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Abstract

In this paper, we propose a novel representation of the FMLLR

transform. This is different from the standard FMLLR in that

the linear transform (LT) is expressed in a factorized form such

that each of the factors involves only one parameter. The repre-

sentation is mainly motivated by QR-decomposition of a square

matrix and hence is referred to as QR-FMLLR. The mathemat-

ical expressions and steps for maximum likelihood (ML) esti-

mation of the parameters are presented. The ML estimation of

QR-FMLLR does not require the use of numerical technique,

such as gradient ascent, and it does not involve matrix inversion

and computation of matrix determinant. On an LVCSR task, we

show the performance of QR-FMLLR to be comparable to the

standard FMLLR. We conjecture that QR-FMLLR is amenable

to speaker adaptation using data that varies from very short to

large and present a brief discussion on how this can be achieved.

Index Terms: FMLLR, QR Decomposition, Orthogonal Ma-

trix, Givens Rotation, Upper Triangular Matrix

1. Introduction

For past several years, speaker adaptation has been one of

the important fields of research in large vocabulary continuous

speech recognition (LVCSR). It aims to reduce inter-speaker

variability in speech by transforming the acoustic model param-

eters or the feature vectors. The dominant choices for speaker

adaptation are maximum likelihood linear regression (MLLR)

[1] and constrained MLLR (CMLLR) [2]. CMLLR is also

known as feature space MLLR (FMLLR).

In FMLLR, a linear transform (LT) is applied on the fea-

ture vectors and the parameters of the LT are estimated from

the speaker-specific data using maximum likelihood (ML). The

gradient ascent algorithm is used for training. We will refer the

approach proposed in [2] to as the standard FMLLR in the sub-

sequent discussions.
In this paper, we propose a novel representation of the FM-

LLR transform. This is different from the standard FMLLR in
that the LT is represented in a factorized form such that each
of the factors involves only one parameter. More specifically,
it is based on the observation that an N ×N square matrix, in
the present case, the FMLLR transform, can be expressed as a

product of N2 matrices (details are presented in Section 2), i.e.,

A =
N2

∏

k=1

Ak, (1)
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where A and Ak’s are the FMLLR transform and the factors,

respectively. It has the following properties:

• Each of the factors is N × N and sparse. Each factor

involves only one parameter and is full-rank.

• Each factor operates either on a single feature component

or on a 2-dimensional feature plane.

As it will be shown in Section 2, the presented factorized form

is motivated by QR-decomposition of a square matrix and hence

will be referred to as QR-FMLLR. QR-FMLLR can also be

viewed as a structured LT. Other approaches to structured LT

are [3, 4, 5].

One of the salient features of QR-FMLLR is that it does not

require the use of numerical technique, such as gradient ascent,

for estimation. Further, the estimation procedure does not in-

volve matrix inversion and computation of matrix determinant.

On an LVCSR task, we show the performance of QR-FMLLR

to be comparable to the standard FMLLR.

In addition, we conjecture that QR-FMLLR is amenable to

speaker adaptation with varying amount of speaker-specific data

that ranges from very short to large. A brief discussion on this

aspect of QR-FMLLR is presented in Section 5, which will be

addressed in detail in our future work.

The rest of the paper is organized as follows. In Section 2,

we present the novel representation of FMLLR, QR-FMLLR.

The estimation procedure for QR-FMLLR is presented in Sec-

tion 3. The experimental setups and results are discussed in

Section 4. A future extension to QR-FMLLR is presented in

Section 5. Finally, we conclude in Section 6.

2. Proposed factorized form of FMLLR

If N denotes the dimension of the feature vector, the N × N
dimensional FMLLR transform can be expressed in the form
shown in Eq. 1 in steps as follows:
Step 1: First, the LT is expressed as a product of an orthogonal
matrix and an upper triangular matrix, i.e.,

A = Q ·R , s.t. QQT = I and R is Upper triangular (3)

where I denotes the identity matrix. This is motivated by QR-

decomposition1 [6] of a matrix.

Step 2: Then the orthogonal matrix, Q, is expressed as a prod-

uct of a series of Givens rotations [7, 6], which ensures orthog-

onality of the over-all matrix:

Q =

N−1
∏

i=1

N
∏

j=i+1

Q(i, j, θij), (4)

where Q(i, j, θij) denotes the Givens rotation that rotates a

feature vector on the 2-dimensional plane spanned by the co-

ordinates (i, j) by an angle θij . It leaves the feature compo-

nents along all other co-ordinates un-altered. For instance, for

1This is not same as applying QR-decomposition to an existing LT.



Q(2, 4, θ2,4) =











1 0 0 0 0
0 cos(θ2,4) 0 − sin(θ2,4) 0
0 0 1 0 0
0 sin(θ2,4) 0 cos(θ2,4) 0
0 0 0 0 1











,D(2, d2) =











1 0 0 0 0
0 d2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1











, R̃(2, 4, r2,4) =











1 0 0 0 0
0 1 0 r2,4 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1











(2)

N = 5 dimensional feature vector and i = 2 and j = 4, the

Givens rotation has the structure shown in Eq 2. There is one

such transform operating over every 2-dimensional plane.

Q(i, j, θij) involves one parameter, θij . It is sparse, full-

rank, orthogonal with determinant +1. The product matrix, Q,

is also orthogonal with determinant +1. The number of factors

(parameters) with Q is
N(N−1)

2
.

Step 3: The upper triangular matrix, R, is first expressed as a
product of a diagonal matrix, D, and a purely upper triangular

matrix (with 1’s on the principal diagonal), R̃. This ensures
upper triangularity of the product matrix. Then, each of them is
expressed as a product of single-parameter, sparse and full-rank
matrices, i.e.,

R = D · R̃ =
N
∏

i=1

D(i, di) ·

N−1
∏

i=1

N
∏

j=i+1

R̃(i, j, rij) (5)

For instance, for N = 5, i = 2 and j = 4, D(i, di) and

R̃(i, j, rij) have the structures shown in Eq 2. D(i, di) scales

only feature component i. On the other hand, R̃(i, j, rij), simi-

lar to the Givens rotations, operates on the 2-dimensional plane

(i, j). R̃(i, j, rij)’s and R̃ are purely upper triangular with de-

terminant +1. The number of factors in R is N + N(N−1)
2

.

The parameters associated with the proposed representa-

tion, i.e., QR-FMLLR, are {θij}, {di}, {rij} and the total num-

ber of parameters is N2, which is same as the standard FMLLR.

2.1. Constructing LTs with different structures

In the frame-work of QR-FMLLR, LTs with various structures

can be constructed by selectively removing some of the factors

(parameters) from the full composition. For example, for 39
dimensional MFCC features, the static part of block diagonal

LT can be constructed by allowing i to vary from 1 to 12 and j
from i + 1 to 13 in Eq. 4 and Eq. 5. Similarly, 5-diagonal LT

can be constructed by varying i from 1 to 38 and j from i + 1
to i + 2. Orthogonal (or upper triangular) LT can be created

by removing the upper triangular (or orthogonal) factor from

the composition of A. Experimental results with different LT

structures are presented in Section 4.

3. Estimation of QR-FMLLR

In this section, we derive the expressions for ML estimation
of the parameters of QR-FMLLR. The feature transformation
model with FMLLR can be formulated as follows:

yt =Axt + b (6)

where A is the linear part of the transform and b is the bias.
xt and yt are the speaker un-normalized and the corresponding
speaker normalized feature vectors, respectively. Let X and Y
denote the sequences of original and speaker-normalized fea-
ture vectors, respectively. The likelihood function for the pa-
rameters, i.e., A and b, w.r.t. X can be expressed as

L(X|A,b) = log

∣

∣

∣

∣

dY

dX

∣

∣

∣

∣

+ log p (Y| λ) , (7)

where λ is the HMM set and |·| denotes determinant of a matrix.

The Jacobian, log
∣

∣

dY

dX

∣

∣, appears due to feature transformation.

Using the state and mixture sequences, s and m, respectively,
the EM auxiliary function for ML estimation is given by

Q =
∑

s,m

p (s,m|X, λ)

(

log

∣

∣

∣

∣

dY

dX

∣

∣

∣

∣

+ log p (Y, s,m|λ)

)

, (8)

where the summation is taken over all state and mixture se-
quences. Noting that yt depends only on xt and ignoring the
constant terms, the auxiliary function simplifies to

Q =
∑

j,m

T
∑

t=1

γjm(t)

(

log

∣

∣

∣

∣

dyt

dxt

∣

∣

∣

∣

+ log (bjm (yt))

)

, (9)

where γjm(t) is the posterior probability of mixture gjm (mix-
ture m in state j) in the speaker independent (SI) HMM at time
t, bjm (yt) is the distribution of mixture gjm and T is the num-
ber of frames from the speaker. We estimate A and b one
after the other in an interleaved way. After arranging various
terms, the auxiliary functions for A (for a known b) and b (for
a known A) can be shown to be

Q (A|b) = β log |A|+ tr
{

AK1
T
}

−
1

2
vec (A)T G1vec (A)− vec (A)T G2b, (10)

Q (b|A) = −vec (A)T G2b+ kT
2 b−

1

2
bTG3b, (11)

where vec(·) is the column-wise vectorization operation on the
matrix and tr(·) is the matrix trace operation. The statistics are
defined in Appendix A. The ML estimation of b for a known A
can be done in a straight-forward way by maximizing the corre-
sponding auxiliary function. The ML estimation of A, subject
to the structure defined for QR-FMLLR, can be formulated as
{

Q∗(·),D∗(·), R̃∗(·)
}

= arg max
{Q(·),D(·),R̃(·)}

Q (A|b) , (12)

where {Q(·),D(·), R̃(·)} denotes the collection of all factors.

Simultaneous estimation of all factors as shown in Eq. 12 would

be mathematically intractable. Instead, we adopt a sequential

estimation scheme, which is as follows:
We initialize the orthogonal (Q), diagonal (D) and purely

upper-triangular (R̃) matrices with the identity matrix and intro-
duce the factors to the composition one at a time in a sequential
manner. In each step, the parameter associated with the newly

introduced factor is estimated. This is repeated for Q, D and R̃
one after the other. The matrices after k steps can be defined by
the following recursive equations:

Q0 = D0 = R̃0 = I, (13)

Qk = Q(i, j, θij) ·Qk−1 , (14)

R̃k = R̃k−1 · R̃(i, j, rij) , (15)

Dk = D(i, di) ·Dk−1. (16)

Note that in this sequential estimation frame-work, each

of the factors can be estimated using a separate invocation

of EM, i.e., re-computing the statistics each time a new

factor is introduced (Eq. 14-16) to the composition. How-

ever, it would require N2-times processing of data and

hence will be computationally expensive. Instead, we use

the alignment of the original data, X, and the corresponding

statistics for estimation of all factors. The details are as follows:



Estimation of Givens rotation – Q(i, j, θij): We pre-multiply
the current estimate, Qk, of Q with the Givens rotation operat-
ing over the 2-dimensional plane, (i, j), to form the parametric
representation of the matrix at step k + 1, i.e.,

Qk+1 = Q(i, j, θij) ·Qk. (17)

Similarly, the parametric form of A is constructed by

Ak+1 = Q(i, j, θij) ·Qk ·Dk · R̃k. (18)

Now, the only unknown parameter associated with Ak+1 is θij ,

which needs to be estimated. We noted that the trigonometric

equation that will result while ML estimating θij did not lead to

a straight-forward solution. Using numerical technique it was

observed that the estimates were small (|θij | < 8 degree) for all

pairs of (i, j). This enabled us to use the small-angle approxi-

mation of the cos and sin functions, i.e.,

cos(θi,j) ≈ 1 and sin(θi,j) ≈ θij (19)

Such approximation converts the trigonometric equation to a
polynomial one, which can be easily solved. As a consequence,
however, the resulting Q(·) and Q matrices will not be exactly
orthogonal. Using the approximation and with some analysis, it
can be shown that the EM auxiliary function for Ak+1, which
is equivalent to that for θij , is given by

Q (Ak+1) ≡ Q (θij) =
1

2
c1θ

2
ij + c2θij . (20)

The constants c1 and c2 are defined in Appendix A. The max-
imum of Eq. 20 occurs at θ∗ij = −c2/c1. Then Qk is updated

using Qk+1=Q(i, j, θ∗ij)Qk , which can be efficiently done as

qr
p,k+1 =







qr
p,k

− θ∗ij qr
j,k

if p = i

qr
p,k

+ θ∗ij qr
i,k

if p = j

qr
p,k

otherwise

, (21)

where qr
p,k+1 denotes row p of Qk+1. Likewise, Ak is updated

to Ak+1, using similar equations:

ar
p,k+1 =







ar
p,k

− θ∗ij ar
j,k

if p = i

ar
p,k

+ θ∗ij ar
i,k

if p = j

ar
p,k

otherwise

. (22)

Estimation of purely upper triangular matrix – R̃(i, j, rij):

The purely upper triangular matrix, R̃k+1, is constructed by

post-multiplying2 the current estimate, R̃k, with R̃(i, j, rij):

R̃k+1 = R̃k · R̃(i, j, rij). (23)

Similarly, Ak+1 is constructed using

Ak+1 = Qk ·Dk · R̃k · R̃(i, j, rij). (24)

Now, the unknown parameter to be estimated is rij . The EM
auxiliary function for rij can be shown to be

Q (Ak+1) ≡ Q (rij) =
1

2
c3r

2
ij + c4rij , (25)

where c3 and c4 are defined in Appendix A. The ML estimate

of rij is r∗ij = −c4/c3. The column p of R̃k+1 is given by

r̃c
p,k+1 =

{

r̃c
p,k

+ r∗ij r̃c
i,k

if p = j

r̃c
p,k

otherwise
. (26)

Ak is updated to Ak+1 using similar equation.

Estimation of diagonal matrix – D(i, di): For diagonal case,
Dk+1 and Ak+1 are constructed as follows

Dk+1 = D(i, di) ·Dk , Ak+1 = Qk ·D(i, di)·Dk ·R̃k (27)

2Post-multiplication makes the analysis simpler.

Table 1: WER (%) on CTS task with standard LT structures

including bias. Diag=Diagonal

Structure Num. of QR-FMLLR standard

of Matrix parameters FMLLR

No Adaptation - 43.0 43.0

Full 1521 39.6 39.8

Block Diag (BD) 507 39.9 40.0

Diag 39 41.8 42.3

Now di is the unknown and the EM auxiliary function is

Q(di) = β log |di|+
1

2
c5 (di − 1)2 + c6 (di − 1). (28)

The constants c5 and c6 are defined in Appendix A. The ML
estimate of di, d

∗

i , can be obtained by solving

∂ Q(di)

∂ di
= β

1

di
+ c5 (di − 1) + c6 = 0. (29)

The updated Ak+1 is given by

Ak+1 = Ak + (d∗i − 1)qc
i,k r̃r

i,k. (30)

Since the estimate of one parameter depends on the values of

the other parameters3, it is necessary to repeat the estimation of

all parameters a few times. Iterating 5 times gave satisfactory

results in our experiments. After each iteration, bias is updated.

4. Experimental setup and Results

For experiments, the speaker independent (SI) baseline model

was trained on the ctstrain-04 training set, which is a subset of

the h5train-03 set defined at the University of Cambridge. The

training set contains about 278 hours of speech from Switch-

board I, II and Call Home English. Test was done on the

Hub5 Eval-01 test set, which was used during NIST 2001 CTS

evaluation. It consists of 3 subsets of 20 conversations from

Switchboard-1, Switchboard-2 and Switchboard cellular cor-

pora and contains more than 6 hours of speech. Bi-gram lan-

guage models from AMI speech recognition system for NIST

Rich Transcriptions 2007 was used during decoding [8]. 39-

dimensional MFCC features that consist of 13 (C1 to C12 and

C0) static, ∆ and ∆2 components were used. Speaker-wise

cepstral mean and cepstral variance normalization were per-

formed both during training and test. 3-state cross-word tri-

phone HMM models with 20 mixtures per state were used.

There were approximately 148000 Gaussian mixtures and 7369
independent states in the HMM set. The test set included data

from 120 speakers. The duration of test data per speaker was 3
minutes in average. The un-supervised mode of speaker adap-

tation was used, where the first-pass transcription was used for

alignments. Speaker adaptive training [2] was not used.

Percentage of word error rates (WER) with QR-FMLLR

and FMLLR for full, block diagonal (BD) and diagonal ma-

trices are presented in Table 1. Please refer to Section 2.1 for

a description on how to create the structured QR-FMLLRs. It

can be observed from the Table that the performance of QR-

FMLLR is comparable to FMLLR for full and block diagonal

matrices and is better than FMLLR for the diagonal case.

Using QR-FMLLR, LTs with various other structures can

be constructed (Section 2.1). In Table 2, the WER with

structures such as upper triangular, orthogonal, diagonal with

different widths, are presented. BD + S∆+∆S (or, BD +

S∆2+∆2S) in the Table indicates that the LT has block struc-

ture, where along with the blocks at the static-static, ∆-∆ and

3Please refer to the constants defined in Appendix A. The depen-
dency also holds with standard FMLLR.



Table 2: WER (%) with other LT structures: UT = Upper Tri-

angular, OR = Orthogonal, BD = Block diagonal, S∆ = Block

at static-∆ position, ∆S = Block at ∆-static position, S∆2 =

Block at static-∆2 position, ∆2S = Block at ∆2-static position

Structure Num. of QR-FMLLR

of Matrix parameters

UT 780 41.3

OR 741 40.4

OR + Diagonal 780 39.9

BD + S∆+∆S 845 39.8

BD + S∆2+∆2S 845 39.8

5-Diagonal 189 40.7

3-Diagonal 115 40.8

∆2-∆2 positions, two additional blocks are used at the static-∆
and ∆-static (or, static-∆2 and ∆2-static) positions. The fol-

lowing observations can be made:

• The performance of orthogonal transform along with a diago-

nal transform (OR + Diagonal) gives performance comparable

to block diagonal (BD) transform (shown in Table 1).

• Although an upper triangular (UT) LT involves more parame-

ters than the BD transform, its performance is worse than BD.

• The performance of 3-diagonal and 5-diagonal matrices are

comparable and both are worse than BD transform.

• BD + S∆+∆S and BD + S∆2+∆2S give marginal improve-

ments over BD.

5. Controlling structure of LT using MDL

In the frame-work of QR-FMLLR, LTs with number of param-

eters varying between 0 to N2 can be constructed, where zero

parameter corresponds to the identity matrix (i.e., no adapta-

tion) and N2 parameters to the full LT. This can be achieved

by removing some of the factors from the composition of the

full LT. This effectively reduces the number of speaker-specific

parameters to be estimated from the adaptation data and hence

would require less data from the speaker for reliable estimation.
For a given data set, the optimum number of parameters

(factors), k∗, and the optimal composition of the LT with k∗

factors can be obtained as follows. The optimum k can be ob-
tained using minimum description length (MDL) [9]. The MDL
objective function deduced for QR-FMLLR is given by:

QMDL(k) = − logQ(A∗

k) +
k

2
log β + logN2 (31)

where A∗

k denotes the ML estimate of A with k parameters,
Q(A∗

k) is the corresponding value of EM auxiliary function and

β is the number of frames in the adaptation set. The MDL ob-

jective function needs to be minimized to obtain the optimum

k. On the other hand, the optimal composition of the LT with k
factors can be decided by searching over all (allowed) k-tuples

of factors. Both the steps can be integrated into a single frame-

work by appropriately modifying the sequential estimation of

QR-FMLLR and including an MDL-based stopping criteria.

Hence, QR-FMLLR along with MDL provides a data-

driven frame-work to optimally adjust the structure of the LT.

We believe, this will be useful for speaker adaptation when data

available from the speakers vary from very short to large. We

will investigate on this topic in our future work.

6. Conclusions

In this paper, a factorized representation of FMLLR, i.e., QR-

FMLLR, is proposed. The mathematical expressions and steps

for ML estimation are presented. It was shown that using QR-

FMLLR, LTs with various structures, such as full, orthogonal,

upper triangular, 5-diagonal and block-diagonal can be con-

structed. The speaker adaptation results are presented on an

LVCSR task. Our future extension to QR-FMLLR is discussed.

A. Statistics and constants

The statistics used in Eq. 10 and 11 are as follows:

β =
∑

jm

T
∑

t=1

γjm(t),K1 =
∑

jm

T
∑

t=1

γjm(t)ΣΣΣ−1
jmµµµjmxT

t ,

G1 =
∑

jm

T
∑

t=1

γjm(t) xtx
T
t ⊗ΣΣΣ−1

jm,k2 =
∑

jm

T
∑

t=1

γjm(t)ΣΣΣ−1
jmµµµjm,

G2 =
∑

jm

T
∑

t=1

γjm(t) xt ⊗ΣΣΣ−1
jm,G3 =

∑

jm

T
∑

t=1

γjm(t) ΣΣΣ−1
jm.

where ⊗ denotes the Kronecker product. µµµjm and ΣΣΣjm are the mean
and co-variance matrix of mixture gjm (mixture m in state j) in the
HMM set, respectively. γjm(t) is the posterior probability of mixture
gjm at time t and T is the number of frames from the speaker. Let

kij =

[

K
(i)
1

K
(j)
1

]

, gk
ij =

[

G
(i,:)
1 vec (Ak) +G2 b

G
(j,:)
1 vec (Ak) +G2 b

]

,

Gij =

[

G
(i,i)
1 ; G

(i,j)
1

G
(j,i)
1 ; G

(j,j)
1

]

,

where the super-scripted G
(i,j)
1 denotes selecting the (i, j)-th sub-

matrix of G1 and K
(i)
1 denotes i-th column of K1. The constants

appearing in Eq. 20, 25 and 28 are as follows:

c1 =
[

−ar
i,k;−ar

j,k

] (

kij − gk
ij

)

−
[

−ar
j,k;a

r
i,k

]

Gij

[

−ar
j,k;a

r
i,k

]T

c2 =
[

−ar
j ;a

r
i

]

(

kij − gk
ij

)

, c3 = −(ac
i,k)

TG
(j,j)
1 ac

i,k,

c4 = (ac
i,k)

T
{

K
(j)
1 −G1

(j,:)vec (Ak)−G2b
}

,

c5 = −vec
(

qc
i,k r̃r

i,k

)T

G1 vec
(

qc
i,k r̃r

i,k

)

,

c6 = vec
(

qc
i,k r̃r

i,k

)T
{vec (K1) −G1vec (Ak) −G2b} .
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