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Abstract
This paper describes the speech activity detection (SAD) system
developed by the Patrol team for the first phase of the DARPA
RATS (Robust Automatic Transcription of Speech) program,
which seeks to advance state of the art detection capabilities
on audio from highly degraded communication channels. We
present two approaches to SAD, one based on Gaussian mix-
ture models, and one based on multi-layer perceptrons. We
show that significant gains in SAD accuracy can be obtained
by careful design of acoustic front end, feature normalization,
incorporation of long span features via data-driven dimension-
ality reducing transforms, and channel dependent modeling. We
also present a novel technique for normalizing detection scores
from different systems for the purpose of system combination.
Index Terms: speech activity detection, noisy speech

1. Introduction
Speech Activity Detection (SAD) is the task of detecting when
human speech occurs in an audio signal. SAD is an impor-
tant component of most speech processing applications. For
example, silence audio signal can be avoided from being coded
and transmitted in telecommunication to save computation and
bandwidth. SAD can also be a handy tool for an analyst who
looks for speech regions in a long audio signal in which the
majority of data is non-speech.

Typically, SAD is not evaluated on its own, but rather as
part of a more complex speech processing pipeline such as
speaker or language recognition. Recently, however, therehas
been a renewed interest in evaluating SAD as a standalone task,
thanks to the DARPA RATS (Robust Automatic Transcription
of Speech) project, which is concerned with advancing the state
of the art in processing of speech from multiple languages car-
ried over degraded radio communication channels.

Several techniques have been proposed for SAD, includ-
ing: energy-based thresholding; frame-level speech/non-speech
classification based on multi-layer perceptrons (MLP) (e.g., [1])
or Gaussian mixture models (GMM); speech/non-speech hid-
den Markov models (HMMs) (e.g., [2]); phoneme recognition
based on MLPs [3] or HMMs [4]; segmental models using sup-
port vector machines [5].

In this paper, we describe two SAD systems developed by
the Patrol team for the first phase of the DARPA RATS eval-
uation. Section 2 gives an overview of the data and evaluation
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protocol. In Section 3, we present the first system, developed by
BBN, which is based on Gaussian mixture models (GMMs) and
makes use of noise-robust cortical features provided by Uni-
versity of Maryland. The second system, developed by Brno
University of Technology (BUT), is based on MLPs and is de-
scribed in Section 4. A novel technique for combining the two
SAD systems is presented in Section 5. The paper concludes
with a discussion of future work in Section 6.

2. Data and Scoring

2.1. Training and Test Data

The Linguistic Data Consortium (LDC) provides the training
and test data for the RATS participants. The audio recordings
annotated were selected from existing speech corpora, suchas
the Fisher English and Arabic Levantine conversational tele-
phone speech (CTS) training collections, as well as new col-
lections specific for RATS. The latter includes telephone con-
versations in Arabic Levantine, Pashto, and Urdu.

These recordings were retransmitted through 8 different
communication channels, labeled by the letters A through H [6].
A “push-to-talk” (PPT) transmission protocol was used in all
of the channels except G. PPT states produce some regions
where two or more non-transmission (NT) segments may oc-
cur. Speech (S), non-speech (NS), and NT regions are marked
in the LDC-provided annotations. Note, however, that NT an-
notations are automatic and therefore not always accurate.

During the development period for the phase one evalua-
tion, LDC delivered three incremental data releases for training
and test. The 1st release contains about 655 hours audio data for
training, the 2nd 725 hours, and the 3rd 517 hours. Only the 1st

release was used as the training set throughout most of the de-
velopment experiments reported in this paper, as the other two
releases were made available just prior to the evaluation.

We make use of three development sets. The official dev1
consists of 11 hours, and was selected by SAIC (the RATS Eval-
uation Team) from the 1st and 2nd incremental releases. dev1v2
consists of 71 hours, which is the development data defined in
the 1st incremental release. dev1p3 consists of 25 hours and
was randomly selected by BBN from the 3rd incremental re-
lease training data. The annotated NT regions were excluded
from the definitions for these development sets. The dev1v2
and official dev1 sets were used as the main test sets during the
system development, while dev1p3 was only used after adding
the 2nd and 3rd incremental releases to training.



2.2. Scoring

Our SAD systems output the start and end time of the hypoth-
esized speech segments. These hypotheses are scored against
a reference of manually annotated speech start/end times ofthe
test audio. In the RATS program, SAD scoring is carried out
using software provided by SAIC. The software computes the
following two types of errors: (a) False Rejection (FR), i.e.,
misclassification of speech as non-speech, and (b) False Alarm
(FA), i.e., misclassification of non-speech as speech.

Forgiveness collars of 500ms and 200ms are applied to the
non-speech and speech sides, respectively, of each annotated
non-speech/speech boundary in the reference. In other words, a
region of 700ms centered at each of the annotated boundariesis
excluded from the scoring. The remaining speech/non-speech
regions are used to compute the FR and FA rates as follows:
PF R = DF R

DS
andPF A = DF A

DNS
, whereDF R is the total du-

ration of the falsely rejected speech,DS is the total duration
of scored speech,DF A is the total duration of falsely accepted
non-speech, andDNS is the total duration of scored non-speech
in the audio. In this work, systems are evaluated in terms of
Equal Error Rate (EER), which is the operating point at which
PF R is equal toPF A.1

3. BBN SAD System
3.1. Acoustic Features

The baseline BBN SAD system makes use of standard Percep-
tual Linear Prediction (PLP) [7] front-ends. The audio is ana-
lyzed with a 25 ms sliding window and a 10 ms shift, extract-
ing 14 cepstral coefficients and normalized energy from each
frame. The cepstral coefficients are then normalized to zero
mean and identity covariance on an audio file basis. These fea-
tures, along with their first and second time derivatives, form a
45-dimensional feature vector that is subsequently used totrain
our baseline classifiers.

3.2. Model Estimation

The SAD system employed in this study is a 2-class classi-
fier. Unless stated otherwise, each of the speech and non-speech
classes is modeled with a 512-component diagonal covariance
Gaussian mixture model (GMM). The GMM was initialized by
running the K-Means algorithm with binary splitting on a ran-
dom subset of the training data. The GMM was then refined
with Maximum Likelihood (ML) estimation by running a few
iterations of the Expectation-Maximization (EM) algorithm on
all of the data.

3.3. Segmentation

GMM-based SAD is essentially a frame-level classification
problem. The simplest solution is to compare the log likelihood
ratio (LLR) between speech and non-speech models for each
frame to a threshold, and make a decision for each frame inde-
pendently. However, since the LLR can be very noisy, this sim-
ple method will unavoidably lead to high segmentation error. In
our systems, we applied smoothing for better performance.

We tried two algorithms. In the first approach, likelihood
smoothing, we replaced the LLR of a frame with the averaged
LLR of multiple frames within a window before we compared

1This operating point is typically obtained by adjusting a certain
parameter of the SAD system (e.g., likelihood ratio threshold) on the
test set.

Proj. Scheme Context official dev1 dev1 v2
Derivatives 7 3.50 4.69

HLDA

11 2.91 3.90
15 2.74 3.69
21 2.93 3.60
31 3.05 3.86

Table 1: EER (%) for using different feature projection schemes
and varying context

it to a threshold. In the second method, median filter smooth-
ing, we first made frame-level decisions by comparing LLR to
a threshold and then applied a median filter to the decisions,
which are binary numbers. In both algorithms the threshold and
the window size were tuned in order to minimize the sum of the
false alarm and false reject scores. We found that the likelihood
smoothing method works consistently better. The optimal win-
dow size was determined to be around 81 frames in both cases.

3.4. Long Span Features

Besides computing derivatives of PLP features, we experi-
mented with frame concatenation, in which the base energy
and cepstra are concatenated across consecutive frames to form
long-span features that capture long-term information.

The long span features described above cannot be modeled
directly due to their high dimensionality, and so we investi-
gated options for dimensionality reduction. Among the standard
techniques, both Linear Discriminant Analysis (LDA) and Het-
eroscedastic Discriminant Analysis (HDA) [8] are not suitable
for our 2-way classification problem because they rely on the
rank-1 between-class scatter matrix and hence can only project
down to a single dimension.

We therefore turned to Heteroscedastic LDA (HLDA) [9],
which attempts to find the maximum-likelihood full-space lin-
ear transformation based on a model that consists of class-
specific diagonal covariance GMMs for the upperp (useful)
dimensions of the transformed feature vectors, and a singledi-
agonal covariance gaussian for the lowern − p (nuisance) di-
mensions. Because of this joint modeling of useful and nui-
sance dimensions, HLDA can produce effectivep-dimensional
feature projections, withp > 1, even in the 2-class SAD prob-
lem. Note, however, that HLDA, being a maximum likelihood
technique, does not actually find the optimal projection from
a classification perspective. In fact, it can produce degenerate
results when the input features contain dimensions that arelin-
early dependent, although we did not observe this problem in
the experiments reported in this paper.

As shown in Table 1, besides conventional derivatives we
have experimented with long span features of different context
spans. The results show that long span features with 15-frame
concatenation provided the best SAD EER. It is also shown that
about 21% relative reduction in EER was obtained by using
long span features with HLDA as compared to using deriva-
tives. In all HLDA experiments, the output dimensionality was
set to 45 so as to have a fair comparison to the derivatives base-
line.

Cortical features are high-dimensional, multiscale spectro-
temporal modulation features that are extracted from a window
of 0.5 seconds and have been shown to be very robust to noise
on a speech detection task [5]. To make the features tractable
for use with a GMM based acoustic modeling, the dimensional-
ity is reduced to 140 using tensor principal component analysis



Acoustic Features official dev1 dev1 v2
15-frame PLP 2.74 3.69

+Cortical Features 2.45 2.72

Table 2: EER (%) for using cortical features

Covariance #Components official dev1 dev1 v2

diagonal
512 2.45 2.72
2048 2.19 2.37

full 256 1.98 2.29

Table 3: EER (%) for using diagonal or full Covariance GMM

(PCA) based on higher-order singular-value decomposition, as
described in [5].

To incorporate the cortical features into our SAD system,
we append the 140-dimensional cortical features to the 225-
dimensional long-span features (15-frame PLPs). HLDA is then
used to reduce the dimensionality of the resulting featuresfrom
365 to 45. As shown in Table 2, we obtained 11% to 26% rela-
tive reduction in EER from combining the cortical features with
the long span PLP features2. We therefore use cortical features
in all experiments presented in the rest of this paper.

3.5. Model Complexity

Although HLDA is used to reduce the dimensionality of the
acoustic features, the resulting features may not be fully uncor-
related. Therefore, the use of full covariances in GMM should
help by capturing the correlation among the features in differ-
ent dimensions. As shown in Table 3, we obtained 16% to 19%
relative reduction in EER by using full covariance GMMs with
256 components when compared to 512-component diagonal
GMMs. The improvement is reduced to 3% - 10% relative when
compared to a 2048-component diagonal GMM system.

Given that the audio data is retransmitted through different
transmitters/receivers with varying acoustic characteristics, we
investigated channel-dependent models. As shown in Table 4,
by using channel-dependent GMMs, we obtained 8% to 13%
relative reduction EER. Automatic channel classification is
done on each audio file to determine which channel-dependent
GMMs are to be used for SAD. The classification is done as
follows:

L = arg max
c∈{A−H}

Q

T

t=1
(Sc(ot) + Nc(ot))

where L is the automatic channel classification label,T

total number of frames for the audio file,ot acoustic feature at
time t, andSc(.) andNc(.) are the likelihoods for the speech
and non-speech GMMs for channelc, respectively. The channel
classification error is 0 for both dev1v2 and officialdev1, and
1.9% for dev1p3. Channel-dependent models are used in the
rest of the paper.

3.6. Adding New Training Data

We re-investigated the effect of different context lengthsfor
PLP frame concatenation after incorporating cortical features
and channel-dependent models. As shown in Table 5, slightly
better results are obtained with 31-frame concatenation; it is

2The cortical features by themselves perform about equally to long-
span PLP features.

Chn-Dep. Model official dev1 dev1 v2
No 1.98 2.29
Yes 1.82 2.00

Table 4: EER (%) for using channel independent/dependent
models

Context for PLP official dev1 dev1 v2
15 1.82 2.00
31 1.79 2.00

Table 5: EER (%) for using cortical features with different PLP
context length

therefore used in our final evaluation system and the experi-
ments reported in the rest of this paper.

LDC made the 2nd and 3rd incremental releases available
shortly before the RATS phase 1 evaluation. As shown in Table
6, by adding these new releases into the training, no significant
change for official dev1 and dev1v2 is observed, while 37%
relative reduction in EER is obtained on dev1p3. This is due
to the fact that dev1p3 is from the 3rd release which is different
from the the other two data releases.

3.7. Speech Padding

We discovered that small regions of speech are consistently
missed right after non-transmission (NT) regions in channel F.
The NT regions in channel F are different from those in other
channels, in that they exhibit impulses that take some time to
decay to zero, affecting the neighboring speech quite signifi-
cantly. To alleviate this problem, we extended the boundaries
of each detected speech segment by 0.1s. As shown in Table
7, by padding the speech segments, we obtained 12% to 27%
relative reduction in EER for channel F, and 7% to 9% relative
in overall EER.

4. BUT SAD System
The BUT SAD system uses a multi-layer perceptron (MLP) to
map long-temporal spectral features to speech/non-speechpos-
terior probabilities. These log-posteriors are then used as emis-
sion probabilities in two ergodic HMMs, the speech/non-speech
models. The final segmentation is obtained by a Viterbi de-
coder, which finds a smooth path through the posteriors. More
details about this system are provided below.

Features and MLP configuration. The acoustic fea-
tures are 15 log-mel-filterbank outputs, with 61-frame con-
text. Each band is scaled by a Hamming window and reduced
by discrete cosine transform (DCT) to 31 dimensions, form-
ing a vector of 465-dimensional features per frame (15 bands
times 31 DCT coefficients). The MLP has two hidden lay-
ers, each with 200 sigmoidal neurons. Different configura-
tions were explored for the output layer, and the best results
were obtained by having a speech/non-speech output for each
of the 9 channels (channels A-H plus the source channel -

Training Data official dev1 dev1 v2 dev1 p3
1st release 1.79 2.00 2.34
+2nd & 3rd releases 1.71 2.06 1.48

Table 6: EER (%) for adding new training data



System official dev1 dev1 v2

channel F
baseline 2.28 2.93
+padding 1.66 2.58

overall
baseline 1.71 2.06
+padding 1.56 1.92

Table 7: Equal Error Rate for before and after speech padding

Normalization Chn. A excluded
from training

Chn. A included
in training

None 17.30 2.95
CMN (1-pass) 5.48 2.90
CMVN (2-pass) 3.79 2.71

Table 8: EER (%) on dev1v2 channel A, showing the effect
of 2-pass feature normalization. CMN: global mean normaliza-
tion, single-pass SAD. CMVN: mean and variance normaliza-
tion based on two-pass SAD

prior to retransmission). The 18-dimensional output posteriors
sum up to 1 due to the softmax function, thus each node can
be interpreted as joint probability of channel and speech/non-
speech classes. This channel-dependent model outperformed
the channel-independent model, since channels A-H have very
different characteristics.

Segmentation.The MLP posteriors are post-processed by
a Viterbi decoder with two models, speech and non-speech,
each represented as an ergodic HMM with 9 states, where each
state corresponds to an MLP output node. The HMM state loop
transition probabilities are set to 0.5, and the rest of the prob-
ability mass is equally distributed to all other transitions. Dur-
ing decoding, the HMM can switch from one channel state to
another, thus the most convenient channel is dynamically se-
lected. An additional penalty is applied to transitions from
speech states to non-speech states, in order to discourage the
generation of speech or non-speech segments that are too short.

Two-pass feature normalization.The MLP SAD system,
as described above, achieves an overall EER of 2.04 on the
dev1 v2 set, which is very close to BBN’s GMM SAD dev1v2
result reported in Table 7. Both systems perform well on chan-
nels seen in the training data, but how well do they general-
ize on new channels? The system robustness can be improved
significantly by using following two-pass feature normaliza-
tion method:Pass 1)global mean subtraction is applied to the
log-mel-filterbank outputs, and the speech regions are detected.
Pass 2)the mean- and variance-normalization statistics are ac-
cumulated on speech regions from the first pass, a second pass
SAD is performed on renormalized features. For both passes,
the normalization is done on a per audio file basis.

The effect of this hierarchical feature normalization is
shown in Table 8, which shows EER results on dev1v2 chan-
nel A, with and without data from channel A in training.

5. System Combination
Neural Network is used in the BUT SAD system while GMM
is used in the BBN system. Improvement should be obtained by
combining the two systems as they are different in nature.

To combine the SAD outputs from the BBN and BUT SAD
systems, we need to normalize each system’s frame-level scores
so that they can be comparable to each other. We achieve this
by mapping the scores to their corresponding estimated1−pFA

System official dev1 dev1 v2
BBN 1.56 1.92
BUT 2.09 2.04

BBN+BUT 1.42 1.82

Table 9: EER (%) for system combination

values. This non-parametric mapping is derived from the sys-
tem scores on dev1v2. For example, to normalize the BBN
frame-level smoothed GMM likelihood ratios, we first sort them
and then measure thepFA that results from using each distinct
likelihood ratio as a detection threshold for speech/non-speech
classification. That provides a mapping of that likelihood ratio
to 1 − pFA. The same normalization is applied to the frame
posteriors from the BUT system.

The normalized scores from the two systems are combined
as follows: Scomb = αSBBN + (1 − α)SBUT

whereScomb is the combined score,α = 0.7, SBBN is the
normalized score from the BBN system, andSBUT is the nor-
malized score from the BUT system.

As shown in Table 9, through system combination, we ob-
tained 5% to 9% relative reduction in EER as compared to the
BBN system.

6. Conclusions
We have presented the SAD system developed by the Patrol
team for the DARPA RATS phase 1 evaluation. The sys-
tem achieves high accuracy on audio from noisy radio com-
munication channels, due to its use of noise robust long-span
temporal features, data-driven dimensionality reduction, chan-
nel dependent modeling, and system combination. Future
work will explore more advanced acoustic models, includ-
ing HMM-based self-organized units and model-based noise-
compensation methods.
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