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Abstract 
This paper describes a novel approach to phonotactic LID, where 
instead of using soft-counts based on phoneme lattices, we use 
posteriogram to obtain n-gram counts. The high-dimensional 
vectors of counts are reduced to low-dimensional units for which 
we adapted the commonly used term i-vectors. The reduction is 
based on multinomial subspace modeling and is designed to 
work in the total-variability space. The proposed technique was 
tested on the NIST 2009 LRE set with better results to a system 
based on using soft-counts (Cavg on 30s: 3.15% vs 3.43%), and 
with very good results when fused with an acoustic i-vector LID 
system (Cavg on 30s acoustic 2.4% vs 1.25%). The proposed 
technique is also compared with another low dimensional 
projection system based on PCA. In comparison with the original 
soft-counts, the proposed technique provides better results, 
reduces the problems due to sparse counts, and avoids the 
process of using pruning techniques when creating the lattices. 
Index Terms: subspace modeling, multinomial distributions, 
LID 

1. Introduction 
Nowadays there are two main approaches to the spoken language 
recognition task (LRE): a) based on acoustic, and b) on phonetic 
information. In the acoustic systems, different features – such as 
short-term spectra, prosodic information or intonation – are taken 
into account to model each recognized language. On the other 
hand, phonotactic systems model sequences of recognized 
phonemes obtained from a phone recognizer [1]. The focus of 
this paper is on the latter approach, although experiments 
considering the fusion and calibration with an acoustic-based 
system have also been done for comparison. 

The front-end of a phonotacic system consists of a phone 
recognizer that tokenizes speech utterances into discrete events 
(phones), which are used to extract n-gram counts statistics. 
These n-gram counts can be used as feature vector for training a 
language model for each language (as in the case of PRLM [1]) 
or using a discriminative classifier (as in the case of support 
vector machines (SVM) [3]). In the case of PRLM, typically the 
language models are created using the n-gram counts applying 
smoothing techniques as the ones used for training a speech 
recognition system [4]; an alternative approach is to use soft 
counts (i.e. posterior-weighted counts) created from phone 
lattices [5] instead of 1-best phone strings and then to train a 

generative model as classifier. On the other hand, in case of 
using discriminative classifiers, it is necessary to represent the 
input as a fixed-length vector whose size depends on the number 
of phones used by the phoneme recognizer and considering the 
full expansion of all possible combinations of them up to a given 
n-gram order. The size of the vector limits the order of the n-
grams considered (typically only up to trigrams or a reduced set 
in case of four-grams); making it necessary to look for compact 
representations (i.e. a dimensionality reduction) such as principal 
component analysis (PCA) or selection of discriminative n-
grams as proposed in [6] and [7]. In this paper, we follow the 
same approach as in [9] and [10], where i-vectors are used for 
obtaining a compact representation of n-gram statistics.  

Although i-vectors were first introduced for the acoustic 
speaker recognition task [8] with continuous features and 
Gaussian mixture modeling (GMM), they have being 
successfully used on the LID task and also extended to be trained 
on discrete features [10] by using subspace multinomial models 
to model the discrete representation of prosodic features. In our 
case, since we are dealing with another discrete representation of 
speech utterances: posteriogram-based counts from the output of 
the phone recognizer, and considering the results reported in [9], 
we decided to use the same approach. 

Our new system is inspired in two different phonotactic 
systems reported in [12] and [9]. In [12] a phonotactic-based LID 
system is created using n-gram soft-counts created from phone 
lattices. These counts are used to create a vector where all 
possible n-grams combinations are present and where those n-
grams that do not occur are set to zero. Then, a PCA projection is 
done in order to reduce the size of the input vector taking the 
most relevant information from these counts. Then, a 
classification system is created by using Logistic Regression 
(LR). In [9], a similar procedure is followed but the classification 
is done by first extracting i-vectors using subspace multinomial 
distributions (SMD) and then using them as feature vectors for 
training a logistic regression classifier.  

In this paper, we modify mainly the input feature vectors and 
backend by using a multiclass logistic regression classifier. We 
analyze the performance of the proposed features on the i-vector 
paradigm with respect to the previous systems: i.e. w.r.t the 
performance on creating i-vectors from the soft-counts and using 
a PCA-based dimensionality reduction. The experiments are 
carried out on the NIST LRE 2009 task and all results are given 
in terms of the average decision cost function (Cavg) according to 
the NIST LRE 2009 evaluation plan. 



 
Figure 1. Example for the process of creating posteriogram-based bigram counts. 

2. Joint-posteriogram n-gram Counts 
Figure 1 shows the process of creating the vector of 
posteriogram-based n-gram counts. In this case, we consider 
bigram counts for simplicity. The process can be divided into 
four main steps. 

The first step is to tokenize speech by the means of running a 
phone-recognizer that, for each frame, provides the posterior 
probabilities of the phone occurrences (number 1 in Figure 1). In 
our experiments, we used the BUT Hungarian phone 
recognizer1. 

The second step is to sum up and average the posterior 
probabilities for the frames that are considered to be within the 
same phoneme unit (number 2 in the figure). The phone 
boundaries are obtained by running a viterbi decoding on the 
posteriogram (HTK was used here). This fact can be considered 
as the incorporation of a priori information (i.e. the best result for 
obtaining phone-boundaries) to the system that we believe helps 
to improve the results. The reason for doing this is that the 
posterior probabilities for each frame are highly correlated 
within a single phoneme. Also we believe that the averaged 
posterior is robustly estimated. In the figure, we have represented 
the phone boundaries with different colors. The resulting entity 
is referred to as an averaged posteriogram. 

The next step is to create the joint-posteriogram – a sequence 
of matrices of joint probabilities for the n consecutive frames. In 
order to do this we take the averaged posteriogram of each frame 
and we do outer product with the posteriogram of the previous 
frame. If we assume that the frames of the averaged 
posteriogram are statistically independent, then we are 
computing the joint probabilities for sequences of phonemes p(ai-

                                                                 
 
1 http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-
temporal-context 

1,bi)=p(ai-1)p(bi). For calculating the joint-posteriogram for the 
first phone we create a dummy probability vector with equal 
probabilities among all the phones (in the example, since we 
have only three phoneme,s the probability for each one is set to 
0.33). This process is repeated for all the phone-grams 
considering the n-1 phone-gram history.  

The final step (number 4 in the figure) is to sum up all 
frames (matrices) of the joint-posteriogram. This way, we create 
a matrix of n-gram counts that is converted into a 1xD vector 
(where D is the total number of possible n-grams) and then used 
as a feature file for training the i-vectors as explained below. 

3. Subspace Multinomial Model 
The goal of the Subspace Multinomial Model is to model the 
discrete representation of the posteriogram counts created in the 
previous step in a similar way as is done in [9] for n-gram counts 
in language recognition or prosodic features [10] in a speaker 
recognition task. Thanks to the Subspace Multinomial Models 
we can train low dimensional vectors of coordinates in total 
variability subspace, i.e. i-vectors, and then use these i-vectors as 
feature input for training a discriminative LID classifier. This 
section describes the motivation and process for training the 
subspace multinomial models with details in [10] and [13]. 

3.1. Likelihood function 
The log-likelihood of data D for a multinomial model with C 
discrete classes is determined by model parameters φ and 
sufficient statistics γ, representing the occupation counts of 
classes for all N utterances in D: 
 

log p(D) = ��γnclogφnc

C

c=1

N

n=1

 (1) 

 

http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context


Where γnc is the occupation count for class c and utterance n 
and φnc are probabilities of (utterance dependent) multinomial 
distribution, defined by a subspace model according: 
 

φnc =
exp (mc + tcwn)
∑ exp (mi + tiwn)C
i

 (2) 

 
Where tc is the c-th row of subspace matrix T and wn is an r 

dimensional column vector (i-vector) representing language and 
channel of utterance n. 

3.2. Training procedure 
For training the i-vectors we have followed the algorithm 
reported in [10] with slight modifications in order to iterate 
several times the estimation and maximization step. Newton-
Raphson algorithm is used for optimization. The training process 
is divided into three steps: 
• Train the i-vector extractor matrix (T) following the algorithm 

in List 1. In our case, the number of epochs (E) and iterations 
(I, J) were set as E=4, I=J=3. In contrast to [10], we retrain 
matrices T and w by using the updates from the previous 
epoch. This way, we obtain a better convergence to the 
optimal value. In addition, in case of failing to improve the 
likelihood when updating both w and T due to making too 
large the update step, we halve the update step until an 
increase in likelihood is obtained again. 
 
initialize 𝑇0 = 𝑟𝑎𝑛𝑑𝑜𝑚 
for e in epoch 1 to E 
   initialize 𝑤𝑒 =0 
   for i in iteration 1 to I 
     re-estimate 𝑤𝑒𝑖  using 𝑇𝑒−1

𝐽  
   for j in iteration 1 to J 
     re-estimate 𝑇𝑒

𝑗using 𝑤𝑒𝐼  

List 1. Algorithm for training i-vectors and extractor 
matrix 

• Extract an i-vector (i.e. w) for each file of the train, 
development and test sets using the previously trained T 
matrix and re-estimating it three times. 

• Finally, before applying the calibration and fusion (see 
section 4.3) we apply mean removal and length normalization 
(i.e. subtracting the mean of each i-vector and dividing it by 
its norm) in order to model better the low dimensional 
distribution where the i-vectors are located. 
 
As explained in [10], it is possible to consider a subspace 

model using a single multinomial distribution (Equation 2) or 
using a set of multinomial models. In our experiments, we have 
considered a set of 1089 multinomial models when using 
trigrams (i.e. considering all the possible number of bigram 
histories, 33x33, using 33 phones for the Hungarian recognizer). 
We achieve this by concatenating the distributions into single 
super-vector of multinomial distributions, which is modeled by 
one subspace matrix T. In other words, there will be only one i-
vector wn defining the whole set of multinomial distributions for 
each segment n. In this case, the indices c from Equation (2) are 
divided into subsets, where each subset corresponds to mutually 
exclusive events (counts from one GMM), and the denominator 

is also changed to normalize only over the appropriate subset of 
indices that the current c belongs to. 

4. Experimental Setup 

4.1. Training and Development Data 
The training data has being taken from the same databases as in 
[11], i.e. using speech files from Callfriend, Fisher English Part 1 
and 2, Fisher Levantine Arabic, HKUST Mandarin, Mixer (data 
from NIST SRE 2004, 2005, 2006, 2008). For training, we used 
a balanced dataset with a maximum of 500 utterances per 
language considering the 23 target languages as defined for 
NIST LRE 20091. This set was used for training the i-vector 
extractor and also for training the classifier. 

The calibration back-end described in section 4.3 was trained 
using a development dataset, which comprises data from NIST 
LRE 2007, Foreign Accented English, OGI-multilingual, 
SpeechDat-East, OGI 22 languages, Voice of America radio 
broadcast and Switch Board. Again, only data of the 23 target 
languages were used. This set was based on segments of 
previous NIST LRE evaluations plus additional segments 
extracted from CTS, VOA3 and human-audited VOA2 data, not 
contained in the training dataset, see [14] for details. 

4.2. Feature Extraction for Acoustic System 
Standard 7 Mel Frequency Cepstral Coefficients (MFCC) 
(including C0) are used. Vocal Tract Length Normalization 
(VTLN) and Cepstral Mean and Variance Normalization is 
applied in MFCC computation. Then, Shifted Delta Cepstra 
(SDC) coefficients with usual 7-1-3-7 configuration are obtained, 
and concatenated to MFCCs, to obtain a final feature vector of 
56 coefficients. For each utterance, the corresponding feature 
sequence is finally converted to an i-vector using an T matrix 
based on a GMM with 2048-components trained on pooled 
features from all 54 languages included in our training data. 

4.3. Classifier and Calibration Back-end 
As classifier for our i-vectors, we have used a Multiclass logistic 
regression which generates 23 different classifiers, one for each 
language. Then, these classifiers are used to generate scores for 
the files in our test set. For calibration and fusion, a Gaussian 
Back-end followed by a Discriminative Multi-Class Logistic 
Regression is used to post-process the scores obtained before.  

5. Results 
Figure 2 shows the results obtained with our proposed 

system (first row) for three given conditions: 30, 10, and 3 
seconds and different i-vector dimensions. If we compare them 
with the results (second row in Table 1) obtained using also an i-
vector-based phonotactic system but trained on soft-counts 
(using a similar setup as the one reported in [9] but with some 
differences on the training list and fusion system), we can see 
that our results are better for all the conditions. Finally, we can 
also try to compare this results with the ones obtained using a 
PCA reduction to dimension 1000 (third row in Table 1), where 
we can see that our system provides better results in all cases. 

                                                                 
 
1http://www.itl.nist.gov/iad/mig/tests/lre/2009/LRE09_EvalPlan_v6.pdf 



 

Figure 2. Results for test data on the three different NIST LRE 2009 conditions using the proposed posteriogram trigam counts 
(solid line) using different i-vector size and the fusion with an acoustic i-vector-based system (dashed line) 

The fusion results (fifth row) show that the fused system has a 
relative improvement of 47.9% for the 30 seconds condition, 
37.3% for the 10 seconds condition, and 13.46% for the 3 
seconds conditions in comparison with the acoustic system 
(fourth row). We can also compare these results with the 
performance of fusing the same acoustic system but with each of 
the other approaches (i.e. with soft-counts, sixth row, and with 
using PCA on soft counts, seventh row) 
 

 3 s 10 s 30 s 
1. p-gram i-vectors (600) 21.45 8.66 3.15 
2. soft-counts i-vectors (600) 23.70 9.60 3.43 
3. soft-counts PCA (1000) 23.17 9.12 3.44 
4. Acoustic i-vectors (400) 14.04 4.93 2.40 
5. p-gram i-vectors + Ac. i-vectors 12.15 3.09 1.25 
6. soft-counts i-vectors + Ac. i-vectors 12.73 3.37 1.39 
7. soft-counts PCA + Ac. i-vectors 12.38 3.34 1.39 

Table 1. Results (Cavg) for three conditions 

6. Conclusions and Future Work 
In this paper we have presented a feature vector suitable for 
phonotactic LID. The new system is based on using an easy and 
robust algorithm that generates n-gram counts based on 
posteriograms. This feature vector has the advantage of reducing 
the sparseness of the counts matrixes producing a better input to 
model our phone-based counts. Results on NIST LRE 2009 task 
by fusing our proposed system with an acoustic i-vector based 
system provides one of the best results on this task that we know. 

As future work we propose the incorporation of an additional 
mechanism for selecting discriminative n-grams that can help to 
reduce the size of the input vector [7], as well as using it as 
scaling factor during the fusion and calibration process. 
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