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1 Brno University of Technology, Speech@FIT, Czech Republic
2 Politecnico di Torino, Italy

3 Department of Electronics and Telecommunications, NTNU, Trondheim, Norway
4 Speech Technology and Research Laboratory, SRI International, Menlo Park, CA, USA

qsoufifar@stud.fit.vutbr.cz, sandro.cumani@polito.it, {cernocky,burget}@fit.vutbr.cz

ABSTRACT

Phonotactic models based on bags of n-grams representa-

tions and discriminative classifiers are a popular approach to

the language recognition problem. However, the large size

of n-gram count vectors brings about some difficulties in

discriminative classifiers. The subspace Multinomial model

was recently proposed to effectively represent information

contained in the n-grams using low-dimensional iVectors.

The availability of a low-dimensional feature vector allows

investigating different post-processing techniques and differ-

ent classifiers to improve recognition performance. In this

work, we analyze a set of discriminative classifiers based on

Support Vector Machines and Logistic Regression and we

propose an iVector post-processing technique which allows

to improve recognition performance. The proposed systems

are evaluated on the NIST LRE 2009 task.

Index Terms— Phonotactic iVector, Discriminative clas-

sifier, Support vector machine, Logistic regression

1. INTRODUCTION

Language recognition (LRE) techniques can be divided into

phonotactic and acoustic approaches. In phonotactic LRE,

one or more tokenizers (e.g. phone recognizers) are used

to convert speech utterances into sequences of discrete to-

kens (e.g. phonemes). N-gram counts can be extracted from

the decoder output. The n-gram statistics stacked in a fixed

length vector can then be used as features for generative [1]

or discriminative classifiers such as Support Vector Machines

(SVM) [2]. However, in the latter case, we should deal with

the large size of n-gram count vectors. A possible solution

based on fast algorithms for linear SVM training was pro-

posed in [3]. Another way to approach the problem is to

reduce the dimensionality of the n-gram count vectors: in
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[4], discriminative selection of n-gram counts was proposed

and in [5], dimensionality reduction through principle com-

ponent analysis was used. Recently, we proposed phonotactic

iVectors as an alternative method for reducing n-gram vectors

dimensions [6]. The iVectors based on Subspace Multino-

mial model [7] allow us to effectively represent the informa-

tion contained in the n-grams using low-dimensional vectors,

which greatly simplifies training of the discriminative clas-

sifiers and allows us to study the effectiveness of different

classification approaches.

In this paper, we analyze the behavior of classifiers based

on SVM and Logistic Regression (LR), both in their binary

and multi-class formulations. We also propose a technique to

obtain multi-class scores starting from binary pairwise clas-

sifiers (i.e. classifiers trained to discriminate between a pair

of languages) Further, we introduce an effective iVector post-

processing step, which allows us to improve recognition accu-

racy. The experiments are conducted on the NIST LRE 2009

[8] task and all results are given in terms of the average deci-

sion cost function (Cavg) as defined by NIST for LRE 2009

[8].

The paper is organized as follows. Section 2 explains sub-

space modeling and iVector extraction. In section 3, different

approaches for discriminative training of the classifiers are

presented. Section 4 presents the experimental setup. Results

and conclusions are given in sections 5 and 6, respectively.

2. SUBSPACE MODELS

2.1. Total variability subspace model

The original total variability subspace model [9] was pro-

posed for continuous features using Gaussian mixture mod-

els (GMM). The basic assumption is that feature sequence

of each utterance was generated from an utterance specific

GMM model. More precisely, we assume that the utterance

specific mean super-vector
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φ = m+Tω (1)

is constrained to live in a low-dimensional subspace space

with origin in m and spanned by the columns of the ma-

trix T. An iVector, which serves as the low-dimensional

representation of a given utterance, is then computed as the

maximum–a–posteriori (MAP) point estimate of the latent

vector ω adapting GMM to the feature sequence of the given

utterance.

2.2. Multinomial subspace model

Discrete features can also be modeled in a subspace paradigm

[7]. Utterances represented by sequences of discrete events

can be modeled using multinomial distributions and, similar

to the continuous feature case, we can assume that there is

a low-dimensional subspace in which the parameters of the

multinomial distributions for individual utterances live. In

the context of phonotactic LRE, every speech utterance can

be represented by a fixed-length vector containing discrete

n-gram statistics. The log-likelihood of the nth utterance rep-

resented by an E-dimensional vector of n-gram counts (νn)

can be computed as

log(P (νn | φn)) =

E∑
e=1

νne log φne, (2)

where νne is occupation count for n-gram e in utterance

n. The φne is the utterance-dependent model parameter

representing probability for the corresponding n-gram. Log-

likelihood of a set of utterances is given by

N∑
n=1

logP (νn | φn), (3)

where N is the number of utterances. We constrain the

utterance dependent model parameters φne to live in a

low-dimensional manifold using log-linear model:

φne =
exp(me + teωn)∑E
i=1 exp(mi + tiωn)

, (4)

where ωn is an utterance-dependent latent variable and te is

the eth row of subspace matrix T.

Given the parameters m and T, we can estimate ω to

maximize the log-likelihood in (2) for the corresponding ut-

terance. The estimated ω is called iVector. Similar to the

case of continuous features, the subspace multinomial model

is used as a feature extractor and each iVector can be seen as

a low-dimensional representation of the whole utterance. The

model parameters T and ω are estimated by means of an iter-

ative numerical optimization algorithm. Detailed description

of iVector extraction and parameter estimation can be found

in [6].

3. CLASSIFIERS

Our classifiers are based on LR and SVM [10], trained in ei-

ther of binary or multi-class flavour.

Both classifiers can be expressed as particular instances

of a more general class of unconstrained (regularized) risk

minimization problems of the form

w∗ = argmin
w

1

2
λ‖w‖2 + 1

N

N∑
i=1

l(w,xi, yi) (5)

where w∗ defines the class boundaries, λ is the regularization

coefficient, xi is the i–th training pattern with associated label

yi and l is a convex function of w representing the empirical

loss.

3.1. One–versus–All training

One–versus–all training is a way to obtain multi-class scores

from a set of binary classifiers. In particular, for each class Ci,

a classifier is built to separate the patterns of class Ci from all

the patterns belonging to the other classes. Multi-class scores

are obtained as the scores of the test utterance for each of

these classifiers.

3.1.1. SVM

Binary SVM separates classes according to a maximum–

margin criterion [10], the margin being related to the norm

of w. When classes are not linearly separable, a soft-margin

solution is built as a tradeoff between the margin and the

misclassification cost, evaluated on training data. Using the

coding scheme yi ∈ {−1,+1} to represent class labels for

the binary problem, the misclassification cost corresponds to

the hinge loss function

l(w,xi, yi) = max(0, 1− yiw
Txi). (6)

3.1.2. Logistic Regression

Under rather general assumptions [10], class posterior proba-

bilities can be expressed as a logistic sigmoid function applied

to a linear function of the observed data wTxi. With such lo-

gistic regression model, value of w are estimated on a training

data to maximize conditional likelihood of labels yi given the

corresponding observations xi (i.e. to maximize the probabil-

ity that all training examples are recognized correctly). This

corresponds to minimizing objective function (5) with cross
entropy loss function

l(w,xi, yi) = log(1 + e−yiw
Txi). (7)

When training samples are completely separable by the

logistic regression, the solution is no more unique and tends

to largely over-fit the training data [10]. To solve this issue, a

prior on w can be introduced, which is equivalent to adding

the regularization term in objective function (5).
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3.2. Multi-class SVM and Logistic Regression

For multi-class SVM and multi-class LR, the parameter w is

actually a matrix W = [w1, . . .wn] representing a set of

hyper-planes, one for each class.

The class scores for test patterns are then given by the

projection of test patterns over set of hyper-planes wi. The

process is similar to the One–versus–All technique, however,

the training stage involves slightly different loss functions and

the hyper-planes are jointly optimized.

3.2.1. Multi-class SVM

The loss function for multi-class SVM [11] is an extension of

the binary loss function given by

l(W,xi, yi) = max
y′

(wT
y′xi −wT

yi
xi +Δ(y

′
, yi)) (8)

where Δ(y1, y2) is the cost of misclassifying class y1 for y2.

In our context, we use Δ(yi, yj) = 1 − δij , where δij is the

Kronecker delta. Multi-class SVM can be interpreted as a

joint optimization of N SVMs where the hyper-planes are

trained as to maximize the margin between each class and

all the remaining classes [10].

3.2.2. Multi-class LR

For multi-class variant of logistic regression, the multi-class

cross entropy loss function

l(W,xi, yi) =

⎛
⎝log

∑

y′
e
wT

y
′ xi

⎞
⎠−wyix (9)

is used, which again results in the objective function, where

the probability of recognizing all training examples correctly

is maximized.

3.3. Binary Classifiers with multi-class score projection

The last set of classifiers we explore are binary classifiers

trained to produce pairwise scores. In this approach, one bi-

nary classifier is trained for each pair of languages. The re-

sulting binary scores are then mapped into multi-class scores.

The description of the loss functions is the same as the one in

section 3.1.

3.3.1. Scores back-projection

Assuming that multi-class scores represent class–conditional

log–likelihoods, log–likelihood ratios for two languages can

be computed as the difference between the scores for the two

languages. The mapping from multi-class scores to binary

scores can then be expressed as a linear transformation repre-

sented by a rectangular N × 1
2N(N − 1) matrix whose en-

tries are in {−1, 0,+1}. Each row of the matrix maps the

multi-class scores to a binary score and thus has exactly one

element valued +1 and one element valued −1.

To map binary scores scores to multi-class conditional

log–likelihoods, we simply project the binary scores on the

pseudo inverse of the multi-class–to–binary transformation

matrix.

4. EXPERIMENTAL SETUP

We report our results on NIST LRE2009. The task comprises

23 languages. The evaluation dataset contains telephone data

and narrowband broadcast data. 1.

4.1. Data

The training data is divided into two sets denoted as TRAIN

and DEV. The TRAIN set comprises data from 23 languages

corresponding to the target languages of the NIST LRE09 task

[8]. The TRAIN set is filtered in order to keep at most 500 ut-

terances per language as proposed in [12], resulting in 9763
segments (345 hours of recording). This allows to have al-

most balanced amounts of training data per language, thus

avoiding biasing the classifiers toward languages with lots of

training data. The DEV set contains 38469 segments from

the same 23 languages and consists of data from the previ-

ous NIST LRE tasks plus some extra longer segments from

the standard conversational telephone speech (CTS) databases

(CallFriend, Switchboard, etc.) and voice of America (VOA).

The TRAIN and the DEV sets contain disjoint sets of speak-

ers. Full description of the dat used is given in [13]. The DEV

set is used to choose the iVector extraction parameters and to

calibrate the classifier scores.

4.2. Vector of n-gram counts

The n-gram counts were extracted using the Brno University

of Technology (BUT) Hungarian (HU) phone recognizer,

which is an ANN/HMM hybrid [14]. The HU phoneme list

contains 61 phonemes. We map short and long variations of

similar phones to the same token, obtaining 33 phonemes.

This results in 333 = 35937 3-grams. Since neither 2-grams

nor 1-grams improved the system performance we use only

3-gram counts. The 3-gram expected counts are extracted

from phone lattices generated by the HU phone recognizer.

We also computed square roots of the expected n-grams

counts before going through other steps in all the systems.

The square root compresses the dynamic range of the counts

and slightly improves the performance over all systems.

5. SYSTEM EVALUATION & RESULTS

600 dimensional iVectors are extracted from expected 3-gram

counts. The baseline system is a binary LR trained in a one–

1Detailed distribution of segments per language can be found on the of-

ficial NIST LRE09 results page http://www.itl.nist.gov/iad/
mig/tests/lre/2009/lre09_eval_results/index.html
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Table 1. Cavg × 100 for different systems on NIST LRE09

Evaluation task over 30s, 10s and 3s conditions.

System Scores type 30s 10s 3s

LR one-vs-all 2.98 8.25 21.37

SVM one-vs-all 3.07 8.55 21.68

MC-LR multi-class 3.16 8.66 21.82

MC-SVM multi-class 3.89 10.60 23.92

MC-SP-LR projection 2.93 8.14 21.32
MC-SP-SVM projection 3.91 9.86 23.03

versus–all flavour. The iVectors are centered and whitened

before the classifier is trained. The scores generated by 23
LR classifiers are calibrated on DEV data by means of a linear

generative model followed by a multi-class LR as described

in [13]. This setup is similar to the one used in [6], except

for the presence of a regularization term and the whitening

preprocessing step, which is necessary due to the presence of

the regularizer.

Table 1 shows the results in terms of Cavg [8] using

the classifiers described in Section 3. “MC” refers to the

multi-class formulation of the classifiers and “SP” stands for

binary pairwise systems with Score Projection.

We can observe that regularized logistic regression–based

models give better results than SVM–based techniques. Sur-

prisingly, the one-versus-all approach shows better accuracy

than the multi-class system. Another set of experiments

was performed adding an iVector post-processing step based

on Heteroscedastic Discriminant Analysis (HDA) [15] to

reduce dimensionality to 22 (number of languages minus

one). Within Class Covariance Normalizatioin followed by

length normalization was then applied to the 22-dimensional

features. The choice for these steps was dictated by the suc-

cess of Linear Discriminant Analysis and WCCN in acoustic

iVector post-processing for speaker recognition [9].

The results are shown in table 2. We can observe that the

different classifiers, trained in this 22-dimensional subspace,

achieve almost the same performance, with multi-class sys-

tems giving slightly better results than binary systems. iVec-

tor post-processing proves to be valuable to improve the sys-

tem performance.

6. DISCUSSIONS & CONCLUSIONS

We studied performance of two discriminative classifiers

based on iVectors for the NIST LRE2009 task. Without

any post-processing of iVectors, LR performs slightly bet-

ter than SVMs, and binary classification allows to achieve

slightly better results than multi-class systems. iVector

post-processing by HDA, WCCN and length normalization

allows to achieve 5% relative improvement over the baseline

systems. In the latter case, the choice of the classifier makes

very little difference.

Table 2. Cavg × 100 for different systems on NIST LRE09

Evaluation task over 30s, 10s and 3s conditions after HDA,

WCCN and length normalization.

System Scores type 30s 10s 3s

LR one-vs-all 2.83 8.09 21.34

SVM one-vs-all 2.83 8.09 21.34

MC-LR multi-class 2.79 8.06 21.35

MC-SVM multi-class 2.81 8.05 21.33

SP-LR projection 2.80 8.09 21.31

SP-SVM projection 2.82 8.04 21.33
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