n-gram modelling with
the dimensionality of the vector with trigrams soft-counts re-
duced by PCA to 1000. For more details, see [15]. We used a
Russian phone recognizer for generation of trigram soft counts.

4.3. PHN-ENG-TREE

Binary decision tree language modelling was based on creating
a single language independent tree (referred to as the “UBM”)
and adapting its distributions to individual language training
data, as described in Navratil’s work [16]. We used the English
phone recognizer to generate 3-gram lattice counts. The output
is a 24-dimensional score vector representing likelihoods for all
target languages.

4.4. PHN-HU-i-vector

For this system, a low-dimensional multinomial subspace over
the trigram counts in the TRAIN set is trained using the ap-
proach described in [17]. We use the multinomial subspace
model along with hard pruning of the low-frequency trigrams
to overcome the problem of the data sparsity (also explained
in [17]). The i-vectors are the point estimates of the latent
variables describing the coordinates of count vectors in the
new low-dimensional sub-space model. The output is a 600-
dimensional vector for every file.

5. Logistic regression recognizers
Our i-vector and phonotactic-PCA recognizers were discrimi-
natively trained (on the TRAIN set) via regularized multiclass
logistic regression [18]. The input vectors (of dimension 400–
1000) were not reduced by LDA prior to logistic regression,
but were conditioned by within-class covariance normalization
(WCCN). The PCA vectors were length-normalized, i-vectors
were not.

The logistic regression optimization was performed using
automatic differentiation and a trust-region Newton conjugate-
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Table 3: Scored segments in evaluation database categorized
according to language and duration.

language #3sec #10sec #30sec total
arir 308 308 308 924
arle 308 308 308 924
arma 305 305 305 915
arms 306 306 306 918
bang 447 447 412 1306
czec 358 358 261 977
dari 398 399 267 1064
engi 416 416 387 1219
engl 452 452 221 1125
fars 405 405 404 1214
hind 416 416 213 1045
laot 158 158 62 378
mand 432 432 360 1224
pash 401 401 383 1185
pjbc 308 308 299 915
poli 381 380 267 1028
russ 441 441 441 1323
slvk 314 314 280 908
span 419 419 419 1257
tami 413 414 414 1241
thai 403 403 375 1181
turk 472 472 276 1220
ukra 186 186 170 542
urdu 478 478 478 1434
total 8925 8926 7616 25467

gradient optimizer [19]. Each recognizer uses an affine trans-
form to convert the D-dimensional vector, vt, for trial t, into a
K-dimensional score-vector, st:

st = ATvt + b, (1)

where K = 24 is the number of target languages. T is a D-by-
D matrix which effects within-class covariance normalization,
such that the mean class-conditional sample covariance matrix
over the training data becomes identity. The logistic regression
parameters are A, a K-by-D matrix, and b, a K-dimensional
vector, and they are trained by minimizing the regularized ob-
jective function:

λ

N
tr(ATA)

− 1

K logK

KX
i=1

1

Ni

X
t∈Si

log
exp(sit)PK

j=1 exp(sjt)
,

(2)

where N =
P

i Ni, and sit is the ith component of st and Si

is the set of Ni training examples for language i. The regular-
ization weight, λ, was set to:

λ =

 
1

N

X
t∈S

q
vT

t TTTvt

!2

, (3)

where S =
S

i Si. We refer to the two terms of (2) as the
regularization penalty and the multiclass cross-entropy and we
note that they were almost equal at the minimum, suggesting
that regularization plays an important role.

6. Fusion, calibration and decision taking
6.1. Pre-calibration

Each of the recognizers was independently pre-calibrated with
an affine transform, trained on the independent DEV data-set
(for the testing prior to the arrival of evaluation data) and on
DEV+TEST for the “hot evaluation”:

rt = Cst + d (4)

where C is a full K-by-K matrix and d is a K-dimensional
vector. Note that the pre-calibration does not change the score-
vector dimensionality. These parameters were again trained by
regularized logistic regression, but here, no WCCN was ap-
plied.2

After pre-calibration, zero vectors, rt = 0, were inserted
for those segments for which the basic recognizers failed to pro-
duce scores or input vectors.

6.2. Fusion

Let rti denote the outputs of the ith pre-calibrated recognizer.
These outputs were fused as:

`t =
X

i

αirti + β (5)

where each αi is a scalar weight and β is aK-dimensional vec-
tor. These parameters were again trained by multiclass logistic
regression on the DEV subset (and later on DEV+TEST for the
evaluation). Here, neither WCCN, nor regularization, were ap-
plied.

The output vector of the fuser can be interpreted as 24 lan-
guage log-likelihoods.

6.3. Pair scores and decisions

The 276 pair scores were formed as differences between pairs of
the language log-likelihoods output by the fuser. The decisions
were made by thresholding at zero.

7. Results
All results are presented with the new NIST metric: average
of actual decision operating point cost function values over
the most difficult 24 language pairs (determined by the great-
est values of minimum cost operating points for 30-second
segments)—see the evaluation plan [20] for details.

7.1. Acoustic system

Table 4 presents the results for the submitted acoustic system
(with full covariance) in the first line. In the post-analysis, we
performed a comparison with a diagonal covariance system. Al-
though the performance of the full-covariance system was better
on the development data (for 30s), the classical (and simpler) di-
agonal covariance model outperformed the full covariance one
on the evaluation data, but their performances were similar in
absolute numbers.

We have also experimented with training the UBM as well
as i-vector extractor on more languages than the target 24 (54
languages from our work for NIST 2009 LRE submission [4])
but found the training on target languages to produce the best
results.

2The decision whether to apply WCCN in the particular steps was
based on running experiments on our development set. The chosen con-
figuration was the one which gave the best performance.
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Table 4: Results of the acoustic system.

Development Evaluation
NIST 24 [%] 30s 10s 3s 30s 10s 3s
Full covariance UBM, ivec 600 4.19 9.70 19.03 10.39 17.64 28.16
Diagonal covariance UBM, ivec 600 4.33 9.65 18.72 10.35 17.20 27.70

7.2. Phonotactic systems

Table 5 shows the results of our phonotactic systems. While we
have seen the superiority of i-vector and decision tree systems
in the development, the evaluation turned these results upside-
down: of the three phonotactic systems, the relatively simple
PCA system with Russian phone recognizer performed the best
on the eval data, and its hit compared to development data was
in the same range as that of the acoustic system. Although
slightly worse, the i-vector performed predictably on the eval
data.

On the other hand, the decision tree system failed badly on
the eval data. To investigate the cause and rule out possible
problems with the phone recognizer, we performed tests with
the same phone recognizer (Hungarian) with all three modelling
techniques. The results in Table 6 suggest that the decision tree
system suffered the biggest hit while changing from develop-
ment to evaluation data. The exact causes are still unclear to us
and will have to be investigated.

7.3. Fusions

Figures 2 to 4 compare three values of the average cost com-
puted over the worst 30 language pairs: actual (with threshold
zero, as stated in section 6.3), min with threshold optimized for
every language pair on the eval data and star* with an offset
optimized for every language on eval data. The left bar in the
figure denotes results on the development data and the right one
on the eval data.

The results are shown for the individual systems and their
fusions:
• primary: including all four systems
• 3sys: excluding the misbehaving PHN-ENG-TREE sys-

tem
• Contrastive1: a fusion of all four systems but with the

(presumably less reliable) Lre11d2 set was excluded
from the calibration.

• Contrastive2: included only two systems — English de-
cision tree one (which was a bad choice as we have seen)
and acoustic i-vectors.

Table 7 contains detailed results of these fusions for all con-
ditions.

As for the individual systems, we have seen a big deteriora-
tion in minDCF for evaluation versus development. There were
no calibration disasters, but 30s could have been better. The hit
of the decision tree system is obvious also on the figures. On
average, the acoustic system outperform phonotactic systems
for all durations, but this is not true for all language pairs (see
section 8.2). As expected, the fusion helped.

8. Analysis
8.1. Comparison with MIT-LL

The new NIST metric is different from the previous years in that
the list of the most difficult pairs is different for different sites.

Figure 2: Results of individual systems and fusions for 3s con-
dition.

Therefore, we were eager to compare our system with the better
performing submission from MIT-LL [21].

The analysis we ran on the 30s condition has shown that
there is only a weak correlation between sites in the difficulty
of pairs and that:

• both sites are very similar when minDCF is averaged
over all language pairs.

• Brno276 is slightly worse than MIT-LL for minDCF es-
timated on the site-dependent worst 24 pairs.

• Brno276 is significantly worse on the site-dependent
worst 24 pairs in terms of actDCF, suggesting a calibra-
tion hit.

To further study the differences, we generated a plot showing
the five worst pairs for each site (Figure 5). It is obvious that
the results presented correspond largely to the efforts the differ-
ent sites devoted to different types of the data: while MIT-LL
performs very well on the Arabic and English dialects, Brno276
is much better on Slavic languages where the data collection and
pre-processing efforts were concentrated.

This proves again that the preparation of training and cali-
bration data is crucial in the system development and that hav-
ing sub-optimal resources for a language or group of languages
can severely impair the system especially for the new NIST met-
ric.

8.2. Phonotactics better than acoustics?

In the previous sections, we have noted the superiority of acous-
tic system over the phonotactic ones even for the 30s condition
where the systems have been traditionally on par. Based on a
question “are there language pairs where phonotactics is supe-
rior?” raised by George Doddington at the evaluation workshop,
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Table 5: Results of the phonotactic systems.

Development Evaluation
NIST 24 [%] 30s 10s 3s 30s 10s 3s
ENG-BT 6.70 12.24 22.58 22.28 27.75 35.58
RU-PCA 7.76 14.58 26.13 14.32 23.90 33.91
HU-i-vector 6.68 15.00 27.95 15.42 24.59 35.61

Table 6: Investigation of three modelling techniques with the same (Hungarian) phone recognizer.

Development Evaluation
NIST 24 [%] 30s 10s 3s 30s 10s 3s
BT 7.91 13.26 24.08 21.87 26.17 33.45
PCA 6.30 15.00 27.91 16.12 25.03 35.99
i-vector 6.68 15.00 27.95 15.42 24.59 35.61

Figure 3: Results of individual systems and fusions for 10s con-
dition.

we have generated a list of pairs where the phonotactic systems
indeed beat the acoustic system — see Figure 6. We have found

• 19 pairs where PHN-RU-PCA performs better than the
acoustic system.

• 9 pairs where PHN-HU3-i-vector performs better than
the acoustic system.

• 5 pairs where both phonotactic systems perform better.

The results are difficult to interpret. A first comparison with
the sizes of data (Table 2) would suggest that phonotactic sys-
tems outperform the acoustic system in cases with little training
data; this is however not valid for the Ukrainian/Russian pair
with abundant data. We might also suspect the labelling of data
— for example Ukrainian is very similar to Russian for East
Ukrainian speakers and the performance might depend heavily
on the region in which the speakers were sampled. Similar cases
are likely to occur in other language pairs. Also, we cannot rule
out over-training of the acoustic system on a particular transmis-
sion channel (especially for Indian and Pakistani languages): in
this case, phonotactics should provide better performance.

Figure 4: Results of individual systems and fusions for 30s con-
dition.

9. Conclusions
The paper describes the four systems that were included in the
Brno276 submissions to NIST 2011 LRE and discusses their
results from the viewpoint of the new NIST metric. Generally,
we have seen that the acoustic system outperformed the phono-
tactic ones, although exceptions exist and deserve further inves-
tigation. Of the phonotactic systems, an i-vector and a simple
PCA one performed well in the evaluation and largely helped
the acoustic one in the fusion. The decision tree system that pro-
vided the best performance on our development data failed in
the evaluation and further investigation is needed to find causes.
We must still decide what our next development steps should
be, but it seems that (1) special detectors for selected pairs of
languages and (2) better development set design are strong can-
didates.
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Jan “Honza” Černocký, “Brno University of Technol-
ogy system for NIST 2005 language recognition evalu-
ation,” in Proceedings of the Odyssey Speaker and Lan-
guage Recognition Workshop, San Juan, Puerto Rico, June
2006, pp. 57–64.

[7] Pedro A. Torres-Carrasquillo, Elliot Singer, Mary A.
Kohler, Richard J. Greene, Douglas A. Reynolds, and
John R. Deller, Jr., “Approaches to language identification
using Gaussian mixture models and shifted delta cepstral
features,” in Proceedings of the 7th International Confer-
ence on Spoken Language Processing, Denver, Colorado,
USA, Sept. 2002, pp. 89–92.

[8] Lutz Welling, Stephan Kanthak, and Hermann Ney, “Im-
proved methods for vocal tract normalization,” in Pro-
ceedings of the International Conference on Acoustics,

222



0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

ar
le

_p
ol

i

ar
le

_s
lv

k

ar
m

s_
sl

vk

ba
ng

_t
am

i

cz
ec

_h
in

d

cz
ec

_s
lv

k

da
ri_

ta
m

i

en
gi

_l
ao

t

en
gi

_u
rd

u

hi
nd

_s
lv

k

hi
nd

_t
am

i

pj
bc

_p
ol

i

pj
bc

_s
lv

k

pj
bc

_u
kr

a

pj
bc

_u
rd

u

pa
sh

_r
us

s

pa
sh

_s
lv

k

po
li_

sl
vk

ru
ss

_t
am

i

ru
ss

_u
kr

a

sl
vk

_t
am

i

sl
vk

_t
ur

k

uk
ra

_u
rd

u

AC:ivec600
PHN:HU
PHN:RU

62%

Figure 6: Comparison of phonotactic and acoustic systems on the 30s condition.

Speech, and Signal Processing, Phoenix, Arizona, USA,
Mar. 1999, pp. 761–764.

[9] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B.
Dunn, “Speaker verification using adapted Gaussian mix-
ture models,” Digital Signal Processing, vol. 10, no. 1–3,
pp. 19–41, 2000.

[10] Jean-Luc Gauvain, Abdel Messaoudi, and Holger
Schwenk, “Language recognition using phone lattices,” in
Proceedings of the 8th International Conference on Spo-
ken Language Processing, Jeju Island, Korea, Oct. 2004,
pp. 1283–1286.

[11] Petr Schwarz, Pavel Matějka, and Jan “Honza” Černocký,
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[14] Pavel Matějka, Ondřej Glembek, Fabio Castaldo, Ja-
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[16] Jiřı́ Navrátil, “Recent advances in phonotactic language
recognition using binary-decision trees,” in Proceed-
ings of Interspeech, Pittsburgh, Pennsylvania, USA, Sept.
2006.

[17] Mehdi Soufifar, Marcel Kockmann, Lukáš Burget,
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