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Abstract
The combination of iVector extraction and Probabilistic Lin-
ear Discriminant Analysis (PLDA) model forms a basis of the
current state of the art speaker verification. The PLDA model
makes an assumption that the within-speaker (or inter-session)
variability in the iVector space is independent of speaker iden-
tity. In this work we propose a new model, which can be seen
as an extension of PLDA, relaxing this assumption and allow-
ing the within-speaker variability to be different for different
locations of speakers in the iVector space. The potential of the
proposed model is demonstrated in preliminary experiments.

1. Introduction
We propose a new model for speaker verification, which can be
seen as an extension of the state-of-the-art Probabilistic Lin-
ear Discriminant Analysis (PLDA), relaxing certain assump-
tions made by the standard PLDA model. More specifically,
our model does not strictly assume that inter-session variabil-
ity in the feature space (e.g. iVector space) is independent of
speaker identity.

Current state-of-the-art cepstral speaker verification sys-
tems are based on a combination of two techniques: iVector ex-
traction and PLDA-based verification. iVector extraction [1] is a
process where a sequence of conventional speech features (e.g.,
MFCC) is converted into a single low-dimensional feature vec-
tor representing important information about the speaker (and
channel) of a given speech segment. Once iVectors are ex-
tracted from speech segments, the task in speaker verification
is to decide whether or not two iVectors come from the same
speaker. Simple methods such as using cosine distance to com-
pare iVectors were proposed for this purpose [1]. However, cur-
rently the most successful techniques for calculating verifica-
tion scores are based on the PLDA model [2, 3]. The basic
”Gaussian” form of PLDA is a generative model making LDA-
like assumptions: For each speaker, iVectors are assumed to be
Gaussian distributed with a speaker-specific mean and within-
class covariance matrix shared across all speakers. Here, the
within-class covariance matrix represents the inter-session (or
channel) variability in the iVector space. The speaker mean,
which is a hidden variable in the model, is assumed to be Gaus-
sian distributed with the speaker variability described by an
across-class covariance matrix. Typically, maximum likelihood
(ML) estimates of PLDA parameters describing the within- and
across-speaker distributions are estimated using the expectation
maximization (EM) algorithm [2, 3]. Given a pair of iVectors,
verification score can be evaluated using the PLDA model as a
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ratio between likelihoods of two hypotheses: the iVectors were
generated from the same speaker or independently. When cal-
culating the likelihoods, we need to integrate over the hidden
variable, which can be done very efficiently in the case of the
basic Gaussian PLDA, where the integral can be solved analyt-
ically [4, 5].

Several extensions of the PLDA model were proposed.
To improve the iVector distribution fit, so-called Heavy-
tailed PLDA [3] models within- and across-speaker variabil-
ity used the more expressive Student’s t-distribution. Bayesian
PLDA [6] was proposed to cope with over-fitting the across-
speaker variability, which is learned from a limited number of
training speaker examples. In these PLDA extensions, how-
ever, calculation of the posterior distribution of hidden variables
needed by the EM algorithm becomes intractable and one has
to resort to an approximate probabilistic inference such as vari-
ational Bayes. This makes model training, and especially verifi-
cation score evaluation, much more costly. Moreover, although
the PLDA extensions were reported to bring significant gains in
verification performance, it was found that similar gains can be
obtained with the basic PLDA model applied to iVectors post-
processed by LDA dimensionality reduction and length normal-
ization [7].

Like Gaussian PLDA, the model proposed in this paper
assumes within- and across-speaker distributions to be Gaus-
sian. However, the within-class covariance matrix is not con-
stant for different speakers. Instead, it is assumed to be a func-
tion of the speaker mean. In other words, depending on where
the speaker is in the iVector space, inter-session variability can
result in different distributions of iVectors around the speaker
mean. As in the case of the aforementioned PLDA extensions,
variational Bayes inference is used for training and evaluation
of our model.

2. Bilinear Factor Analysis model
Our model is derived from the standard PLDA model [2, 3],
where the distribution of iVectors is described using a factor
analysis formula

m = a + Vy + Ux + ε, (1)

where m is a random vector representing an iVector, a is the
mean of the iVector distribution, V and U are matrices describ-
ing across- and within-speaker variability, and y and x are stan-
dard normally distributed latent vectors representing speaker
and channel components of the iVector. The random variable
ε = N (0,D−1) with diagonal precision matrix D describes the
residual within-speaker variability not covered by subspace U.
In this formula, the term a + Vy represents the across-speaker
Gaussian distribution with mean a and across-speaker covari-
ance matrix VVT . The term Ux + ε represents the within-



speaker distribution, where the within-speaker covariance ma-
trix is UUT + D−1.

For convenience, let us rewrite the formula for individual
dimensions of iVector m:

mk = ak + vky + ukx + εk, (2)

where vk and uk are the k-th rows of the matrix V and U,
respectively, and εk = N (0, d−1

k ). As was already mentioned,
our goal is to make the within-speaker distribution dependent on
speaker identity represented by the latent variable y. For this
purpose, we introduce an additional term into the formula (2)
which is a bilinear form of the latent variables y and x:

mk = ak + vky + ukx + yTAkx + εk

= y+TA+
k x+ + εk, (3)

where

y+T =
[
1 yT

]
(4)

x+T =
[
1 xT

]
(5)

Ak
+ =

[
ak uT

k

vk Ak

]
. (6)

Note that the last line of equation (3) resembles a standard fac-
tor analysis formula [8], with the usual linear term describ-
ing the variability of data in a subspace replaced by a bilin-
ear form. This is why we have chosen the name Bilinear Fac-
tor Analysis (BLFA) for our model. Note also that, for a fixed
speaker (i.e., fixed variable y), the within-speaker distribution
is still Gaussian. However, the covariance matrix of this distri-
bution is WWT + D−1, where the k-th row of matrix W is
wk = (uk + yTAk). Therefore, it is a function of the speaker
latent variable y. As a consequence, the overall distribution of
iVectors described by this model does not have to be Gaussian.

One obvious problem of the proposed extension is the mas-
sive increase in the number of trainable model parameters,
which are constants ak, vectors vk and uk, matrices Ak and
precisions dk, one for each iVector dimension k. The newly in-
troduced matrices Ak, with the number of rows and columns
corresponding to dimensionalities of latent variables y and x
(typically around 200 each), now represents the majority of the
parameters. To avoid over-fitting, it will be desirable to control
the number of nonzero elements in the matrices Ak as will be
discussed in Section 4. Note that by setting the matrices Ak to
zero, we simply recover the original PLDA model.

2.1. Estimation of model parameters

The likelihood of a training set of iVectors M = {mij} can be
evaluated as

p(M) =
∏
i

∫
dyp(y)

∏
j

∫
dxp(x)p(mij |y,x)

=
∏
i

∫
dyp(y)

∏
j

∫
dxp(x)

∏
k

p(mijk|y+TA+
k x+, d−1

k ), (7)

where index i represents individual speakers in the training
data and for each speaker j refers to individual recordings of
the same speaker. When evaluating the likelihood, note the
marginalization over the standard normal priors p(y) and p(x),

which takes into account that recordings of the same speaker
are generated using the same value of latent variable y.

The parameters of our model can be estimated to max-
imize the likelihood of training data. The standard EM
algorithm requires evaluation of joint posterior distributions
p(yi,xi1,xi1, . . . ,xiJ |M) for each speaker i. Unfortunately,
for our model, these posterior distributions are not Gaussian as
in the case of standard PLDA models and their evaluation is in-
tractable. Therefore, we use approximate variational inference
to estimate the parameters, where the usual lower bound on log-
likelihood is maximized instead of the true log-likelihood func-
tion:

lnP (M) ≥
∑
ij

∫∫
dyidxijq(yi)q(xij)∑

k

lnN (mijk|y+T
i A+

k x+
ij , d

−1
k )

+
∑
i

∫
q(yi) ln

p(yi)

q(yi)
dyi

+
∑
i,j

∫
q(xij) ln

p(xij)

q(xij)
dxij

= L (8)

It can be shown that this expression is a lower bound on the
true likelihood function for any valid probability density func-
tions {q(yi), q(xij)}, which we have chosen to be Gaussian
densities1 and which can be interpreted as approximations to
the posterior distribution of all hidden variables. The closer the
functions are to the true posteriors, the closer the lower bound is
to the true log-likelihood. As we already mentioned, however,
the true posteriors are not Gaussian. Furthermore, speaker and
channel latent variables are not independent in the true joint
posterior p(yi,xi1,xi1, . . . ,xiJ |M), while we have used the
factorization into independent distributions q(yi) (one for each
speaker) and q(xij) (for each recording) as is the usual approx-
imation used for variational Bayes.

Now, our task is to find probability density functions
{q(yi), q(xij)} and model parameters {A+

k } and dk that max-
imizes the lower bound (8). This is done by iteratively optimiz-
ing the parameters and the individual density functions one at a
time with the remaining functions and parameters fixed. To find
a new estimate of a density function q(yi), we take a variational
derivative
∂L

∂q(yi)
=

∑
j

∑
k

〈lnN (mijk|y+T
i A+

k x+
ij , d

−1
k )〉q(xij)

+ ln p(yi)− ln q(yi), (9)

where 〈·〉q(xij) reads as an expectation w.r.t. the current esti-
mate of q(xij). Setting this derivative equal to zero and solving
for q(yi) gives us a new estimate of q(yi), which is a Gaussian
distribution with covariance matrix and the mean vector

Σyi =

[
I +

∑
j

∑
k

〈(vk + Akxij)dk(vk + Akxij)
T 〉q(xij)

]−1

=

[
I +

∑
j

∑
k

dk(vkvk
T + vk〈xT

ij〉Ak
T + Ak〈xij〉vk

T

+ Ak〈xijx
T
ij〉Ak

T )

]−1

(10)

1More precisely, the Gaussianity follows from the assumption,
which we make about the independency of these distributions.



〈yi〉 =Σyi

∑
j

∑
k

〈(mijk − ak − uk
Txij)dk(vk + Akxij)〉q(xij)

=Σyi

∑
j

∑
k

dk

[
(mijk − ak)(vk + Ak〈xij〉)

− uk
T 〈xij〉vk −Ak〈xijx

T
ij〉uk

]
. (11)

Symmetrically, for a density function q(xij), the updates for
the covariance matrix and the mean vector are

Σxij =

[
I +

∑
k

〈(uk
T + yT

i Ak)
T dk(uk

T + yT
i Ak)〉q(yi)

]−1

=

[
I +

∑
k

dk(ukuk
T + uk〈yT

i 〉Ak + Ak
T 〈yi〉uk

T

+ Ak
T 〈yiy

T
i 〉Ak)

]−1

(12)

〈xij〉 =Σxij

∑
k

〈(mijk − ak − yT
i vk)dk(uk

T + yT
i Ak)

T 〉q(yi)

=Σxij

∑
k

dk

[
(mijk − ak)(uk + Ak

T 〈yi〉)

− 〈yT
i 〉vkuk

T −Ak
T 〈yiy

T
i 〉vk

]
. (13)

In the above equations, 〈yiy
T
i 〉 = Σyi − 〈yi〉〈yT

i 〉 and sim-
ilarly for 〈xijx

T
ij〉 . Finally, we take derivatives of the lower

bound with respect to the model parameters A+
k

∂L

∂A+
k

=
∂

∂A+
k

∑
i,j

〈(mijk − y+T
i A+

k x+
ij)

T (14)

dk(mijk − y+T
i A+

k x+
ij)〉q(xij),q(yi)

=
∑
i,j

〈y+
i 〉mijk〈x+T

ij 〉 −
∑
i,j

〈y+
i y+T

i 〉A
+
k 〈x

+
ijx

+T
ij 〉,

where

〈x+T
ij 〉 =

[
1 〈xT

ij〉
]

(15)

〈x+
ijx

+T
ij 〉 =

[
1 〈xT

ij〉
〈xij〉 〈xijx

T
ij〉

]
(16)

(17)

and likewise for 〈y+T
i 〉 and 〈y+

i y+T
i 〉. Setting the derivative

equal to zero and solving for A+
k gives us the update formula

vec(Ak) =

(∑
i,j

〈x+
ijx

+T
ij 〉 ⊗ 〈y

+
i y+T

i 〉

)−1

vec

(∑
i,j

〈y+
i 〉mijk〈x+T

ij 〉

)
(18)

where⊗ is the Kronecker product and vec is an operator which
creates a column vector from a matrix by stacking its columns.
Similarly, the update formula for precision dk can be shown to
be

d−1
k =

1

N

∑
i,j

〈(mijk − y+T
i A+

Kx+
ij)

2〉q(xij),q(yi)

=
1

N

∑
ij

[
m2

ijk − 2mijk〈y+T
i 〉A

+
K〈x

+
ij〉

+tr(A+
k 〈x

+
ijx

+T
ij 〉A

+T
k 〈y

+
i y+T

i 〉)
]

(19)

2.2. Log-likelihood lower bound evaluation

To check for convergence of the training algorithm, the value of
the lower bound (8) can be evaluated as

L = −1

2
NK ln 2π +

1

2
N
∑
k

ln dk

−1

2

∑
i,j

∑
k

dk

[
m2

ijk − 2mijk〈y+T
i 〉A

+
K〈x

+
ij〉

+tr(A+
k 〈x

+
ijx

+T
ij 〉A

+T
k 〈y

+
i y+T

i 〉)
]

−1

2

∑
i,j

tr(〈xijx
T
ij〉)− ln detΣxij

−1

2

∑
i

tr(〈yiy
T
i 〉)− ln detΣyi , (20)

where we have analytically solved the integrals in (8) for the
current estimates of functions {q(yi), q(xij)}.

2.3. Verification score evaluation

As a verification score for a pair of iVectors, we want to evalu-
ate the log-likelihood ratio between two hypotheses: H1, where
both iVectors were generated from the same speaker, and H0,
where the iVectors were generated independently. Since it is in-
tractable to evaluate the exact log-likelihood using our model,
we approximate the log-likelihood ratios as LH1 −LH0 , where
LH1 and LH0 are the lower bound approximations to the log-
likelihoods for the two hypotheses. Using well-trained model
parameters, LH1 can be evaluated using equation (20) in the
same way as we did for training data, where the two iVectors
from the verification trial are treated as if they were the only
two training examples coming from the same speaker (i.e., they
would be given speaker and recording indices m11 and m12).
On the contrary, to evaluate LH0 , the iVectors will be treated
as if they were from two different speakers (i.e., the indices
would be m11 and m21). Similarly, the likelihoods can be con-
structed for a trial consisting of more than two iVectors (e.g.,
multi-session training).

To obtain a good approximation to the true likelihoods, the
lower bounds must still be maximized with respect to functions
{q(yi), q(xij)}. Therefore, for each verification trial, several
iterations of updates (10)-(13) must be performed before evalu-
ating each lower bound LH1 and LH0 .

3. Experimental Setup
The speech features used in our experiments are 19 MFCCs and
energy, augmented with deltas and double deltas. A univer-
sal background model (UBM) with 2048 diagonal covariance
Gaussian components is trained in a gender-independent fash-
ion on NIST SRE 04 and 05 telephone data. Starting from this
UBM, an iVector extractor is trained on NIST SRE 04,05,06,
Switchboard, and Fisher data for iVector dimensionality of 400.
The dimensionality of iVectors is further reduced using LDA
transformation, which is estimated on NIST SRE 04, 05, 06
data. LDA reduction to only 50 dimensions is used in these
preliminary experiments (see the discussion in Section 5).

The PLDA model and the proposed BLFA models are
trained on iVectors extracted from NIST SRE 04, 05, 06 data
and also from Switchboard and Fisher data, where multiple ses-
sions are available per speaker. For the total of 3296 speakers,



53233 sessions from telephone and microphone channels were
used for PLDA or BLFA training.

4. Results
Table 1 presents results for various configurations of the BLFA
model. The verification performance for different models and
configurations is reported in terms of detection cost function
(DCF) and equal error rate (EER) on NIST SRE10 extended
conditions 1, 3 and 5 (int-int same mic., int-tel and tel-tel) [9].
As we have already noted, the problem with the BLFA model is
the large number of parameters in the matrices Ak. To control
the number of trainable parameters in the model, we retrain only
c first columns of each matrix and force the remaining columns
to be zero. Note that if the matrices Ak are set to zero (i.e., c=0),
we recover the standard PLDA model. Further, to avoid over-
fitting, we have simplified the training procedure as follows: At
first, only PLDA model (i.e. c=0) is trained using the described
variational Bayes update formulae. The matrix V and the dis-
tributions q(yi) for all training speakers are fixed and only the
remaining parameters and q(xij) distributions are updated in
the following BLFA model training. We found this strategy to
be necessary for obtaining good verification performance.

Table 1 shows results for different settings of c. As can
be seen, very good performance is obtained for c = 10. With
this configuration, the BLFA model always performs better than
the PLDA (BLFA c = 0) model, which confirms the increased
modeling power of the proposed model. The improvement is
especially significant at the DCF operating point important in
NIST evaluations.

Although the BLFA model becomes equivalent to the
PLDA model for c = 0, we still use the approximate variational
inference to train the model parameters and to evaluate the log-
likelihood verification score. Therefore, we also include results
obtained with the PLDA model trained using the usual EM al-
gorithm, where exact inference is used for both model training
and score evaluation. As expected, in many cases, EM-trained
PLDA (the last line in the table) outperforms PLDA trained
using the approximate inference (the first line). Nevertheless,
BLFA with c = 10 also always outperforms the EM-trained
PLDA.

sre10c01 sre10c03 sre10c05
Model nDCF EER nDCF EER nDCF EER
BLFA c = 0 0.62 2.37 0.87 4.87 0.72 3.82
BLFA c = 10 0.44 2.28 0.67 4.81 0.55 3.48
BLFA c = 20 0.44 2.32 0.71 4.82 0.58 3.40
BLFA c = 50 0.44 2.42 0.70 4.89 0.58 3.36
EM PLDA 0.46 2.32 0.73 5.26 0.61 3.92

Table 1: Comparison of the proposed model BLFA model and
PLDA model on three SRE10 NIST evaluation extended con-
ditions. Different values of c corresponds to the number of
nonzero columns in the matrices Ak. Note that BLFA with
c = 0 corresponds to the standard PLDA, which is, however,
trained using variational Bayes rather than EM algorithm.

5. Discussion and Future work
In this study, we have proposed and tested a new extension of
the PLDA model, where within-class (channel) variability is
modeled as a function of the class (speaker) location in the fea-
ture (iVector) space. Because of the mathematical tractability,

we have considered only a simple bilinear relation between la-
tent variables describing speaker and channel. However, in the
future, we may consider more complicated but possibly more
compactly represented relations.

We have shown the potential of the proposed model on ver-
ification experiments, where the new model outperforms the
state-of-the-art PLDA model. However, the presented results
should by no means be interpreted as the state-of-the-art re-
sults obtained on this task. In these initial experiments, we
used iVectors reduced by LDA to only 50 dimensions, while
optimal performance is usually obtained with higher dimen-
sionality (around 200). This configuration was used to allow
fast turn-around of the initial experiments, and also to over-
come the memory limitations given by our current implemen-
tation. Currently, the bottleneck is in the implementation of
the update formula (18), where we simply construct and invert
the matrix given by the Kronecker product, which becomes un-
feasibly large for even reasonable dimensionalities of the latent
variables. In future, we plan to replace this formula by an itera-
tive and less memory-intensive update. Also, for the presented
results, no iVector length normalization [7] was applied, which
is known to significantly improve performance in the case of the
standard PLDA model. Nevertheless, we believe that even this
preliminary work can inspire other researchers and that it can
initiate interesting discussions in the speaker recognition com-
munity.

We are currently testing the method for more state-of-the-
art-like configurations, where we have already seen first encour-
aging results still outperforming the standard PLDA model. It
also will be interesting to fuse scores produced by both PLDA
and the BLFA model. The additional parameters introduced
into the BFFA model should increase its modeling power com-
pared to PLDA. On the other hand, it uses an approximate vari-
ational inference, while exact inference can be used in the case
of PLDA. Therefore, we can expect a certain degree of comple-
mentarity of BLFA and PLDA models.
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