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ABSTRACT

We submitted two approaches as the required runs: Acous-
tic Keyword Spotting as the primary one (AKWS) and Dy-
namic Time Wrapping as the secondary one (DTW) for the
Spoken Web Search task. We aimed at building a sim-
ple phone based language-dependent system. We experi-
mented with universal context bottle-neck neural network
classifier with 3-state phone posterior features or bottle-neck
features.
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H.3.3 [Information systems]: Information Storage and
Retrieval, Information Search and Retrieval, Search process

General Terms
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Keywords
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1. MOTIVATION
Our motivation was to build quickly a simple language-

dependent query-by-example spoken term detection system.
We counted only on provided development data [1] (au-
dio and phoneme based force alignment). We used only
the phone level force alignment from provided development
data, so other resources were used.

2. FEATURE EXTRACTION
Firstly, we merged several phonemes. The original align-

ment consists of 75 unique phonemes. According to amount
of available training data for each phoneme (at least 10 sec-
onds) and phone set documentation1, we reduced the phone
set to 50 phones. Then, we trained a simple monophone
HMM model and generated phoneme state alignment of the
data. This state alignment was used for training of the neu-
ral net based classifier. We did not use any other information
(spoken language, graphemic transcript, dictionary, etc.).

1http://hlt.mirror.ac.za/Phoneset/Lwazi.Phoneset.1.2.pdf
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Our feature extractor outputs 3-state phone posteriors
or bottle-neck features encoding speech (queries and utter-
ances) in low dimensional feature vectors. The feature ex-
tractor is the same as that presented in [2] and contains a
Neural Network (NN) classifier with a hierarchical structure
called bottle-neck universal context network. Energies from
15 Mel-scale critical bands, ranging from 64 Hz to 3800 Hz,
are extracted and passed through a logarithm. Next, sen-
tence mean normalization is performed. We obtained a log-
critical band spectrogram (CRB), from which long temporal
patterns of length 15 are extracted. Hamming window and
dimensionality reduction by DCT to six coefficients are ap-
plied to each long temporal critical band trajectory.

The input of the context network is a context of 15 frames
around the current one, each represented by six DCT coef-
ficients. The input size is 15× 6 = 90. The context NN is a
so-called bottleneck network. It is trained as a five-layer net-
work with the 3rd layer as the bottleneck of size 80 neurons.
The size of the 2nd and 4th layers are 1282 and the number
of outputs (5th layer) is 150. It corresponds to the number
of phone states - each phone has three phone states.

After training the context network as a 5-layer network,
the fourth and fifth layers are cut-off so the output size of
the context network is 80.

The merger receives five context net outputs sampled ev-
ery five frames (for frame t, this is t−10, t−5, t, t+5, t+10),
so it actually“sees”a 310ms context in the CRB matrix, and
the merger input size is 5× 80 = 400. The merger is one of
the following:

• A 5-layer phone posteriors bottle-neck NN. It’s output
consist of the 150 phone states. The size of the bot-
tleneck is fixed to 30 (the 3rd layer) and the size of
the 2nd and 4th layers are 1282. This merger produces
three state phone posterior probabilities as the output.

• A 3-layer bottle-neck NN. It’s output consist of 30 neu-
rons bottleneck (the 3rd layer) and the size of the 2nd

layer is 1282. The network is derived from the previous
one by cutting-off the 4th and 5th layers. This merger
produces 30 bottle-neck features as the output.

Because the lack of speaker information in the develop-
ment data, we used jackknifing (splitting data into 6 “inde-
pendent” sets) for devQ-devC condition. We trained on all
development data for evaluation condition.

We built a phone recognizer on the above mentioned 5-
layer phone posteriors bottle-neck NN. We did not used
any phoneme language model - only free phone loop. We
achieved phone accuracy 66.02% on the development data
(using jackknifing).



Figure 1: Keyword spotting network used for R-

AWKS and AWKS systems.

3. APPROACHES

3.1 Reference Acoustic Keyword Spotting (R-
AKWS)

This approach was our reference “upper-bound” system to
evaluate the accuracy we can approximately achieve. The
R-AKWS follows our paper [4], where we built HMM for
each query and then calculated log likelihood ratio between
a query model and a background model (free phone loop) -
see figure 1. We used the development force alignment and
graphemic transcription of queries to obtain reference pro-
nunciation of each query. We achieved Max. TWV 0.737
and the Upper-bound Term Weighted Value (UBTWV) [3]
0.859. The UBTWV finds the best threshold for each query
(maximizes the TWV per query) and then averages the
scores. It can be considered as non-pooled Max. TWV and
shows the room for calibration improvement.

3.2 Acoustic Keyword Spotting (AKWS)
The Acoustic Keyword Spotting is similar to the refer-

ence one (R-AKWS). Only we did not use any prior knowl-
edge of queries (pronunciation). The pronunciation of the
queries was automatically generated using the above men-
tioned phone recognizer. After generating pronunciations
(one per query), we just striped out surrounding sil phonemes.
We got Max. TWV 0.453 and UBTWV 0.600 without any
score calibration on the devQ-devC condition. Using cali-
bration, we achieved the Max. TWV 0.493 on the devQ-
devC condition.

3.3 Dynamic Time Warping (DTW)
DTW system was based on a simple template-matching

algorithm on bottle-neck features, where cosine distance was
used as a similarity function [5].

4. FILTERING AND CALIBRATION
The primary metric used in these evaluations, the Actual

Term Weighted Value (ATWV), is quite sensitive to a good
calibration of scores of detections. For each query, we com-
puted an ideal hard-decision threshold and we also generated
a feature vector representing the query. Then we trained a
linear regression model for predicting the ideal hard-decision
threshold. The query feature vector includes:

Length - total length of the query in frames excluding si-
lence around it.

Length of sil - total length of all sil phonemes in frames
inside the query.

Phonemes count - Number of phonemes in the query.

Detections count - Number of all detections of the query
in devC or evalC data.

Score average global - summed likelihood of all phonemes
in the query, divided by the number of total frames.

Score average by phonemes - likelihood of each phone
is divided by the number of its frames. These per-
frame likelihoods for each phoneme are summed up
and divided by the number of phonemes.

We also augmented the feature vector with a square of
each feature, which brought a slight improvement.

For training, we used a jackknifing method. We split the
development queries into 10 parts and used 9 of them for
training and 1% for cross-validation. This was done 10 times
for all combinations of the splits. Then we averaged weights
of those 10 trained linear models.

Our linear models were trained in Matlab using standard
functions regress or robustfit.

5. RESULTS AND DISCUSSION
Results for the required runs [1] are given in Table 1. We

clearly see that the AKWS approach outperforms DTW.
We achieved approximately 13% of Max. TWV relative
improvement with score calibration on evalQ-evalC condi-
tion. The upperbound improvement could be approximately
41% - UBTWV 0.665. We lost approximately 40% relative
by switching from hand made pronunciations (R-AKWS) to
automatically derived pronunciations (AKWS). The AKWS
significantly outperforms DTW also in terms of speed.

Approach devQ-devC evalQ-devC devQ-evalC evalQ-evalC

R-AKWS 0.786(0.739) - 0.703(0.653) -

AKWS 0.493(0.452) 0.629(0.608) 0.429(0.377) 0.530(0.470)

DTW 0.468(0.400) 0.481(0.458) 0.383(0.316) 0.488(0.426)

Table 1: Max. TWV results for the approaches. Results

of non-calibrated system are in brackets. Dx-Qy denotes the

set of x data searched for the set of y queries.
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