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This article investigates query-by-example (QbE) spoken term detection (STD), in which the query is not
entered as text, but selected in speech data or spoken. Two feature extractors based on neural networks
(NN) are introduced: the first producing phone-state posteriors and the second making use of a compressive
NN layer. They are combined with three different QbE detectors: while the Gaussian mixture model/hidden
Markov model (GMM/HMM) and dynamic time warping (DTW) both work on continuous feature vectors,
the third one, based on weighted finite-state transducers (WFST), processes phone lattices. QbE STD is
compared to two standard STD systems with text queries: acoustic keyword spotting and WFST-based search
of phone strings in phone lattices. The results are reported on four languages (Czech, English, Hungarian,
and Levantine Arabic) using standard metrics: equal error rate (EER) and two versions of popular figure-
of-merit (FOM). Language-dependent and language-independent cases are investigated; the latter being
particularly interesting for scenarios lacking standard resources to train speech recognition systems. While
the DTW and GMM/HMM approaches produce the best results for a language-dependent setup depending
on the target language, the GMM/HMM approach performs the best dealing with a language-independent
setup. As far as WFSTs are concerned, they are promising as they allow for indexing and fast search.
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1. INTRODUCTION

The ever-growing volume of heterogeneous speech data stored in audio repositories in-
creases the need for efficient methods for retrieving the stored information. Much work
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has addressed this issue by means of spoken document retrieval (SDR), spoken term de-
tection (STD), keyword spotting, query-by-example or spoken query approaches. Part of
this research was driven by evaluations, such as the 2006 NIST STD evaluation [NIST
2006] and the Spoken Web Search task [Metze et al. 2012] at MediaEval 2011. STD can
also be an important component for integration within some other technologies such
as SDR or spoken content summarization. Due to the tight relationship between STD
and the scope of this work, we briefly outline the STD paradigm in the following.

1.1. Spoken Term Detection

STD has received much interest for years from several institutes/companies such as
IBM [Mamou et al. 2007; Mamou and Ramabhadran 2008; Can et al. 2009], BBN
[Fiscus et al. 2007], SRI & OGI [Vergyri et al. 2006; Vergyri et al. 2007; Akbacak et al.
2008], BUT [Szöke et al. 2008a, 2008b, 2008c]. The goal of STD is to find a list of
terms (a single word or a sequence of words) fast and accurately in audio data, where
the list of terms is represented in a textual form. We denote this as text-based STD,
which is still the predominant approach nowadays. This way, we differentiate it from
query-by-example (QbE) STD, which represents the scope of this work, which we will
introduce shortly.

In text-based STD, it is assumed that we have enough resources and an exact knowl-
edge of the target language, and therefore we can employ a reasonable amount of
transcribed data, phone sets, and pronunciation dictionaries. That is why building a
STD system for languages with low resources is a challenging issue.

On the other hand, there is also a steady demand (especially in the security field)
for rapid development of STD systems for languages with low or completely missing
resources. In these cases, it is not possible to train target language-specific acoustic
models, and hence the system needs to rely on a language-independent modeling ap-
proach. In addition, the user often has no knowledge of the textual interpretation of the
search term. Paradigm-named QbE STD offers a solution for these challenging cases.

1.2. Query-by-Example Spoken Term Detection

Generally speaking, query-by-example can be defined as a method of searching for an
example of an object or a part of it in other objects. Query-by-example has been widely
used in audio applications like sound classification [Zhang and Kuo 1999; Helén and
Virtanen 2007, 2010], music retrieval [Tzanetakis et al. 2002; Tsai and Wang 2004],
and spoken document retrieval [Chia et al. 2008].

Under this paradigm, we consider the scenario where the user has found some
interesting data within a data pool (for example, by random browsing or some other
method). His/her purpose is to find similar data within the data pool. Therefore, the
user selects one or several speech cuts containing the term of interest (henceforth,
query) and the system returns him/her other putative hits from the whole data pool
(henceforth, utterances). Another scenario for QbE STD considers one or several user
speech recordings of the term of interest. Therefore, both QbE STD methods rely on
spoken term examples as input, contrary to a text-based STD that relies on a textual
form of the input terms.

It must be noted that the unavailability of enough training resources and limited or
no knowledge of the target language make it impossible to apply a large vocabulary
continuous speech recognition (LVCSR) system to produce word/phone lattices and to
conduct text-based STD. This is mainly due to high language-dependency inherent
to word lattices, especially if a powerful language model is applied. Phone lattices
are also quite language-dependent, since they also depend on the set of phones and
accurate phone-based language models. Therefore, using LVCSR is almost impossible
for a language-independent QbE STD.
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1.3. Related Work

In contrast to text-based STD, QbE STD has received minimal attention in the speech
community. So far, it has been addressed from two points of view.

(1) Methods based on phone transcription of the speech signal corresponding to the
query [Lin et al. 2008; Parada et al. 2009; Shen et al. 2009; Lin et al. 2009; Barnard
et al. 2011], for which the text-based STD technology is suitable. These methods
decode the query with a speech recognizer to derive its word/subword representa-
tion, which can be employed next to hypothesize detections in a text-based STD-like
fashion.

(2) Methods based on template matching of features extracted directly from the speech
signal representing the query/utterance [Hazen et al. 2009; Zhang and Glass 2009;
Chan and Lee 2010; Anguera et al. 2010; Anguera 2011; Muscariello and Gravier
2011; Szöke et al. 2011; Muscariello et al. 2011]. Some of these methods can be con-
sidered language-independent, since they do not make any assumptions about the
target language, and hence are also appropriate for low-resource languages. They
usually borrow the idea from dynamic time warping (DTW)-based speech recog-
nition, and have been found to outperform phone transcription-based techniques
when applied on QbE STD in a language-dependent scenario [Hazen et al. 2009].

Articulary units, aiming at covering a broad set of languages, plus DTW-based search
over the segments corresponding to the matched trigrams (to obtain the appropriate
timing) have also recently been proposed [Mantena et al. 2011].

Methods that deal with pattern/word/spoken term discovery were also described in
the literature [Jansen et al. 2010; Muscariello et al. 2009; Park and Glass 2008]. These
methods can also be employed for QbE STD, since they are all based on template
matching of features extracted from the speech signal. The discovery task is even
more challenging because it has to discover the units (words) by itself. In QbE STD
we already have examples of the units, so QbE STD is actually a subtask of pattern
discovery.

QbE STD, in a completely unsupervised fashion, which allows for building language-
independent systems and is suitable for low-resource scenarios, has been addressed:
[Zhang and Glass 2009; Chan and Lee 2010; Anguera et al. 2010], with promising
results. The methods mentioned earlier dealing with pattern/spoken term discovery
[Jansen et al. 2010; Muscariello et al. 2009; Park and Glass 2008] can also be em-
ployed for building language-independent QbE STD systems. However [Anguera et al.
2010; Muscariello et al. 2009; Park and Glass 2008] can only be employed for speaker-
dependent QbE as standard Mel frequency cepstral Coefficients (MFCCs) used in these
works are speaker-dependent. In the same line, Jansen et al. [2010] employs features
derived from an MLP (i.e., phone posterior features) as query and utterance repre-
sentations. The work in Zhang and Glass [2009] derives Gaussian posteriorgrams as
features and then conducts a variant of DTW-like query detector, called segmental
DTW (SDTW). Our work differs from this because we propose additional query detec-
tors, and employ phone state posterior features for the DTW-based approach. Finally,
the unsupervised approach proposed by Chan and Lee [2010] employs spectrogram-
based features segmented by a hierarchical agglomerative clustering to identify speech
segments and a DTW-like search as query detector.

Efforts to build universal/language-independent phone recognizers have also been
presented in the literature. However, their high phone error rates on a target language
[Schultz and Waibel 2001; Kempton et al. 2011; Walker et al. 2003] or the requirement
to know the target language [Byrne et al. 2000; Sinischalchi et al. 2008] represent
two important drawbacks. When these are mitigated, perhaps they may also be used
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to build language-independent QbE STD systems due to their intrinsically language-
independent nature.

1.4. Motivation and Organization of this Article

From the literature review, it is clear that previous work was based on standard fea-
tures such as MFCCs, phone posteriors, and Gaussian posteriors for query/utterance
representation and on variants of a DTW-like search as term detector. This leaves a lot
of room for improvement and exploration of new QbE STD-related approaches. In ad-
dition, no comparison between the language-dependent and the language-independent
setups has been carried out so far, given a QbE STD system.

Therefore, the purpose of this work is twofold: (1) to evaluate and compare the
performance of several QbE STD systems across different languages, different sets of
features (3-state phone posteriors and bottle-neck (see Section 5)) and different speech
signal conditions; and (2) to give a deeper insight into the language-independence
issue in QbE STD to derive meaningful conclusions about the feasibility of language-
independent QbE STD systems.

First, for comparison purposes, we present a language-dependent acoustic keyword
spotting (AKWS) system, which is considered an upper-bound of the QbE STD perfor-
mance exhibited by the other approaches, and will be used in this work to justify the
feasibility of language-independent QbE STD systems.1

Second, we further investigate our DTW-based QbE STD system using phone poste-
riors. This method was previously presented by other authors in a language-dependent
environment or in an unsupervised fashion [Hazen et al. 2009; Zhang and Glass
2009; Chan and Lee 2010] and in a limited language-independent setup [Tejedor et al.
2010]. Therefore, we consider the DTW approach as our baseline technique. Work that
deals with the multi-sequence alignment in biology (DNA, RNA, aminoacids, and so
on) [Edgar and Batzoglou 2006] based on genetic algorithms and neural networks [Wu
et al. 2008], evolutionary computation [Cai et al. 2000] already exists. However, since
the DTW-based search has been applied before for QbE STD, and for the sake of com-
parison with a widespread baseline, we have preferred to use this sequence alignment
technique.

Our previous work [Tejedor et al. 2010] has, however, indicated significant problems
with DTW-based QbE STD when dealing with the language-independent environment.
These are mainly due to the “blur” of phone posteriors, that become less sharp once
the language is switched. A modeling technique that takes into account these un-
certainties seems therefore more appropriate than template matching. Therefore, we
introduce in this article as a third method, a QbE STD approach that relies on Gaussian
mixture model/hidden Markov model (GMM/HMM), and is inspired by AKWS. While
GMM/HMM has been employed for years to build general speech recognition systems
and AKWS systems, and for some other tasks such as audio classification [Helén and
Virtanen 2010], to our best knowledge, this is the first work that uses a GMM/HMM-
based QbE STD system with a single-step QbE detector.

Finally, we propose another technique which has not been applied to language-
independent QbE STD so far: Weighted finite state transducer (WFST)-based QbE
STD. The authors note that the concept has been presented previously by Parada et al.
[2009], but this work was limited to searching for out-of-vocabulary words (OOVs) in
N-best word and phone lattices from a combined hybrid word-subword LVCSR system

1All our QbE STD detectors work only with example pronunciations of query terms, which may contain
various defects. The AKWS system has an advantage in knowing the correct pronunciation of all terms.
Since our phone posterior feature extractor was also trained on the correct pronunciation of training data,
AKWS system should perform the best, and hence it is considered to be an upper bound.
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Table I.
Amount of data used as feature training set, query training set and evaluation, and numbers of queries, examples
and query occurrences in evaluation data for each language.

Data (hours) Queries
Language Feature training Query training Evaluation Unique Examples Occurrences
Czech 100.9 2.2 2.0 58 290 1019
English 277.7 12.5 2.2 168 840 2007
Hungarian 8.5 0.9 2.2 8 40 337
Levantine 19.9 2.8 1.4 51 255 609

under a language-dependent setup. For comparison with a text-based STD system, we
also present a WFST system based on pronunciations of the search terms, and hence
capable of text-based STD.

Experiments are conducted on four different languages and various speech-signal
conditions that examine each of the QbE STD techniques/set of features proposed
in this article. A set of queries is chosen for each language and next is searched by
each of these techniques. It allows contrastive comparisons across the diverse set of
queries/languages/features/speech signal conditions.

The rest of the article is organized as follows: Section 2 describes the data used for
experimentation, and Section 3 presents the evaluation metrics. Section 4 gives an
overview of our QbE STD system and presents the audio preprocessing steps. The re-
maining sections present each system component individually: in Section 5, we present
the feature extractor that serves as front-end. Section 6 deals with our acoustic key-
word spotter that serves as a back-end upper-bound reference. The sections thereafter
cover three QbE detectors that serve as back-ends: Section 7 presents the DTW-based
QbE STD, the GMM/HMM-based approach for QbE STD is covered in Section 8, and
WFST-based QbE STD is presented in Section 9. Section 10 contains the results and
some discussion, and finally, Section 11 concludes the article.

2. DATA SETUP

In order to inspect the language-independent setup across the different techniques,
we trained and evaluated proposed approaches on several languages across differ-
ent groups: Czech (Slavic), English (Germanic), Hungarian (Uralic), and Levantine
(Arabic).

We used conversational telephone speech (CTS) for training and evaluation of all
languages except Hungarian and Czech. Whereas Hungarian was trained and eval-
uated only on prompted read telephone speech, Czech training data contained partly
prompted and read speech. Therefore, we would expected that the Hungarian language
would present the best performance.

Since all our QbE STD approaches are composed of two steps (i.e., feature extraction
and query detection), three different sets of data, which correspond to the training
part of both steps and the evaluation data, are necessary. They are called the feature
training set, query training set, and evaluation set. The feature training set is used
to train the feature extractors corresponding to each language in Table I. The query
training set was used for extracting query examples and, if necessary, for parameter
estimation and model estimation. Finally, the evaluation set was used for testing the
approaches.

For Czech, data created for the project VD20072010B16, supported by the Czech
Ministry of Interior, was used. In contrast to the rest of the languages, the feature
training set is a mixture of several audio conditions (45.6 hours of real CTS, 18.9 hours
of radio telephone speech (people calling into broadcasts), and 36.4 hours of read or
prompted speech recorded via telephone). The expansion of training CTS data with
read speech was not found harmful according to our previous experiments on acoustic
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keyword spotting [Szöke et al. 2010]. In addition, it made the system more robust
without any significant degradation of accuracy on CTS data. For English, the CTS
comes from the Switchboard I, Switchboard Cellular, and Call Home English corpora
as a feature training set, whereas the Fisher corpus was used as a query training set
and the NIST STD 2006 development set was used for evaluation. For Hungarian,
the telephone prompted read speech comes from the Hungarian part of the SpeechDat
East corpus, which was divided into a feature training set, query training set, and
an evaluation set.2 Finally, the Levantine Arabic CTS Corpus, also was divided into
a feature training set, a query training set, and an evaluation set was used for the
Levantine, where nondiacritized forms of transcripts were employed. The different
acoustic conditions across the languages and the differences inherent to each group of
languages make the data setup appealing enough for our QbE STD task. Table I shows
the data statistics for these languages.

For the approaches that work with the phone transcription for each query term (i.e.,
AKWS system and WFST from the pronunciation of the search terms), the transcription
is obtained from a reference dictionary, and hence the pronunciation derived from each
query is the correct one. However, for nondiacritized Levantine, the query transcription
is derived directly from the set of graphemes that compose the query term. Therefore,
both the feature extractor training and the phone transcription employed in the AKWS
and WFST from dictionary pronunciation systems make use of this set of graphemes. In
Levantine, a grapheme can represent several phones, which may vary depending on the
context. This typically leads to lower recognition accuracy, and hence we expected worse
overall performance on this language, no matter the method employed to hypothesize
detections.

2.1. Query Selection

Similarly to previous work [Hazen et al. 2009; Tejedor et al. 2010], we have ran-
domly selected queries with at least five examples in the query training set. In so
doing, five examples per query were used through all the experiments. In addition, the
queries fulfill the following requirements: they are longer than four phones, queries
which are substrings of longer queries are discarded and queries contain only a single
word. Czech, English, and Levantine query training sets provide a sufficient number
of queries. We were able to extract only eight queries fulfilling the above-mentioned
conditions for Hungarian data. The numbers of queries, query examples along with
the number of occurrences in the evaluation set for all languages are summarized in
Table I. A complete list of the queries along with the number of phones, the average
time length per query, and the number of occurrences of each query in the evaluation
set is in the online Appendix see the ACM Digital Library.

3. EVALUATION

The purpose of this work is to identify regions in utterances that match the spoken
query. The word/orthographic transcription was used to derive the corresponding ref-
erence phone transcription for each language. Forced alignment was carried out to get
the time information for each phone. Decision on the hit/false alarm (FA) was done
on the basis of this phone alignment. So if a sequence of phones representing the de-
tected query also appears in the underlying phone alignment, it is classified as a hit
(regardless of the orthographic transcription, i.e., no matter if it actually represents a
whole word or not). Let Q be a search query, � the set of queries, thr a certain thresh-
old, Ntarget(Q) the number of all occurrences of the query Q in the evaluation data,
NHIT (Q, thr) the number of detections of the query Q whose score remains above the

2http://www.fee.vutbr.cz/SPEECHDAT-E/.
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threshold thr and are therefore considered hits, and NFA(Q, thr) the number of false
detections (i.e., FAs) of the query Q with a score larger than thr.

Three different metrics have been used for QbE STD evaluation. The first one is
the nonpooled figure-of-merit (denoted npFOM in this article to differentiate it from
another figure-of-merit we will present shortly), defined by NIST [NIST 1991]. It is
an upper-bound estimate of the keyword-spotting accuracy averaged over 1 to 10 false
alarms per hour. The npFOM estimation assumes that the total duration of the eval-
uation speech is T hours. For each query Q, all detections are sorted by score. The
nonpooled hit percentage npPHIT (i) of queries found before the ith false alarm is cal-
culated for i = 1 . . . N + 1 where N is the first integer ≥ 10T − 0.5. The nonpooled
figure-of-merit is then defined as

npFOM = 1
10T

(npPHIT (1) + npPHIT (2) + · · · + npPHIT (N) + anpPHIT (N + 1)), (1)

where a = 10T − N is a factor that interpolates to 10 false alarms per hour and
npPHIT (i) is defined as

npPHIT (i) =
∑
Q∈�

NHIT (Q, npthrFA(Q, i))
Ntarget(Q)

× 100%. (2)

The auxiliary function npthrFA(Q, i) finds the proper threshold thr for given query Q
and the ith false alarm per hour.

A putative detection is considered to be a hit in case the midpoint of a reference
occurrence is between the start and end times where the given detection resides, ac-
cording to the npFOM definition in Young et al. [2006]. A higher npFOM value means
better performance.

We also present the system performance with the pooled FOM. Here, all terms are
considered together, which makes it impossible to tune a term-dependent threshold.
The pooled figure-of-merit is defined as

FOM = 1
10T

(PHIT (1) + PHIT (2) + · · · + PHIT (N) + aPHIT (N + 1)), (3)

where a = 10T − N is a factor that interpolates to 10 false alarms per hour and PHIT (i)
is a pooled hit percentage of queries found before the ith false alarm:

PHIT (i) =
∑
Q∈�

NHIT (Q, thrFA(i))
Ntarget(Q)

× 100%, (4)

where the auxiliary function thrFA(i) finds the proper threshold thr for the ith false
alarm in all (pooled) queries.

Finally, the equal-error-rate (EER) is used. It reflects the QbE STD system “accuracy”
for threshold thrEER. It represents the percentage of missed detections for the threshold
where the system achieves the same number of missed detections and false alarms.
The EER is a pooled metric and is defined as follows:

EER =
∑

Q∈� Ntarget(Q) − NHIT (Q, thrEER)∑
Q∈� Ntarget(Q)

, (5)

where the following equation is satisfied:∑
Q∈�

Ntarget(Q) − NHIT (Q, thrEER) =
∑
Q∈�

NFA(Q, thrEER). (6)
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Fig. 1. High-level schema of our query-by-example STD system.

As in the pooled FOM metric, a detection is considered to be a hit in case its start and
end times are within a 100ms shift of those of the reference. This high restriction level
we impose on both pooled metrics may lead to a low FOM value and a high EER value
when evaluating the approaches.

FOM and EER metrics are computed from the whole set of ranked detections—the
list of detections is first ordered from the best to the worst score, and FOM and ERR
values are computed according to Eqs. (3) and (5). For FOM, a higher value is better,
while for EER a lower value is better. It must be noted that our EER definition, as
well as that of FOM, does not take into account term labels, and therefore the same
threshold thrEER is used for all the terms.

“Pooled” and “nonpooled” metrics reflect the system behavior in different ways. A
“pooled” metric considers all detections of all terms gathered to one set and scored
independently of the term (query) label. A “nonpooled” metric considers that an indi-
vidual value of the metric (FOM in our case for npFOM) is calculated for each term
separately. Then, npFOM is a weighted average of FOMs for the whole set of terms,
where each term’s contribution depends on the number of its reference occurrences.
Therefore, the smaller the difference between pooled and nonpooled FOM (i.e., FOM
and npFOM) is, the better the system is calibrated.

4. OVERVIEW OF QUERY-BY-EXAMPLE SYSTEM: AUDIO PREPROCESSING, FEATURE
EXTRACTION AND QUERY-BY-EXAMPLE DETECTION

Our QbE STD system is represented in Figure 1. It contains four different blocks: voice
activity detection (VAD); vocal tract length normalization (VTLN); and speaker mean
normalization (SMN) blocks represent standard preprocessing steps. First, a VAD is
employed to filter out nonspeech parts of the audio representing the queries and the
utterances for proper estimation of the speaker normalization/adaptation parameters
in the subsequent step. In the second step, we apply both VTLN and SMN to the
remaining audio. The feature extractor and the query detector blocks represent the core
of our QbE STD system. Since one of our goals is to evaluate the different techniques
referred to earlier within a language-independent QbE STD setup, the core of the
full QbE STD system is split into two blocks: Feature extractor encodes the speech
in low dimensional feature vectors, and the query detector (or spoken-term detector)
hypothesizes putative query detections from the features.

We experimented with two sets of features: 3-state phone posteriors derived from the
output of an artificial neural net (NN) classifier and bottle-neck features, which are also
based on a NN classifier, derived as output of a hidden compression layer of the NN.

We experimented with three configurations of the QbE detector: (1) a DTW-based
approach where a DTW-based search over a phonetic posteriorgram matrix hypothe-
sizes detections; (2) a GMM/HMM-based approach where an AKWS-based search is
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Table II. Combination of Feature Extraction and QbE STD Approaches in this Article
The WFSTdict system is derived from our WFST approach where “language-dependent”
lattices were generated and reference query pronunciations (i.e., as in text-based STD)
were used for searching.

Query-by-Example detector Upper-bound
Feature extraction DTW GMM/HMM WFST AKWS WFSTdict
3-state phone posteriors X X X X X
Bottle-neck features X

Fig. 2. Voice activity detector.

employed from a GMM/HMM representing the query and the background models; (3) a
WFST-based approach, where phone lattices are employed to represent both the query
examples and the evaluation data and a WFST-like framework hypothesizes detections.
Table II presents the features used within each query detector in this article.

4.1. Voice Activity Detection

Two-step VAD is conducted to properly derive the speaker normalization/adaptation
parameters, as depicted in Figure 2. The first step is based on a simple set of heuristics
applied on spectrum, energy and signal to produce raw features. This step filters out
silence, stationary and/or technical noises (beeps or faxes). Next, this “clean” signal
(raw feature) is sent to a 4-layer NN, with 200 neurons in each of its two hidden layers
and N + 1 outputs in the output layer that represent N phones and one silence. The
output of the NN is further passed through a decoder to obtain the phone segmentation.
All nonsilence phones are then merged into speech segments. It should be noted that
to derive the raw features, both VTLN and SMN techniques are omitted. For the VAD
NN, the length of the temporal patterns is 310 ms (LT P = 31). The patterns are further
reduced by the discrete cosine transform (DCT) to 16 coefficients (LDCT = 16). The
reason we used a NN-like VAD is its better performance than standard GMM/HMM-
based approaches for phone recognition [Schwarz 2009].

4.2. Speaker Adaptation

The VAD segmentation is taken “as is” for the VTLN parameter estimation, while for a
robust SMN parameter estimation, speech segments are expanded by a 100 ms-length
silence. These parameters are applied on the speech representing the queries and the
utterances before going into the feature extraction block (see Figure 1). Informed by
the results of previous experiments [Szöke et al. 2010], we did not use speaker-based
variance normalization.

The speaker adaptation is on an utterance basis. Parameters are estimated on the
speech of the whole telephone call in the case of Levantine, Czech, and English data. For
Hungarian data (SpeechDat corpus), all utterances belonging to the particular speaker
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Fig. 3. Feature extraction.

Fig. 4. Universal context (UC) neural net architecture.

are concatenated to one “utterance” and then the speaker adaptation parameters are
estimated.

The fast VTLN estimation proposed in Welling et al. [1999] is employed to derive the
VTLN parameters properly. This approach uses maximum a posteriori (MAP) adapta-
tion from a universal background model (UBM), with 32 diagonal Gaussians to derive
specific models for each warping factor. These models are next retrained using the
maximum mutual information (MMI) criterion. The features used to derive these mod-
els are 13 perceptual linear prediction (PLP) coefficients, including c0 with deltas and
double deltas (without any normalization).

5. FEATURE EXTRACTOR

This block, depicted in Figure 3, converts the input audio signal to features (3-state
phone posteriors or bottleneck features). The input speech is first segmented into 25ms
frames with a 10ms frame-shift, and its power spectrum is calculated for each frame.
Pre-estimated VTLN is applied, and energies from 15 Mel-scale critical bands, ranging
from 64 Hz to 3800 Hz, are extracted and passed through a logarithm. Next, speaker
mean normalization is performed. We obtain a log-critical band spectrogram (CRB),
from which long temporal patterns of length 15 are extracted. Hamming window and
dimensionality reduction by DCT to six coefficients are applied to each long temporal
critical band trajectory. Finally, these reduced temporal patterns are concatenated to
one feature vector to derive the raw features in Figure 3 which are next fed into the
NN. These raw features are the same as those used in the VAD, but here, VTLN and
SMN are applied.

The topology of the NN classifier to derive the final set of features in Figure 3 is
crucial. Based on our previous experiments in LVCSR [Grézl et al. 2009], we use a hi-
erarchical structure called a bottleneck universal context network, depicted in Figure 4,
which consists of two different parts: a context network and a merger.
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Table III. Numbers of Phones and Sizes of Layers for Different Languages
size(hid UC) represents the size of the hidden layer in the universal context NN. size(hidMer 3stphn)
is the size of the hidden layers in the merger with 3-state phone posterior output. size(hidMer BN) is
the size of the hidden layer in the merger with bottleneck output, and size(out) is the size of the 3-state
phone posterior output layer.

Language Phones size(hid UC) size(hidMer 3stphn) size(hidMer BN) size(out)
Czech 37 1373 495 871 114
English 44 1298 488 840 135
Hungarian 64 1128 470 765 193
Levantine 32 1432 500 894 99

Class
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5−layer MLP
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pu
t f
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Fig. 5. Training of the context bottleneck neural network. A 5-layer neural network with an 80-neuron
bottleneck layer in the middle and 3-state phone posterior classes are trained first. Then the 4th and 5th

layers are removed and the output of the network is taken from the bottleneck layer.

The input of the context network is a context of 15 frames around the current one,
each represented by six DCT coefficients. The input size is 15 × 6 = 90. The context
NN is a so-called bottleneck network. It is trained as a five-layer network with the
3rd layer as the bottleneck of size 80 neurons. The size of the 2nd and 4th layers are
size(hid UC(Lang)) and the number of outputs (5th layer) size(out(Lang)), corresponds
to the number of phone states: size(out(Lang)) = 3 × (phn(Lang) + 1) and phn(Lang) is
the number of phones of the language on which the feature extractor is trained. For
size(hid UC(Lang)), it holds that the size of the whole NN (five layers) is fixed to 500k
parameters. Since the size of the output layer depends on the number of phones, the
size of the hidden layers also depends on the language. Table III shows the sizes of this
output layer for each language.

After training the context network as a 5-layer network, the fourth and fifth layers
are cut-off so the output size of the context network is 80, as shown in Figure 5.

The merger receives five context net outputs sampled every five frames (for frame
t, this is t − 10, t − 5, t, t + 5, t + 10), so it actually “sees” a 310ms context in the CRB
matrix, and the merger input size is 5 × 80 = 400. The merger is one of the following.

—A standard 4-layer NN. Its outputs are size(out(Lang)) 3-state phone posteriors (in-
cluding silence). An example of a 3-state phone posteriorgram is depicted in Figure 6.

—Or A 5-layer bottle-neck NN. Its outputs are size(out(Lang)) and they are used only
for training. The size of the bottleneck is fixed to 30 for all languages.

There are several differences between posterior and bottleneck features.

—The most remarkable difference is the size of the feature vector. The posterior feature
vector size varies according to the language on which the feature extractor is trained,
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Fig. 6. An example of 114 3-state phone posteriors (38 phones times 3 states per phone) for 2 seconds of
speech. The 3 states represent beginning, center, and end of a phone. The x-axis represents the time in a
hundredth of a second and the y-axis represents the 3-state phone posteriors.

Fig. 7. Schema of acoustic keyword-spotting system.

according to the column size(out) in Table III. On the other hand, the bottleneck
feature vector always has the size fixed to 30.

—Theoretically, the amount of information encoded in the feature vector should be
the same. This is because the bottleneck neural network is trained to classify the
same number of classes as the “posterior” neural net. In LVCSR, bottleneck features
achieved higher accuracy than posterior features (reduced to the same dimensional-
ity) [Grézl et al. 2007].

—An important difference relies on the distribution of the features. While bottleneck
features have a normal (Gaussian) distribution, 3-state phone posteriors have a
non-Gaussian distribution. Posterior features have a limited range from 0 to 1. Ac-
cording to Grézl and Fousek [2008], the bottleneck features are Gaussian and can be
approximated by a GMM more accurately than by phone posteriors.

—The last difference is in computational effectiveness. Both posterior and bottle-neck
features are trained with an equal number of parameters in the merger. However,
the size of the bottleneck NN merger (3-layer NN) is half the trained size (5-layer
NN) (see Figure 5).

6. ACOUSTIC KEYWORD SPOTTING (AKWS) – UPPER-BOUND EXPERIMENT

We took the acoustic keyword spotting as our upper-bound technique and also derived
the GMM/HMM approach for QbE STD from it. The schema of the acoustic keyword
spotter appears in Figure 7. First, the utterances are passed through a VAD that
removes the nonspeech parts. Next, the remaining audio is converted to 3-state phone
posterior features, whose logarithm is taken and fed into the decoder. The keyword-
spotting network in the decoder is depicted in Figure 10, and is built from the given
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Fig. 8. General acoustic keyword-spotting network.

set of queries (i.e., keywords) and their pronunciations. The output of the decoder is a
set of hypothesized detections whose final score is the likelihood ratio divided by the
length of the detection to compensate for the different length of the queries. Note that
our acoustic keyword spotter contains neither language model nor vocabulary (except
the list of searched keywords). The searched keywords do not affect each other. Also
note that the AKWS system is not a state-of-the-art spoken term detection system, since
the list of query terms is used for speech decoding, and does not employ any language
model, but it is the most comparable standard language-dependent approach. A full
description of the acoustic keyword-spotting system can be found in Szöke [2010].

The core of our AKWS system is a standard Viterbi-based decoder, modified to cal-
culate the likelihood ratio (see Figure 8). The filler models (A) and (C) should model all
the speech preceding and succeeding the keyword, and are represented by a free phone
loop. The keyword model (B) is a concatenation of phone models of which the keyword
consists. The background model (D) is again a single phone loop. It must be noted that
this configuration allows for multiple keywords to appear in a single utterance and
multiple instances of the same keyword in the same utterance.

The utterance is modeled using model A-B-C (concatenation of models A, B, and C), and
model A-D-C (concatenation of models A, D, and C). Models B and D score exactly the same
part of utterance, so the likelihoods of models A-B-C (LABC) and A-D-C (LADC) differ only
because of models B and D. If there is a keyword beneath model B, LRatio = LADC/LABC
will approach 1 and will be lower for nonkeywords. If a noise appears in the speech, both
likelihoods LABC and LADC will be lower, but due to the likelihood ratio, the influence
of noise should be limited.

For simplification, the filler model C is omitted, as depicted in Figure 9, since LC is a
constant on both sides of the term, and hence it is simpler to implement likelihood ratio
calculation just after model B. In addition, in the real recognition network, there is only
one phone loop representing both A and C, as depicted in Figure 10. This simplification
does not affect the ability of the keyword spotter to detect any number of putative hits
of a term in the whole utterance. The keyword spotter produces a term likelihood ratio
for each frame.

7. DTW-BASED QUERY-BY-EXAMPLE DETECTOR

The DTW-based QbE detector relies on template matching. The features (i.e., 3-
state phone posteriors) are used to compute a similarity measure between query and
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Fig. 9. Likelihood ratio computation in acoustic keyword spotting.

Fig. 10. Example of a real keyword-spotting network in AKWS. Each phone model is represented by a
3-state hidden Markov model tied to 3-state phone posteriors.

Fig. 11. An example of a combination of posterior vectors of the best example (Q) and the worst example
(R) using the DTW path.

utterance and the template matching employs a variant of DTW-like search to hypoth-
esize detections.

To explain our DTW-based approach for QbE, let us first explain how the query is con-
structed from its five examples and next how the similarity matching of posteriorgrams
works. Finally, we explain how the DTW-like search hypothesizes detections.

7.1. Query Construction from Example Combination

As shown in our previous work [Tejedor et al. 2010], a combination of several individ-
ual examples into one “average” representative of the query, should lead to a better
performance than using a single example as a query. As in Tejedor et al. [2010], the
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Fig. 12. Combination of five examples. The Ec is the final “average” (combined) example.

combination in this work for two or more query examples relies on a feature level-
based combination. In so doing, the new query example is built from multiple single
examples. First, let us explain how the combination of two examples works: (1) order
the examples by score according to a certain metric; (2) run the DTW search with the
best example acting as “query” and the worst acting as “utterance”; and (3) update the
phone state posteriors of the best example (“query”) with the phone state posteriors
of the worst example (“utterance”) according to the best path derived from the DTW
search.

Let us now explain the process in detail for k examples (five in our case). We order
the examples by a DTW-based metric: a DTW search is conducted in the same way as
in the search step for every example. Therefore, a k × k scoring matrix is derived in
which the score produced by the DTW search of each query example on the rest of the
examples is stored. The individual score assigned to each example cDT W (Ei) is the sum
of the ith row in the scoring matrix. As during the search phase, the similarity function
that will be explained in Section 7.2 (i.e., cosine distance) was employed to compute the
score for each example. The example with the lowest score is considered to be the best.

For the third step, where two examples have to be combined, let us define the best
example Q = {�q1, . . . , �qN} containing N frames and the worst example R = {�r1, . . . , �rM}
containing M frames. Let us define P as the best path found by the DTW search
between Q and R, containing pairs of indices pointing to Q and R, respectively.

The combination of the best and worst example posterior matrices consists of updat-
ing the phone state posteriors of Q by the frames of R according to path P. The new
value of �qi is simply computed as an average of �qi and all �rj assigned to i by path P:

�qnew
i = �qi + ∑

∀ j:{i, j}∈P �rj

1 + Nj
, (7)

where Nj is the number of vectors in R belonging to �qi.
To combine more than two examples, the combination must be split in several ex-

ample subcombinations. In so doing, we get the 5-example-based combination referred
to before, as follows: we combine the fourth and fifth examples into a temporary one
E45, and the third and second ones into another one, E23. After that, we combine these
two temporal examples into E2345, and finally we merge E2345 with the best example
to derive the merged query Ec, as depicted in Figure 12. It must be noted that in this
combination, the final length of the combined example keeps the length of the first
example. The reason is to follow the same length of the first (best) example in the
combined example as the final query length.

7.2. Similarity Matching of Posteriorgrams

Inspired by our previous work [Tejedor et al. 2010], we compute the similarity be-
tween the query example and regions of the utterance from phonetic posteriorgrams,
as illustrated in Figure 6. The phonetic speech classes are 3-state phones, similar to
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Fig. 13. An example of a path and a path cost normalization for the DTW search.

standard HMM in our case. To hypothesize similar audio segments in the utterance
and the query, a similarity function is needed. Based on our previous work [Tejedor
et al. 2010], our similarity function is a log-likelihood based on the cosine distance:

D(�q, �r) = − log
( �q · �r

|�q| · |�r|
)

, (8)

where �q is a vector drawn from a 3-state phone posteriorgram of the query and �r comes
from the searched utterance.

We compute the similarity between each individual posterior distribution for all N
frames representing the query against each individual posterior distribution for all M
frames representing the utterance. It results in an N × M matrix.

7.3. DTW-Based Query Detector

As query detector, a standard DTW search is conducted to hypothesize regions that
match the query well with putative segments in the utterance. It is run iteratively
starting in every frame in the utterance and ending in a frame of the utterance. The
DTW search finds the minimum scoring path via the similarity matrix. After the
DTW search, overlapped regions that hypothesize the same term are removed and
the utterance region whose score produces a local minimum is sent to the output. The
final score for every path computed during the DTW search is normalized by the length
of the path. As in our previous work [Tejedor et al. 2010], right or down steps have cost
1, and diagonal steps have cost

√
2 (see Figure 13).

8. GMM/HMM-BASED QUERY-BY-EXAMPLE DETECTOR

Filler model-based acoustic keyword spotters, like the one in Section 6, have been
successfully applied when spotting words from speech signals [Manos and Zue 1997;
Cuayahuitl and Serridge 2002; Kim et al. 2004; Xin and Wang 2001; Ou et al. 2001;
Szöke et al. 2005; Hazen and Bazzi 2001; Tejedor 2009]. However, this approach is still
language-dependent, since both the keyword models and the filler models are built from
a predefined set of phone models belonging to a target language. To address language-
independence in our QbE STD task, this language-dependence should be mitigated. In
this direction, our GMM/HMM-based QbE STD system is inspired by acoustic keyword
spotting.

The query (keyword) model in AKWS is a linear concatenation of phone models rep-
resenting the pronunciation of the keyword. We retain an acoustic representation of the
query in GMM/HMM-based QbE, as previously discussed in Section 6, but in contrast
with concatenation of pretrained phone models in AKWS, the query GMM/HMM is
trained on examples. The number of states of each query model is set to three times the
number of phones of which the pronunciation consists (in the “query” target language).
This is the only knowledge we use from the “query” language in terms of word/phone
transcriptions. In our future work, this number of phones will be estimated from the
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Fig. 14. Recognition network for the GMM/HMM-based QbE detector. The background model is represented
by a single state with 40 Gaussian mixtures. The query model is a linear concatenation of states (HMM),
each represented by a single Gaussian.

length of the query to completely remove the language-dependency of this approach.
The five examples from the training query set (see Section 2) were used to train each
query model. One GMM component was found to be optimal to model each state in ex-
periments (by a margin of at least 2.6% relative compared with more GMM components
both for language-dependent and language-independent setups).

In contrast to AKWS, where the background model consists of a free loop of phone
and silence models (see Section 6), in our GMM/HMM-based QbE detector, we define
the background model as a GMM, whose number of components was empirically set to
40. This background model was trained on the query training set, and hence data from
the target language is necessary. However, no transcription is needed.

The same decoder as for AKWS is employed to hypothesize detections, with the recog-
nition network illustrated in Figure 14. As in the AKWS system, the likelihood ratio di-
vided by the length of the detection represents each detection score. Both 3-state phone
posteriors and bottleneck features have been experimented with for query/background
modeling in the GMM/HMM-based QbE detector.

9. WFST-BASED QUERY-BY-EXAMPLE DETECTOR

All the approaches presented earlier used phone posterior features directly when
searching for queries. In this section, we work with phone lattices3 derived from poste-
rior features, representing both queries and utterances. This approach aims at finding
all occurrences of the query lattice inside the utterance lattice, while preserving the
timing and score of each occurrence. Weighted finite state transducers (WFSTs) offer
a well-defined framework for this purpose.

Inspired by the work of Parada et al. [2009] who aimed at searching OOV terms
using WFSTs, we focus on the language-independent aspect of QbE. Instead of using
LVCSR or hybrid word/phone lattices, we create phone lattices from posterior features
by a simple phone loop. For working with transducers, we use the OpenFst toolkit
[Allauzen et al. 2007].

Examples of queries are cut from query-training set phone lattices. Both query and
evaluation lattices are converted to a WFST representation. We obtain a transducer
R, representing all detections of the query in the evaluation data, by a composition of
transducers [Allauzen et al. 2007]:

R = E ◦ Q, (9)

where E is a transducer for evaluation data, and Q represents the query. We present
some examples of transducers in Figures 15, 16, and 17. Let us now describe the process
of converting lattices to E and Q transducers.

3Acyclic graphs of phone hypotheses.
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Fig. 15. An example of a WFST E.

t= : t= c : c ae : ae t : t ε : W=CAT t= : t=

Fig. 16. An example of a term “CAT” encoded into Q transducer.
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Fig. 17. Result of a composition R = E ◦ Q.

9.1. Converting Evaluation Lattices to WFSTs

To be able to search in lattices using the WFST framework, we need to properly convert
them to a transducer representation. We inject links with timing information to the
WFST, so that each possible path through an evaluation WFST E has to start and end
with a time link. After a composition with a query lattice Q, each possible path in the
resulting WFST R starts and ends with a time link. In this way we preserve the timing
of each detection.

When injecting time links, we add links with timing information in labels from the
start node of the lattice to all other nodes, and similar links from all nodes to the
final node. Then, we can jump in and out of the WFST only through these time links,
as depicted in Figure 15. To preserve correct posterior probabilities, we need to set a
forward probability in each start-time link and a backward probability in each end-time
link. To normalize all paths by the full probability of the whole lattice, another link is
prefixed to the WFST. A detailed algorithm for creating the transducer E follows.

ALGORITHM 1:
(1) Each link Lij : Ni → Nj is copied from a lattice to the transducer E, containing a phone

label and the link’s likelihood l. In our case we used only acoustic likelihoods la (with an
optionally added phone insertion penalty penins). Weights in the log semiring are encoded in
− log domain: weight(L) = − log(la) + penins.

(2) Forward (α) and backward (β) likelihoods are computed for each node in the lattice using
the Baum–Welch forward-backward algorithm [Baum et al. 1970].

(3) Two new nodes Nf irst−1 and Nlast+1 are added. Then, for each node i, two time links are
added: Lin : Nf irst−1 → Ni with weight(Lin) = α(Ni) (forward likelihood to node i) and
Lout : Ni → Nlast+1 (Nlast is the lattice’s final node) with weight(Lout) = β(Ni) (backward
likelihood to node i). The label of both links carries the time of the node i (e.g., “t=14.23”).

(4) A new node Nf irst−2 and a new link Lnorm : Nf irst−2 → Nf irst−1 with an ε label and
weight(L) = −α(Nlast) (likelihood of the best path through the lattice) are prefixed to the
transducer, where Nf irst−1 is the node from which all time links start and Nf irst−2 is a new
start node.
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Figure 15 illustrates such a transducer: any path traversing E must now start with
links Lnorm, Lin, and must end with Lout. Therefore, the links carrying time information
in their labels are always at the beginning and at the end of each path. Also, the weight
of each path corresponds to the log posterior probability of the path, as follows:

weight(path(L1, L2, . . . LM)) = −α(Nlast)
+α(start(L1))
+ l(L1) + l(L2) + · · · + l(LM)
+β(end(LM)),

where start(L) and end(L) represent start and end nodes of link L. It is obvious that in
linear domain:

p(path) = α(start(L1))l(L1)l(L2)...l(LM)β(end(LM))
α(Nlast)

(10)

so that p(path) represents the posterior probability for a certain path.
Another way of converting evaluation lattices to WFSTs is described in Parada et al.

[2009], who put the timing information on the output label of each link and then used
a weight-pushing algorithm to convert weights (likelihoods) to posterior probabilities,
as previously described by Allauzen et al. [2004].

9.2. Preparing Query WFSTs

Similarly to evaluation lattices, we also have to convert the query lattices to transduc-
ers, but the process is slightly different. First, we need to cut out the part of a lattice
where the query example resides. The example lattice is then converted to a transducer
Q suitable for a composition with evaluation transducer E.

We use special WFST symbols ρ or σ (denoted by “t=” in our case) for the first and
the last links of Q, which match all start- and end-time links in the utterance WFST
E. The time labels of E are then copied to the output labels of R, providing us with the
timing information of detections.

In case we know the dictionary pronunciation of a word (text-based WFST STD), we
can simply create a chain of phones and add the time-consuming labels and keyword
label as shown in Figure 16. In this case, the query is simply a phone string.

In QbE STD, we want to use phone lattice examples of terms as queries. By knowing
the start- and end-times of an example in a query training utterance, we want to cut
it from a phone lattice, while preserving correct posterior probabilities. All the links
overlapping the example’s start time will be reconnected to a joint start state, and
similarly links overlapping with the example’s end time will be reconnected to a joint
end state. Weights of these starting and finishing links are set to forward or backward
probabilities to those links in the original lattice. The rest of the lattice outside the
example’s time boundaries is thrown away. More formally, for cutting examples with
time boundaries cut start time and cut end time and creating the transducer Q, we use
the following algorithm.

It must be noted that our approach for cutting examples from lattices differs from
the one described in Parada et al. [2009], where the authors preprocessed the labels
of a WFST and then extracted only the desired part of the lattice from a composition
with a filter transducer.

9.3. Composition and Merging of Detections

From the composition in Eq. (9), we obtain a transducer R, in which all paths represent
detections of Q in E. All these paths start with a time label (e.g., “t=0.15”) and end with
a term label (e.g., “W=HELLO”) followed by an end-time label (e.g., “t=0.40”). All paths
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ALGORITHM 2:
(1) For each link Lcut start : Ni → Nj , where time(Ni) < cut start time and

time(Nj) > cut start time, the link’s start node is replaced by Nf irst with
weight(Lcut start) = α(Nj). Similarly for links traversing the cut end time, the end node is
replaced by Nlast with weight(Lcut end) = β(start(Lcut end)).

(2) A new link Ltstart : Nf irst−1 → Nf irst with weight = α(Nlast) and the ρ label (“t=”) is prefixed
to the lattice.

(3) A new link Lterm : Nlast → Nlast+1 with an output label describing the term (e.g.,
“W=HELLO”) is suffixed to the lattice. The input label has to be set to ε to be correctly
composed with E.

(4) A new link Ltend : Nlast+1 → Nlast+2 with the ρ label (“t=”) is suffixed to the lattice.
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Fig. 18. Results of acoustic keyword-spotting experiments.

of R must then be traversed and overlapping detections of the same term must be
merged. In that case, weights of the overlapping detections are summed up (logadd in
the log domain) and the timing of the best detection is taken. For fetching detections
from the transducer R, we used dynamic programming. The result of composing E in
Figure 15 with Q in Figure 16 is shown in Figure 17.

For our experiments, we composed each evaluation utterance with each exam-
ple/phone pronunciation of each term separately for both WFST-based QbE STD
and text-based WFST STD. Each R transducer was then converted to a list of non-
overlapping detections containing the term name, timing, and posterior probability.
To merge detections of all five examples of each term in the WFST-based QbE STD
approach, we treated the overlapping detections as if they appeared in the same R
transducer (weights of the overlapping detections were summed up and the timing
of the best detection was taken). Thus the score of each detection is its posterior
probability.

10. RESULTS AND DISCUSSION

10.1. Acoustic Keyword Spotting

We built an acoustic keyword-spotting system as an upper-bound reference for each of
our evaluation languages. The results are summarized in Figure 18. We can see that the
Hungarian system, which is trained and tested on clean read telephone speech provides
the best overall performance among all the languages. We can also see (by inspecting
the FOM and npFOM results) the differences between both metrics. Pooling brings
small deterioration and shows that the likelihood ratio score is slightly dependent on

ACM Transactions on Information Systems, Vol. 30, No. 3, Article 18, Publication date: August 2012.



Comparison of Methods 18:21

Czech English Hungarian Levantine
0

20

40

60

80

100

P
er

fo
rm

an
ce

npFOM
FOM
EER

Fig. 19. Results of the DTW-based QbE STD system for the Czech data. The x-axis shows languages used
to train the feature extractor.

Czech English Hungarian Levantine
0

20

40

60

80

100

P
er

fo
rm

an
ce

npFOM
FOM
EER

Fig. 20. Results of the DTW-based QbE STD system for the English data.

the query. The worst accuracy was on the Levantine data. This was probably caused by
the nondiacritized approach, with a complex structure for acoustic model training and
recognition (i.e., we are actually recognizing graphemes, as one grapheme may contain
several phones, depending on the context). Czech data exhibits the second worst overall
performance, due to its data mismatch (read speech versus CTS).

10.2. DTW-Based Query-by-Example

We evaluate our four DTW QbE STD systems on each of the four target languages.
Each system was trained on one of the target languages, and we used 3-state phone
posteriors as features. The results are summarized in Figures 19 to 22 for Czech,
English, Hungarian, and Levantine data, respectively.

Similar patterns were observed across each language for both the language-
dependent and the language-independent feature extractors. As expected, it was ob-
served that the language-dependent setup outperforms the language-independent one,
since posterior features are more robust when the feature extractor matches the tar-
get language. Paired t-tests show that this improvement is statistically significant
(p < 10−13) for the English, Czech, and Levantine data. All the figures also show
that the phone posterior features in the language-independent setups dramatically de-
crease the final performance, especially for the pooled metrics. This is due to unreliable
scores assigned to each putative hit when unreliable phone posteriors (corresponding
to language-independent setups) are fed into the DTW search.
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Fig. 21. Results of the DTW-based QbE STD system for the Hungarian data.
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Fig. 22. Results of the DTW-based QbE STD system for the Levantine data.

The results for the Hungarian data exhibit a slightly different behavior for the
language-independent setup than the rest of the languages. We can observe that Czech,
and even Levantine feature extractors under the npFOM metric, achieved a reason-
ably good performance, although they are worse than the language-dependent feature
extractor. A paired t-test shows the lowest significance with these feature extractors
(p < 0.004 with the Czech feature extractor and p = 0.001 with the Levantine fea-
ture extractor). This is probably due to the read nature of the Hungarian data, which
may lead to a more robust set of phone posteriors, even when we are dealing with a
language-independent feature extractor.

The Levantine data results show the worst performance across the language-
dependent feature extractors, as in the acoustic keyword spotting system, due to the
nondiacritized approach. The Czech data exhibits the same behavior, due to the mis-
match issue (read speech versus CTS).

From the DTW-based experiments, we can conclude that DTW achieves good per-
formance for language-dependent QbE STD, and this performance is dramatically de-
creased when applied within a language-independent setup.

10.3. GMM/HMM-Based Query-by-Example

We evaluate our GMM/HMM QbE STD systems on each of the four languages. Each
system was trained on one of the target languages and has two versions: 3-state phone
posteriors and bottleneck features. The results are summarized in Figures 23 to 26 for
Czech, English, Hungarian, and Levantine data, respectively.
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Fig. 23. Results of the GMM/HMM-based QbE STD system for the Czech data. x-axis shows languages
used to train the feature extractor. “en” stands for English, “cz” for Czech, “hu” for Hungarian, and “le”
for Levantine. “post.” refers to the 3-state phone posteriors as features while “BN” refers to the bottleneck
features.
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Fig. 24. Results of the GMM/HMM-based QbE STD system for the English data.
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Fig. 25. Results of the GMM/HMM-based QbE STD system for the Hungarian data.

We clearly see that the bottle-neck features outperform the 3-state phone posteriors
on a language-dependent scenario except for the Hungarian data and npFOM. Paired
t-tests show that this improvement is statistically significant for English and Czech
data (p < 10−7). However, for Hungarian and Levantine data, there is no significant
difference between the two sets of features for each language-dependent feature extrac-
tor. We consider that this discrepancy is due to the small amount of data used to train
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Fig. 26. Results of the GMM/HMM-based QbE STD system for the Levantine data.

the Hungarian feature extractor, which makes a poorer estimation of the bottle-neck
features and the nondiacritized approach on the Levantine data, which leads to more
complex patterns when estimating the features.

By inspecting the Hungarian data in Figure 25, we can see that the bottleneck Czech
feature extractor performs the best, which supports our conjecture that the small
amount of data used for training the Hungarian feature extractor results in a worse
feature estimation in such a way that a better training of a language-independent
feature extractor provides much better performance. This improvement is statistically
significant for a paired t-test (p < 0.01). In addition, this is also consistent with the
results corresponding to the Hungarian feature extractor on the rest of the language-
independent datasets.

When the language-dependent and the language-independent feature extractors are
compared, we can see the former outperform the latter consistently and significantly
(p < 0.01), except for the Hungarian data, which is due to the small amount of data
employed to train the Hungarian feature extractor and for the Levantine data due to
the nondiacritized approach. We also note that the bottleneck features with the Czech
feature extractor outperform the language-dependent feature extractor for the Levan-
tine data due to Levantine data complexity, although this difference is not significant
(p ≈ 0.2).

When the performance across the different datasets is compared, we can see that
the Levantine and Czech data exhibit the worst overall performance, depending on
the feature extractor used. This is because of the data mismatch of the Czech data
(read speech versus CTS) and the nondiacritized Levantine data. The Hungarian data,
which is read speech, achieved the best performance across each language-independent
feature extractor due to the nature of the data.

We can also observe that the degradation from pooled FOM to nonpooled FOM
(npFOM) is “stable” across the different data and feature extractors.

We can conclude that the set of features used in the GMM/HMM approach is
stable across each target language for both the language-dependent and language-
independent setups in such a way that the bottleneck features outperform the 3-state
phone posteriors in case the feature extractor is provided with enough training data.

10.4. WFST-Based Query-by-Example

We present two different WFST-based approaches: WFST based on pronunciation dic-
tionaries (WFSTdict) related to text-based STD and WFST based on examples from
lattices related to QbE STD. The text-based WFST STD simply searches in a FST-like
framework the phone transcription of each query term.
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Fig. 27. Results of the text-based WFST STD system for the Czech data: searching for dictionary pronun-
ciations in lattices. The x-axis shows the average number of links per second of speech in the evaluation
lattices.
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Fig. 28. Results of the text-based WFST STD system for the English data: searching for dictionary pronun-
ciations in lattices.

10.4.1. Dictionary Pronunciations. In contrast to the upper-bound AKWS system de-
scribed in Section 6 which employs full posterior features, the WFST approach, based
on dictionary pronunciation works with lattices, and hence some information is lost
due to posterior pruning. The results are summarized in Figures 27 to 30. They show
that, as expected, the performance increases with denser lattices since more informa-
tion is kept. Small differences between FOM and npFOM indicate that scores based on
posterior probability are well calibrated in this experiment. The system performance
saturates with 700 links per second of speech for all the languages. Therefore, we choose
the 700 links per second as the configuration for the following experiments. This con-
figuration allows us to be sure that enough information is kept in the lattices, which is
especially needed for the language-independent experiments, where the 3-state phone
posteriors become blurred. For a deeper insight into the density of lattices, we present
the number of unique parallel links per frame in Figure 31.

The Hungarian data again presents the best overall performance, and again, the
Levantine data gives the worst performance, due to the nondiacritized approach, where
we model graphemes instead of phones.

10.4.2. Examples from Lattices. We present the language-dependent and language-
independent results for searching five examples per query in Figures 32 to 35. Both
utterance and query phone lattices were generated with 700 links per second. It can be
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Fig. 29. Results of the text-based WFST STD system for the Hungarian data: searching for dictionary
pronunciations in lattices.
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Fig. 30. Results of the text-based WFST STD system for the Levantine data: searching for dictionary
pronunciations in lattices.
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Fig. 31. Number of unique hypotheses per frame of speech kept in lattices with different densities. Many
parallel links differ only in time alignment, which makes the number of unique hypotheses per frame
low. Only language-dependent setups are shown. For language-independent setups, the numbers of unique
hypotheses per frame are only slightly higher.
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Fig. 32. Results of the WFST-based QbE STD system for the Czech data: searching for five examples per
query in lattices with 700 links per second. The x-axis shows languages used to train the feature extractor.
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Fig. 33. Results of the WFST-based QbE STD system for the English data: searching for five examples per
query in lattices with 700 links per second.
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Fig. 34. Results of the WFST-based QbE STD system for the Hungarian data: searching for five examples
per query in lattices with 700 links per second.

seen that the language-dependent results are worse when the examples are extracted
from the lattices than from dictionary pronunciations. This is due to the inherent ad-
vantage of the pronunciation dictionary, since it is actually composed of the set of phones
which had been trained previously to get the posterior features. Paired t-tests show
that the improvement in the dictionary pronunciation-based method is statistically
significant (p < 0.01) compared with the examples from lattices method for Czech,
Hungarian, and Levantine data. The English data exhibits the closest performance
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Fig. 35. Results of the WFST-based QbE STD system for the Levantine data: searching for five examples
per query in lattices with 700 links per second.

between searching with dictionary pronunciations and searching with examples from
lattices when the feature extractor matches the target language and the performance
gap is less statistically significant (p < 0.03). We consider that this is due to the large
amount of data used to train the English feature extractor, which leads to more robust
lattice generation, and hence to improved performance.

When the language-independent and the language-dependent setups are compared,
we can see a considerable degradation in the former (except for the clean speech in Hun-
garian data, for which the language-independent setups achieved a performance closer
to the language-dependent setup than for the other languages). Paired t-tests show
that the improvement in the language-dependent feature extractor over the language-
independent feature extractors is statistically significant (p < 10−8) for English and
Czech data. For Levantine data, the improvement is less significant (p < 10−3) com-
pared with the English and Hungarian feature extractors, and (p < 0.02) compared
with the Czech feature extractor due to the nondiacritized approach described earlier,
which results in more errors, even when the feature extractor matches the target lan-
guage. For Hungarian data, the Hungarian feature extractor significantly outperforms
the English and Czech feature extractors (p < 0.02), and is significantly weaker than
the Levantine feature extractor (p < 0.05). This is due to the read speech acoustic
condition of the Hungarian data.

For a deeper insight in order to examine the bad performance exhibited by the
language-independent setups, we analyzed the hit/FA ratio computed under the
npFOM metric. It shows that, although obtaining a fair amount of hits (at about 84%
of hit rate), we get about 274× more FAs than the reference occurrences. In addition,
the scores of these hits are so low that many FAs are retained with better scores, which
dramatically degrades the npFOM metric.

10.5. Comparison of QbE Detectors

To gain a deeper insight into the best QbE detector, we present the main results for
all detectors and languages in Table IV as nonpooled FOM (npFOM), to exclude the
calibration power of the other approaches from the comparison.

When QbE STD systems are compared, in language-dependent experiments, the
DTW achieves the best overall performance. On the other hand, DTW loses about 6%
absolute and statistically significant precision (p < 0.01) to the upper-bound AKWS.
We can also see that the speech data condition is important. DTW achieves higher
accuracy on Hungarian data, which is composed of prompted read speech. However, a
possible drawback of the DTW approach is its difficulty in finding an efficient method
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Table IV. Comparison of Proposed Approaches for QbE STD
The metric is npFOM; language-dependent experiments are shown in bold; best result for each
language and detector is underlined.

Evaluation data
Czech English Hungarian Levantine

Query detector Feature extractor npFOM npFOM npFOM npFOM
AKWS – 52.96 65.11 68.97 38.99
WFSTdict – 52.71 48.60 68.51 35.20
DTW Czech 45.74 30.30 50.41 20.03

English 0.00 58.89 36.75 10.98
Hungarian 9.56 17.30 62.43 10.73
Levantine 12.53 18.67 38.99 31.51

GMM/HMM Czech 32.57 47.19 55.02 30.40
Bottle-neck English 21.29 59.65 49.36 24.52
features Hungarian 11.78 27.60 40.06 14.85

Levantine 19.07 34.38 40.30 28.94
WFST Czech 27.77 9.66 29.01 6.52

English 3.29 40.29 23.66 5.00
Hungarian 4.89 7.65 48.82 4.78
Levantine 5.63 5.86 20.11 14.08

for combining a high number of examples (e.g., how to combine 50 examples into one
query representation).

The GMM/HMM approach is the most accurate in the language-independent domain.
The best results are obtained by Czech and English feature extractors in almost all the
cases that are trained on much larger amounts of data than those for the Levantine
and Hungarian. The Levantine data with the English feature extractor is the only
exception, due to the language-dependent condition of the Levantine feature extractor.
It must be noted that the best performance of the Czech feature extractor over the
language-dependent one is not statistically significant (p ≈ 0.2) in the Levantine data.
It means that in case of a more complex QbE STD system (i.e., the nondiacritized
data), a language-independent feature extractor may achieve comparable results to
those obtained with a language-dependent one. In addition, inspecting the Hungarian
data, we can claim that a small amount of data used to train the feature extractor can
result in an unreliable feature estimation, and hence a language-independent feature
extractor may outperform a language-dependent one.

The DTW-based QbE STD system achieves about 50% to 75% of precision (statis-
tically significant (p < 10−3)) of the GMM/HMM system in a language-independent
setup, except for the Hungarian data, where the small amount of data used to train
the feature extractor results in a worse GMM/HMM-based query term modeling. This
confirms our conjecture that a model-based approach is able to deal with the phone
posterior uncertainty in a language-independent setup where enough training data is
available.

The WFST approach shows a significant (p < 0.03) degradation when it goes from
text-based STD (WFSTdict system) to QbE STD mode. This WFST-based approach for
QbE STD also dramatically degrades the performance exhibited by the two other QbE
STD approaches. This shows a lot of potential for improvement. A more robust way
of combining example lattices and an investigation of the language-independent task
need more research; but this approach is promising, as it is the only one that can lead
to indexing and hence a fast QbE STD.

10.6. One Example Selection versus Five Example Selection

According to previous work [Hazen et al. 2009; Tejedor et al. 2010], we selected five
examples to conduct the query search. However, there could be scenarios for which just
one example per query term is available. When our DTW, GMM/HMM and WFST-based
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approaches for QbE STD are compared, we observe that the number of examples can
play a critical role in the final performance.

In Tejedor et al. [2010] we showed that the use of one example for our DTW-based
approach does not dramatically reduce the QbE STD performance for the language-
dependent scenario where this example is chosen under a selection criterion (DTW-
based score for example matching). We showed that a random selection of the query
example can dramatically reduce performance, even though it sounds to the human ear
like an acceptable example. Therefore, we can conclude that five examples are needed
to achieve a good QbE STD performance under the DTW-based approach.

With our GMM/HMM-based approach, preliminary experiments showed that the
use of a single example to build the query model achieves such bad results for
both language-dependent and language-independent scenarios that any comparison
is meaningless. This is due to the small amount of data used to train the query model,
which leads to a poor estimation of Gaussian parameters.

The WFST-based system’s performance is also significantly improved when more
examples of a query are used. With five examples, the npFOM increased by 40% and
FOM by 80% relative to the average for all languages over using only a single randomly
selected example. This is because a phone lattice of one example may contain errors,
but combining more examples leads to a better and more general model of the query.

11. CONCLUSIONS AND FUTURE WORK

This article presented several methods that are capable of QbE STD from two different
sets of features: 3-state phone posteriors and a bottleneck. Our DTW-based search
on posteriorgrams achieves good performance on the language-dependent setup and
our GMM/HMM-based QbE detector performs best for the language-independent one.
The DTW-based QbE detector degrades dramatically when dealing with the language-
independent setup, as also shown in related work on QbE STD [Tejedor et al. 2010;
Muscariello et al. 2011]. On the other hand, the WFST-based QbE detector performs the
worst. However, due to its computational attractiveness (ability for indexing and fast
search), the WFST approach needs more work (e.g., example combination and term-
based score normalization) to match the performance of the acoustic counterparts. We
have also shown that bottleneck features outperform 3-state phone posterior features
(as discussed for LVCSR experiments in Grézl et al. [2007]) for our GMM/HMM-based
QbE detector where enough training data is available. This means that bottleneck
features are more sensitive than 3-state phone posterior features to the amount of
training data. Future work will examine the performance of some other features such
as GMM-based posteriorgrams built from standard MFCC, PLP, and phone posterior
features, and articulatory features that can be derived automatically from the speech
signal with no language knowledge.

Based on the results, we can conclude that replacing a classical keyword spotter
with text entry of the query by a language-independent QbE STD system is still a
difficult task. This is clear when comparing the best results obtained by the GMM/HMM
approach on a language-independent setup and those achieved with AKWS. This is due
to several causes: (1) AKWS is inherently language-dependent, since both the feature
extractor and each query pronunciation match the target language; (2) AKWS employs
the correct phone transcription to model each query; and (3) AKWS employs language-
dependent filler models to deal with the nonkeyword part of speech of the utterances.
We can observe that the GMM/HMM results are quite promising, since for English
data, the language-independent setup performs very close (2% absolute degradation,
statistically insignificant (p ≈ 0.3)) to the text-based WFST, and for Levantine data,
the results are still quite reasonable (about 5% absolute degradation, statistically
insignificant (p ≈ 0.3)).
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In summary, we can claim that the performance of a language-independent QbE
system is not very far from that of a text-based STD system, especially if the phone
transcriptions are unknown and have to be derived by a trained grapheme-to-phoneme
(G2P) converter. Therefore, we consider that building language-independent QbE STD
systems to be a viable alternative to classical STD systems—this is confirmed by the
GMM/HMM-based approach presented in this work.

From the various approaches we have presented in this work, we can suggest several
interesting future research lines, especially those addressing language-independence.
First, for the DTW-based QbE STD approach, we can study the combination of a larger
number of examples than five, although we have shown in this article that this is
sufficiently accurate for a language-dependent setup and also for “easy” data as read
speech.

We see a large potential in our GMM/HMM-based QbE, and propose to focus on the
following.

—What happens if the number of examples is increased? Our experiments have shown
that bottleneck features generally outperform phone posteriors for five examples.
In this direction, an analysis of the set of features that are used for term modeling
with more than five examples should be done, since taking more examples for term
modeling may compensate for the differences in feature performance.

—We propose a concatenation (combination) of the features from different languages.
In this way, decorrelation and dimensionality reduction techniques may enhance the
final performance, especially for language-independent QbE STD.

—We propose a deeper study of the number of Gaussian components in term mod-
eling for more than five examples under different languages and acoustic speech
conditions.

—In this article, the number of states for query modeling has been estimated from
its number of phones in the target language. To completely remove any information
corresponding to the target language, a way to estimate it is needed. In this direction,
we propose to estimate this quantity from the average length of the query examples.

—The background model could also be improved. In this way, a loop of automatically
derived units will be examined.

We will also study the fusion of several language-independent QbE STD systems.
Here, it must be noted that detection of several language-independent systems cannot
be merged directly, since their scores are not directly comparable. Our future work will
also include a study of rescoring methods to enhance the performance of the approaches
presented in this article.

Noise robustness is also a critical issue in realistic speech recognition systems, and
henceforth in QbE STD. We propose to make a deeper study of this aspect in future
work, in which noise robust features will play a very important role.

ELECTRONIC APPENDIX

The electronic appendix to this article is available in the ACM Digital Library.
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