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ABSTRACT
In this paper we present novel language-independent bottle-
neck (BN) feature extraction framework. In our experiments
we have used Multilingual Artificial Neural Network (ANN),
where each language is modelled by separate output layer,
while all the hidden layers jointly model the variability of all
the source languages. The key idea is that the entire ANN
is trained on all the languages simultaneously, thus the BN-
features are not biased towards any of the languages. Exactly
for this reason, the final BN-features are considered as lan-
guage independent.

In the experiments with GlobalPhone database, we show
that Multilingual BN-features consistently outperform Mono-
lingual BN-features. Also, cross-lingual generalization is
evaluated, where we train on 5 source languages and test on 3
other languages. The results show that the ANN can produce
very good BN-features even for unseen languages, in some
cases even better than if we trained the ANN on the target
language only.

Index Terms— Language-Independent Bottleneck Fea-
tures, Multilingual Neural Network

1. INTRODUCTION

While the Large Vocabulary Continuous Speech Recognition
(LVCSR) for languages with abundant resources (such as US
English) has reached certain maturity, fast development of
LVCSR systems for new languages with limited resources is
still a challenge. Techniques that are able to generalize across
languages and to efficiently use data from a set of them to
boost performance on a new one are now in the focus of the
whole speech recognition community. The aim of this article
is to face this challenging problem by creating universal dis-
criminative bottleneck (BN) feature extractor, which can be
directly applied to a new language.
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of the Czech Republic grant No. TA01011328, and by European Re-
gional Development Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070). M. Karafiat was supported by Grant Agency of
the Czech Republic post-doctoral project No. P202/12/P400.

In the past, many of the multi-lingual efforts were started
by the group of Tanja Schulz. In [1], multi-lingual triphone-
based acoustic model with cross-lingual phoneme set was cre-
ated. The group has also invested huge efforts in collecting
GlobalPhone database [2].

Another interesting approach to multi-lingual acoustic
modelling is based on Subspace Gaussian Mixture Models
(SGMM) [3]. Here, the state-dependent GMM models are
factored to a subspace, which can be shared across languages.
Similar intuition can be found in the Multi-lingual Artifi-
cial Neural Network (ANN) by Scanzio [4], here the hidden
layers are shared across languages.

Our work is situated in the Tandem LVCSR framework [5],
where a traditional Hidden Markov Model (HMM) based
LVCSR system processes features generated by ANNs. In the
recent past, the BN-features [6] have been proved to be ben-
eficial for Tandem systems. Originally the BN-features were
seen as language dependent, our objective is to make them
universal and language-independent. In [7], we have pre-
sented a study of multi-lingual bottleneck features (obtained
with unification of phoneme-sets or feature concatenation
of several language-dependent ANNs), however, the multi-
lingual Tandem systems did not outperform the mono-lingual
baselines.

In fact, by observing the results in [1] [4] or [7], it ac-
tually seems that the upper bound of the accuracy of multi-
lingual systems is given by the performance of mono-lingual
systems. This is indeed true if there is sufficient amount of
training data. In the case of limited training data, it is ad-
visable to reuse some information from highly represented
language(s) by the techniques like cross-language adaptation,
bootstrapping [8], or SGMM [3]. For ANNs, adaptation to
new language is possible [9][10]. Currently, this is still a very
active research area, it is almost sure that new techniques will
emerge.

In this work, inspired by [4], we applied the Multi-lingual
ANN to produce bottleneck features. The focus of this paper
is on the features, thus our GMM-HMM Tandem back-ends
are strictly mono-lingual. The core idea of this article is that
we create BN-feature space by training Multi-lingual ANN
which is trained on all the languages simultaneously. There-
fore the resulting BN-features are not biased towards any of
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the source languages, which is exactly the reason why the fi-
nal BN-features are language independent.

In section 2, we discuss the main characteristics of our
model, in 2.1.1, we show in detail how to modify Mono-
lingual ANN in order to obtain Multi-lingual ANN. The ex-
perimental setup is described in section 3. Finally, section
4 presents the results demonstrating the advantages of the
Multi-lingual BN-features with respect to Mono-lingual BN-
features. Note that section 4.3 shows clearly the capability of
the proposed BN-features to generalize on unseen languages.

2. MULTI-LINGUAL NETWORK

The proposed model is 5-layer Multi-layer perceptron with
sigmoid hidden units, linear bottleneck [11] and several out-
put layers, where each language has associated its separate
weights and softmax function. The structure of the model is
shown in figure 1:
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Fig. 1. Multi-lingual Bottleneck Network

From the acoustic modelling perspective, the network is
split in two parts: 1) language independent hidden layers
2) language dependent output layers.

Due to the structure of the model, all the language depen-
dent information is concentrated in the neurons which com-
pute the output layer, while the rest of the network produces
language independent features.

2.1. Training procedure

The proposed type of ANN can be trained efficiently by the
Stochastic Gradient Descent algorithm. In our case, we used
its optimized parallel implementation from our open-source
toolkit TNet.

Particularly for this type of heterogeneous data, coming
from several languages, it is extremely important to present
the training samples at random. Practically speaking, our pro-
cessing involves both the list-level and frame-level shuffling.

During the training, the Cross-Entropy criterion is opti-
mized. This is done only within the posteriors of a single
language, which corresponds to the actual speech frame. The
hidden neurons are then trained by standard Backpropagation

algorithm. Within the output layer, only the neurons of “ac-
tive language” are trained by given datapoint. The gradient
values of all the other output neurons are fixed to zero.

2.1.1. Interval-based Softmax

Although this model might seem complicated to implement,
in fact, it is not. The problem can be solved in a very elegant
way by interval-based Softmax function, which is able to de-
tect the “active language”. During propagation, the posteri-
ors of all the languages get evaluated on per-language basis
according to the following Softmax formula:

yi =
exp(ai)∑nl,e

j=nl,s
exp(aj)

(1)

where ai corresponds to activation value of i-th neuron; yi is
i-th ANN output; nl,s is “starting index” of given language l
and nl,e is the “ending index”.

Given that one-hot encoding is used for targets ti and that
the derivative of Cross-Entropy wrt. activation ai value equals
to:

∂E

∂ai
= yi − ti , (2)

we can test for the “active language” according to the crite-
rion:

nl,e∑
i=nl,s

∂E

∂ai
= 0 , (3)

this condition holds only if both the sums of the posterior vec-
tor and the target vector are equal to one. Note that the target
vector of the “active language” must contain single “1” ele-
ment due to one-hot encoding, the rest of the vector are zeros.

The error derivatives ∂E/∂ai of neurons corresponding to
non-active languages are then forced to be zero, which also
ensures zero gradients for these neurons.

Here, we should note that the linear part of all the out-
put layers can be merged into a single linear transform. This
greatly simplifies the implementation of the model.

2.1.2. Learning-rate scheduling

Besides the network structure, also the learning-rate schedul-
ing algorithm had to be modified. The original New-Bob al-
gorithm, which is based on frame-level classification accura-
cies, was modified to use the relative improvement of Cross-
Entropy on held-out set as the decisive criterion.

Initially, the learning rate is kept fixed, unless the rela-
tive improvement gets smaller than 0.01. Since this point,
the learning rate is halved on each epoch, unless the relative
improvement is smaller than 0.001, which ends the training.

The ANN weight updates were performed per blocks of
512 frames with initial learning rate 1.0.
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3. EXPERIMENTAL SETUP

Database The dataset comes from Multi-lingual database
GlobalPhone [2]. The database covers 15 languages with an
average of 20 hours of speech from about 100 native speakers
per language. The following languages were selected for the
experiments: Czech, German, Portuguese, Russian, Spanish,
Turkish and Vietnamese. These languages were accompanied
with English taken from Wall Street Journal. Table 1 contains
phoneme-set sizes and dataset sizes, the data is the same as
in [7]. The data were converted to 8kHz, 16-bit, linear PCM,
mono format.

In some of the experiments, IPA mapping of phoneme-
sets is used. The IPA mapping to 118 phonemes (incl. silence)
was designed by a trained phonetician to represent only those
qualities of speech that are distinctive across languages based
on their perceptive characteristics.

Initial acoustic models The speech recognition system is
based on HMM cross-word tied-states triphones. The initial
acoustic models were trained from scratch using mixture-up
training on mono-lingual training sets. The resulting models
contained ≈2500 tied states and 18 Gaussian mixtures per
state. The PLP features of 13 coefficients were expanded with
derivatives ∆ and ∆2 which leads to 39 dimensional features.
These were mean- and variance-normalized on speaker basis.

These baseline PLP systems were used to generate forced
alignments for ANN training. Triphone labels were converted
to 3-state monophone labels.

For the PLP-HLDA baseline, the 13 dimensional PLPs
were expanded by ∆, ∆2, ∆3 to 52 dimensions, and then
reduced to 39 dimensions by HLDA, which considers HMM
states as classes. Also in this case, speaker-based mean- and
variance-normalization was applied.

ANN Parameterization TRAPs-DCT features [12] were
used as ANN input: The parameters are 15 log Mel-filterbank

Table 1. Phoneme-set sizes (incl. silence), dataset sizes in
hours.

Language #phn
TRAIN DEV TEST

[h] [h] [h]
German 42 13.2 1.8 1.3
Czech 41 26.8 1.2 1.9

English 40 14.2 1.0 1.0
Spanish 35 13.4 1.2 1.2

Portuguese 34 14.7 1.0 1.0
Russian 54 16.9 1.3 1.4
Turkish 30 12.0 1.6 1.4

Vietnamese 35 14.7 1.2 1.3
All 311 125.9 10.3 10.5

outputs derived with 25ms window, 10ms shift, and with
per-utterance mean-normalization applied. In each band, a
temporal context of 31 frames is taken, rescaled by Ham-
ming window and compressed by Discrete Cosine Transform
(DCT) with 16 basis (including C0). By concatenating all 15
per-band DCT-outputs, we obtain final feature space with 240
dimensions. The features were finally rescaled to have zero
mean and unit variance.

ANN Topologies For all experiments, we used 5-layer
Multi-Layer Perceptrons. The feature-producing bottleneck
size is always 30, the input dimension is fixed to 240, the
output dimensions depends on training targets. For mono-
lingual networks, the dimension of 1st and 3rd hidden layer
was chosen to have ANN with 1 million parameters. For
multi-lingual networks, the hidden layer dimensions were
fixed to 1141, to fix the parameter count of feature-extraction
front-end.

ANN Initialization Weight matrices were initialized by
N o (0; 0.01), the biases of sigmoid units are samples from
U (−4.1; −3.9). The biases of the linear and softmax units
were set to zero.

Final system The BN-features produced by different ANNs
were transformed by Maximum Likelihood Linear Trans-
form (MLLT), which considers HMM states as classes. The
transformed bottleneck features were mean- and variance-
normalized.

New models were trained by single pass retraining from
the PLP based initial acoustic models. Next, 12 maximum
likelihood iterations followed to better settle down the Mono-
lingual HMM-GMMs in the new feature space.

The test sets were decoded with bigram language models
based on public newspaper data. More details about the lan-
guage models and dictionaries are given in table 2, the setup
is the same as in [7].

Table 2. Detailed information about language models and
test dictionaries for individual tasks.

Language
OOV Dict. LM corpus

WWW server
rate size size

German 1.92 375k 19M www.faz.net
Czech 3.08 323k 7M www.novinky.cz

English 2.30 20k 39M WSJ - LDC2000T43
Spanish 3.10 135k 18M www.aldia.cr

Portuguese 0.92 205k 23M
www.linguateca.pt/
cetenfolha

Russian 1.44 485k 19M www.pravda.ru
Turkish 2.60 579k 15M www.zaman.com.tr

Vietnamese 0.02 16k 6M www.tintuconline.vn
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4. RESULTS

Three sets of experiments have been performed, first, we
trained Mono-lingual Bottleneck ANN for each target lan-
guage separately, this is our baseline. Then, we trained
three Multi-lingual networks with different ways to merge
the language-specific information. Finally, we evaluated the
cross-lingual generalization by training the ANN on 5 source
languages and testing on 3 other target languages.

4.1. Baseline system

We defined three baselines, all the three are mono-lingual
systems, the features are different: (I.) PLPs, which are by
design language-independent, (II.) PLP-HLDA, which con-
tain language-dependent linear transform, and finally (III.)
language-dependent bottleneck features.

In table 3, we see that Mono-lingual Bottleneck Features
(III.) mostly outperform the PLP-HLDA systems (II.), with
exception of Spanish and Portuguese.

The cross-lingual generalization of Mono-lingual BN-
features was also evaluated. As can be seen in table 4, the
language mismatch between the BN-features and the GMM-
HMM back-end results in WER degradation within range
0.4%-8.5% absolute. Very interesting is to compare the mis-
matched language pairs with the PLP-HLDA baseline (II.).
Often, the PLP-HLDA systems perform better than Mono-
lingual BN-feature systems with mismatched languages. This
results show that the Mono-lingual BN-features do not gen-
eralize well on unseen languages.

In the next section, we will experiment with Language-
Independent Bottleneck-Features. We might also be tempted
to test Language-Independent PLP-HLDA Features, how-
ever these were already studied in our lab [13], showing
that the 8-language HLDA performs about the same as the
mono-lingual one, the small improvements were obtained
in 5 cases out of 8. The improvement was never better than
0.4% absolute, ie. smaller than we get in the next section.

Table 3. Baseline results [WER%] for PLP, PLP-HLDA and
Mono-lingual Bottleneck-feature systems

Language
WER with features

PLP PLP-HLDA Mono-lingual
(I.) (II.) Bottleneck, (III.)

Czech 24.5 22.6 19.7
English 17.8 16.8 15.9
German 28.5 26.6 25.5

Portuguese 28.7 27.0 27.2
Spanish 25.1 23.0 23.2
Russian 35.4 33.5 32.5
Turkish 34.4 32.0 30.4

Vietnamese 30.2 27.3 23.4

Table 5. Results [WER%] for different approaches to merge
language-specific information.

Language

WER with Multi-lingual Bottleneck features
ANN output layer

1-Softmax 1-Softmax 8-Softmax
(lang-dep.) (IPA map.) (lang-dep.)

(a) (b) (c)
# targets 933 354 933
Czech 20.3 19.4 19.3

English 16.1 15.5 14.7
German 25.9 24.8 24.0

Portuguese 27.2 25.6 25.2
Spanish 24.2 23.2 22.6
Russian 33.4 32.5 31.5
Turkish 31.3 30.3 29.4

Vietnamese 26.9 25.9 24.3

4.2. Multi-lingual Bottleneck Features

The multi-lingual information can be merged by Bottleneck-
ANN by different approaches: (a) by simple concatenation
of language-specific phoneme-sets, (b) by mapping to global
phoneme-set based on IPA notation or (c) by Multi-lingual
ANN [4] where each language has its output layer.

The first column (a) in table 5 corresponds to ANN with
single output layer, where individual phoneme-sets with
tagged language1 were simply concatenated. This leads
to performance degradation wrt. Mono-lingual BN-feature
baseline (III.) for all the languages. The problem is that very
similar phones from different languages are considered as dif-
ferent classes and part of the bottleneck “encoding capacity”
is spoilt to discriminate them.

The second column (b) corresponds to ANN with sin-
gle output layer, where the per-language phoneme sets are
mapped to a global phoneme-set based on IPA notation, ac-
cording to prior expert-knowledge of a phonetician. Here,
the results are better, however the prior knowledge may not
be always accurate, so the resulting phonemes may be “too
disparate”, while the bottleneck must encode them as single
classes, which is again inefficient.

Finally the third (c) column corresponds to Multi-lingual
ANN with eight output layers. Here the between-class com-
petition of the phoneme-states is only within a single lan-
guage. In this way we have effectively bypassed the issue
of phoneme-set unification, and the bottleneck “encoding ca-
pacity” is finally used efficiently. From table 5 it is obvious
that this model gives consistently better results than all the
three baselines. Only in the case of Vietnamese the baseline
in table 3 was 0.9% better.

If we compare the last column (III.) of the baseline ta-
ble 3 with column (c) of the multi-lingual table 5, we see that

1Tagged for example like : English A German A Turkish A ...
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Table 4. Cross-lingual mismatch of Mono-lingual Bottleneck Features; comparison with PLP-HLDA baseline

ANN Test-set language [WER%]
Language Czech English German Portuguese Spanish Russian Turkish Vietnamese

Czech 19.7 16.3 26.6 27.6 25.1 33.7 32.0 29.2
English 21.9 15.9 27.4 29.2 26.1 35.9 33.8 30.2
German 21.9 17.6 25.5 29.7 27.3 36.3 35.1 31.9

Portuguese 21.4 17.4 27.9 27.2 24.7 34.8 32.7 28.4
Spanish 21.3 16.7 27.4 28.1 23.2 35.3 32.5 28.1
Russian 20.7 16.8 26.9 27.9 25.0 32.5 32.4 30.1
Turkish 22.0 17.4 28.0 29.4 25.1 35.8 30.4 28.8

Vietnamese 23.9 18.3 30.9 31.9 26.3 38.3 34.7 23.4
PLP-HLDA (II.) 22.6 16.8 26.6 27.0 23.0 33.5 32.0 27.3

by using more languages, we can observe a synergy effect,
which leads to lower error rates. This might be caused by
the fact that we use more training data for the ANN training.
Also, from the same observation we can deduce, that there
definitely must exist some commonalities in the structure of
speech patterns across the languages, otherwise we would
observe degradations rather than improvements, while adding
more languages to the training set.

The ANNs corresponding to the first column (a) and the
third column (c) have both 933 outputs, the difference is in
grouping into languages via the Softmax function. The ANN
from the second column (b) has 354 outputs due to mapping
to common phoneme set. In all the cases the targets are three-
state monophones.

Table 6. Results [WER%] for cross-lingual generalization
experiment with Language-Independent Bottleneck Features.
The 5-Softmax ANN is trained on the first five languages, the
unseen languages are Russian, Turkish and Vietnamese.

Language
baselines ANN output :

5-Softmax
PLP-HLDA Mono-BN (lang-pooled)

(II.) (III.) (d)
Czech 22.6 19.7 19.2

English 16.8 15.9 14.7
German 26.6 25.5 24.5

Portuguese 27.0 27.2 26.0
Spanish 23.0 23.2 23.0
Russian 33.5 32.5 32.3
Turkish 32.0 30.4 30.7

Vietnamese 27.3 23.4 26.8

4.3. Cross-lingual generalization

The previous promising results lead us to investigate into the
cross-lingual generalization. In this experiment we trained the
ANN on 5 source languages (Czech, English, German, Por-
tuguese, Spanish) and tested on 3 other languages (Russian,
Turkish, Vietnamese).

In table 6, we see that the cross-language generalization is
very good. In the case of Russian, the 5-Softmax ANN system
(d) outperformed the Mono-lingual BN-feature baseline (III.)
by 0.2% absolute. Here we should clearly recall, that Rus-
sian plays role of unseen language. This unexpected result
can be interpreted in the way, that for Russian, a better BN-
feature extractor can be obtained by unification of feature-
spaces from 5 other languages, rather than training solely on
Russian data, which has no precedent in the case of so far
published BN-feature experiments.

In the case of Turkish, there is a slight hit of 0.3%, which
is still a very good result, if we consider that Turkish is unseen
language. The improvement over PLP-HLDA baseline (II.) is
still solid 1.3% absolute.

In the case of Vietnamese, the cross-language generaliza-
tion is poorer, this may be caused by the fact that the tonal
Vietnamese is very different from all the 5 source languages,
which all come from the Indo-European family. Anyway, the
performance is still 0.5% better than the Mono-lingual PLP-
HLDA baseline (II.).

Very interesting is to compare the performance of 5 source
languages with the 8-language system from column (c) in ta-
ble 5. The slight degradation for German 0.5% Portuguese
0.8% and Spanish 0.4% shows us that the synergy effect is
stronger when training on more languages and of course on
more training data.

At this point it is also good to look back at table VIII in
[7]. By comparing the results of the 3 unseen languages, we
see an absolute improvement between 0.3% for Russian and
1.7% for Vietnamese.
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5. CONCLUSIONS

The results that we have observed in all the previous experi-
ments can be summarized as follows:

1. Multi-lingual ANN is an effective framework for ob-
taining Language-Independent Bottleneck Features.

2. The resulting Language-Independent Bottleneck Fea-
tures consistently outperform both the PLP-HLDA and
Mono-lingual Bottleneck-feature ones.

3. In order to merge internal structure of 8 languages
to 1 feature space, it is more efficient to use Multi-
lingual ANN with 8 output layers, rather than use sim-
ple phoneme-set concatenation or mapping to common
phoneme-set based on IPA notation.

4. The key point is, that the network should not be biased
to any of the source languages, which is assured by si-
multaneous training on all the languages.

5. The Language-Independent Bottleneck Features gener-
alize well on unseen languages, if the languages are not
very different.

In case of Russian as unseen language, these BN-features out-
performed the mono-lingual network that was trained on Rus-
sian data only. Even if the unseen language was very differ-
ent, as in the case of Vietnamese, the result was still better
than PLP-HLDA baseline.

The results have also shown, that there definitely must ex-
ist some commonalities in the structure of speech patterns
across the languages, which is in agreement with “common
sense intuition”.

With the Multi-lingual ANN, it is straightforward to use
even more languages, however care should be taken to data
balancing. In our case, the training sets were almost balanced:
12h-26h. If this was not true, a compensation by per-language
learning rate could be used to prevent bias towards any of the
source languages.

Further WER reductions might be possible by using hier-
archical ANNs such as Universal Context Network, Convolu-
tive Bottleneck Network [11] or Deep architectures.

The application of Multi-lingual ANN is not limited only
to feature extraction. Similarly to [14], it can also be used
to generate data-driven universal phoneme set. This can be
done efficiently by accumulation of posterior-based multi-
lingual confusion matrix. Universal phoneme recognizers
have successful application for example in Language Identi-
fication [15].

Yet another very interesting application would be to use
these Language-Independent Bottleneck Features in low-
resourced language LVCSR experiments in Tandem with
Multi-lingual SGMM-based [3] acoustic modelling. This
will be subject of further experiments.
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