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Abstract

In this paper, we explore new high-level features for language
identification. The recently introduced Subspace Gaussian Mix-
ture Models (SGMM) provide an elegant and efficient way for
GMM acoustic modelling, with mean supervectors represented
in a low-dimensional representative subspace. SGMMs also
provide an efficient way of speaker adaptation by means of low-
dimensional vectors. In our framework, these vectors are used
as features for language identification. They are compared with
our acoustic iVector system, which architecture is currently con-
sidered state-of-the-art for Language Identification and Speaker
Verification. The results of both systems and their fusion are
reported on the NIST LRE2009 dataset.

1. Introduction

Current language identification (LID) systems are divided into
two broad categories: phonotactic and acoustic. In the past sev-
eral years, the performance improvements of both approaches
have mainly been due to subspace techniques, such as Joint
Factor Analysis (JFA) [1] [2], general representative subspaces
(known as iVectors) [3, 4] and subspace multinomial modelling
[5].

There is however a third group of LID approaches building
on high-level features. Among these, the maximum likelihood
linear regression (MLLR) and constrained MLLR (CMLLR)
adaptation matrices from phone recognition or large vocabulary
continuous speech recognition (LVCSR) systems have proven
to be useful in speaker verification and have already been tested
in LID [6] with encouraging results.

Another subspace acoustic modelling technique is the Sub-
space Gaussian Mixture Model (SGMM) [7]. It was initially
developed at the Johns Hopkins University 2009 summer work-
shop titled “Low Development Cost, High Quality Speech Re-
cognition for New Languages and Domains”.

This framework allows not only for the modelling itself, but
also for an efficient speaker adaptation of the models using low-
dimensional vectors in a “speaker subspace” [8]. We use the
SGMM speaker adaptation vectors as features for LID in a sim-
ilar manner to SRI’s use of MLLR speaker adaptation matrices
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for the same purpose [6]. The cost of getting these vectors is in
fact not very high, because we already run our LVCSR system
to obtain other features, like counts for the phonotactic systems.
We then output the SGMM adaptation vectors at the same time.

The outline of the paper is as follows: Section 2 presents
the SGMM modelling and adaptation framework, and section 3
summarizes the iVector approach. Section 5 outlines the clas-
sifiers and fusion used. Sections 4 and 6 deal with data and
experimental results respectively, and section 7 concludes the

paper.

2. SGMM

In conventional acoustic models for speech recognition, the dis-
tribution of each (possibly tied) HMM state is represented by
a relatively large number of parameters completely defining a
Gaussian Mixture Model (GMM). Although an SGMM also as-
sumes mixtures of Gaussians to be the underlying state distri-
bution, the high-dimensional supervector of all GMM parame-
ters is constrained to live in a relatively low-dimensional sub-
space, which is common to all states. This constraint is justi-
fied by a high correlation between distributions of states (espe-
cially in the case of many similar context-dependent models)
and by realizing that the variety of distributions correspond-
ing to the sounds producible by the human articulatory tract is
quite limited. The majority of the parameters in an SGMM are
the parameters shared across the states defining the subspace
of the possible GMM parameters. Distributions of the individ-
ual states are then described using relatively low-dimensional
vectors representing coordinates in such a subspace. Therefore,
an SGMM allows for a much more compact representation of
HMM state distributions, which results in more robust estima-
tion of parameters and improved performance especially when
a limited amount of training data is available.

When an SGMM is used as the acoustic model for speech
recognition, the distribution of features for HMM state j is mod-
elled as a mixture of Gaussian distributions:

I
p(xl7) = > wiiN (x; 5, ), (1
=1

where the same number of mixture components / (typically few
hundred for SGMMs) is used for all states. Across the states,
the corresponding mixture components share the same full co-
variance matrix ;. Unlike in a conventional GMM model, the
mean vectors p;; and mixture weights wj; are not directly esti-
mated as parameters of the model. Instead, for a particular state
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J, all mean vectors are represented by a single low-dimensional
vector v; (typically few tens of coefficients), from which the
mean vectors are derived as

(@5

We expand the model by speaker adaptation, where we use a
Constrained MLLR (CMLLR) paradigm of feature transforma-
tion [9]. We replace our feature x with the transformed feature

My = Miv;.

x = A®x + b, A3)
where s is the speaker index, A g speaker-dependent adap-
tation matrix and b®® is a speaker-dependent offset. In the
SGMM framework, we apply the CMLLR technique by adding
a speaker-dependent offset for each Gaussian index ¢ in the form
of a term N;v(®). Equation (2) for the mean vectors now be-
comes:

p5; = Myv; + Nv®, @)
where v(®) is a “speaker vector”, defining the transform in
“speaker subspace” IN;. Vectors v(®) estimated for every seg-
ment are used as features for training the LID classifier. For the
complete set of formulae and details on SGMM:s, see [10, 8].

3. Acoustic iVector System

Let us briefly recall the definition of iVectors. Note that the for-
mulae were derived for speaker recognition in [11] and iVectors
have already been used for LID [3, 4]. The main idea is that
the language- and channel-dependent GMM supervector 1 can
be modelled as:

l=m+ Tv, (®)]

where m is the UBM GMM mean supervector, T is a low-rank
matrix representing M bases spanning a subspace with impor-
tant variability in the mean supervector space, and v is a stan-
dard normal distributed vector of size M.

For each observation X', the aim is to estimate the parame-
ters of the posterior probability of v:

p(v|X) = N(v;va, Ly)). 6)

The iVector is the MAP point estimate of the variable v, i.e. the
mean v x of the posterior distribution p(v|X'). It maps most of
the relevant information from a variable-length observation X’
to a fixed- (small-) dimensional vector. T is referred to as the
iVector extractor.

4. Data

The following data (distributed by the LDC and ELRA) were
used to train our systems:

CallFriend

Fisher English Part 1. and 2.

Fisher Levantine Arabic

HKUST Mandarin

Mixer (data from NIST SRE 2004, 2005, 2006, 2008)

development data for NIST LRE 2007

OGI-multilingual

OGI 22 languages

Foreign Accented English

SpeechDat-East

SwitchBoard

Voice of America radio broadcast
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4.1. Training and development data

Our data was split into two independent subsets, denoted TRAIN
and DEV. The TRAIN subset contained the 23 target languages
of NIST LRE2009 and had about 50 000 segments in total. The
DEYV subset also contained only the 23 target languages in about
38 000 segments. The DEV subset was split into balanced sub-
sets having nominal durations of 3s, 10s and 30s. The DEV
set was based on segments from previous evaluations plus ad-
ditional segments extracted from longer files from CTS, VOA3
and human-audited VOA2 data, which were not contained in
the TRAIN set. A more detailed overview of the composition
and processing of our DEV set is given in [12].

4.2. Test data — NIST LRE 2009

Our test data was the NIST LRE2009 evaluation dataset, which
contains 23 target languages and 16 out-of-set languages. It
contains mainly telephone call segments coming from the VOA
broadcasts and for some languages it also contains heldout con-
versational telephone speech segments collected for the previ-
ous evaluations.! The process of collecting the VOA database
is described in [13].

5. Recognizer training and fusion

We used three different discriminative training stages to build
a fused language recognizer. The first, basic recognizer stage,
performs dimensionality reduction from iVectors to scores and
was trained on the TRAIN subset of the data. The other two
stages do precalibration and fusion in score-space and are both
trained on the DEV subset. All stages are implemented with
different flavors of multiclass logistic regression [14].

5.1. Basic recognizer

Two similar logistic regression recognizers were independently
trained (on the TRAIN subset) for the two different feature vec-
tors, namely acoustic and SGMM iVectors. Each recognizer
uses an affine transform to convert the D-dimensional iVector,
vy, for trial ¢, into a K -dimensional score-vector, s;:

= ATv; + b, ™
where K = 23 is the number of target languages. T is a D-
by-D matrix which performs within-class covariance normal-
ization (WCCN), such that the mean class-conditional sample
covariance matrix over the training data becomes identity. The
logistic regression parameters are A, a K-by-D matrix, and b,
a K -dimensional vector and they are trained by minimizing the
regularized objective function:

Z

where s;¢+ is the ith component of s; and S; is the set of N;
training examples of language i. The regularization weight, \,
was set to:
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found on the official NIST LRE(09 results page — http:
//www.itl.nist.gov/iad/mig/tests/lre/2009/
1lre09_eval_results/index.html



where N = >, N; and S = J; Si. We refer to the two terms
of (8) as the regularization penalty and the multiclass cross-
entropy and we note that they were almost equal at the mini-
mum, suggesting that regularization plays an important role.

5.2. Precalibration

Each of the two recognizers was independently precalibrated
with an affine transform trained on the independent DEV dataset:

r: :CSt+d (10)

where C is a full K-by-K matrix and d is a K-dimensional
vector. Note that the pre-calibration does not change the score-
vector dimensionality. These parameters were again trained by
regularized logistic regression, but here, no WCCN were ap-
plied. For the SGMM system, some trials failed to produce
speaker vectors. After pre-calibration, we inserted zero vectors,
r; = 0, for such trials.

5.3. Fusion

Let r¢1 and rs2 denote the outputs of the precalibrated acoustic
and SGMM recognizers. These outputs were fused as:

Li = airyr + aorp + 8 (11)

where a1, g are scalar weights and 3 is a K-dimensional vec-
tor. These parameters were again trained by multiclass logistic
regression on the DEV subset. Here neither WCCN, nor regu-
larization, was applied.

After fusion, the 23 components of £ were used as lan-
guage log-likelihoods and were used as is to make minimum-
expected-cost Bayes decisions for the cost function as prescribed
by the LRE’09 evaluation plan.

6. Experiments
6.1. iVector Front-End

The acoustic system is based on MFCC/SDC acoustic features.
We give a brief summary of our acoustic feature extraction and
UBM training. For more detail, see our previous work [15, 16].

The inputs to the language recognizer are segments of record-
ed speech of varying duration. The voice activity detection
(VAD) is performed by our Hungarian phoneme recognizer, with
all the phoneme classes linked to the ‘speech’ class.

All acoustic systems used the popular shifted-delta-cepstras
(SDCs) [17]. The feature extraction is similar to the BUT
LRE 2005 system [16]. Every speech segment is mapped to
a variable-length sequence of feature vectors as follows: After
discarding silence portions, every 10 ms speech-frame is mapped
to a 56-dimensional feature vector. The feature vector is the
concatenation of an SDC-7-1-3-7 vector and 7 MFCC coeffi-
cients (including C0). VTLN, Cepstral mean and variance nor-
malization and RASTA filtering are applied before SDC.

Vocal-tract length normalization (VTLN) performs simple
speaker adaptation. We used MAP adaptation from UBM (sin-
gle GMM with 32 diagonal Gaussians trained on Switchboard)
to derive specific models for each warping factor [18]. Mod-
els are retrained using MMI (Maximum Mutual Information)
criterion. The reference warping factors are obtained from the
LVCSR system. The models are trained only on English data.

A 2048-component, language-independent,
maximum-likelihood GMM was trained with the EM-algorithm
on the pooled acoustic feature vectors of all 23 languages in the

Table 1: Cavg in % for three conditions of NIST LRE2009

System/Condition 30s 10s 3s

iVector 2.35 491 14.04
SGMM 1242  16.68 28.85
Fusion 1.78 4.13 13.77

TRAIN data-set. We follow speaker recognition terminology
and refer to this language-independent GMM as the universal
background model, or UBM [19].

We used a full covariance UBM to generate zero and first
order statistics, which were subsequently used for iVector ex-
tractor training. The output was a 400-dimensional vector for
every speech segment.

6.2. SGMM Front-end

The LVCSR system is based on cross-word tied-state triphones,
with approximately 8000 tied states. It was trained on 270 hours
of US English (Switchboard and Callhome corpora). The fea-
tures were 13 Mel-Frequency VTLN PLP coefficients, augment-
ed with their deltas, double-deltas and triple-deltas. VTLN used
the same estimation of warping factors as described in section
6.1. Cepstral mean and variance normalization was applied with
the mean and variance vectors estimated on each conversation
side.

SGMM models were first initialized as standard GMMs.
We used an SGMM configuration with / = 400 mixture com-
ponents and 40-dimensional state-specific vector v; and 50 000
states. This system was extended by a speaker specific part
N, v(®). The speaker-specific vectors were 400-dimensional.

In our experiments, we did not use full LVCSR with a lan-
guage model. Instead, every utterance was processed by a phone
recognizer to get a sequence of models, on which the vector v (*)
was estimated. These vectors were further used as features for
LID.

6.3. Results

The performance of the two individual systems and their fusion
is evaluated on the NIST LRE2009 closed set condition. In ta-
ble 1, we report the classical metric — Average Detection Cost
(Cavg) — as defined by NIST [20]. In table 2, we also report
Average Pair Error-rate (PER) and Average Pair Error-rate for
the N worst pairs (PER_N), where IV is the number of target
languages (PER_23). PER_N is the overall performance mea-
sure set by NIST for the LRE2011 evaluation [21].

Table 2: Pair error rates in % for the three conditions

PER PER_23
30s 10s 3s 30s 10s 3s
iVector 0.73 2.08 8.78 5.15 9.15 18.95
SGMM 548 1021  21.72 17.68 2295 31.99
Fusion 0.71 1.94 8.01 5.38 9.08 18.10




6.4. Discussion

The results in table 1, where we measure the ability of the
system to discriminate between N languages, show that the
new speaker adaptation vectors from the SGMM model contain
complementary information to the acoustic system.

On the other hand, when we measure the ability of the sys-
tem (given the speech segment) to decide whether the segment
belongs to language L1 or L2, the contribution of the SGMM
features is much smaller. The results presented in table 2 indi-
cate that if we concentrate only on the N most difficult trials, the
gain from the new features is negligible, and for the 30s condi-
tion, SGMMs even cause the iVector results to deteriorate. The
belief is that SGMMs capture the speaker-specific information,
and for difficult (closed) language pairs, the speaker populations
can be very similar, even overlapping. SGMMs therefore obtain
very similar information and thus do not bring substantial im-
provement over the baseline system.

7. Conclusions

We have presented new features for LID, based on speaker adap-
tation vectors from sub-space GMMs. We have demonstrated,
that although their performance is worse than a state-of-the-art
iVector system, they provide complementary information useful
in the fusion. For difficult language pairs (on which the current
NIST evaluations are focused), their contribution is however
small and they seem to degrade the results for long utterances.
We should note that, contrary to previous work making use
of adaptation matrices in LID [6], our adaptation scheme was
fairly simple and did not distinguish between acoustic classes.
Our future work will follow this avenue, and investigate current
developments in the field of SGMM modelling.
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