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Pairwise Discriminative Speaker Verification
in the -Vector Space

Sandro Cumani, Niko Brümmer, Lukáš Burget, Pietro Laface, Oldřich Plchot, and Vasileios Vasilakakis

Abstract—This work presents a new and efficient approach
to discriminative speaker verification in the –vector space. We
illustrate the development of a linear discriminative classifier that
is trained to discriminate between the hypothesis that a pair of
feature vectors in a trial belong to the same speaker or to different
speakers. This approach is alternative to the usual discriminative
setup that discriminates between a speaker and all the other
speakers. We use a discriminative classifier based on a Support
Vector Machine (SVM) that is trained to estimate the parameters
of a symmetric quadratic function approximating a log–likelihood
ratio score without explicit modeling of the –vector distributions
as in the generative Probabilistic Linear Discriminant Analysis
(PLDA) models. Training these models is feasible because it is not
necessary to expand the –vector pairs, which would be expensive
or even impossible even for medium sized training sets. The results
of experiments performed on the tel-tel extended core condition
of the NIST 2010 Speaker Recognition Evaluation are competitive
with the ones obtained by generative models, in terms of normal-
ized Detection Cost Function and Equal Error Rate. Moreover, we
show that it is possible to train a gender–independent discrimina-
tive model that achieves state–of–the–art accuracy, comparable
to the one of a gender–dependent system, saving memory and
execution time both in training and in testing.

Index Terms—Discriminative training, -vector, large–scale
training, probabilistic linear discriminant analysis, speaker recog-
nition, support vector machines.

I. INTRODUCTION

R ECENT developments in speaker recognition technology
have seen the success of systems based on a low–di-

mensional representation of a speech segment, the so–called
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“identity vector” or –vector [1], [2]. An –vector is a compact
representation of a Gaussian Mixture Model (GMM) super-
vector [3], which captures most of the GMM supervectors vari-
ability. The availability of low–dimensional features boosted
the research interest towards probabilistic generative models
[4]. These techniques aim at decomposing the speaker and
inter–session variability components of –vectors, estimating
their distributions, and perform induction on the speaker iden-
tity in a Bayesian framework. The most effective approaches in
this framework are the Gaussian (G–PLDA) or Heavy-Tailed
Probabilistic Linear Discriminant Analysis (HT–PLDA) [4],
and the Two-covariance model, a linear-Gaussian generative
model introduced in [5], [6]. PLDA models [7] not only have
well founded probabilistic interpretations, but have also the
advantage of producing log–likelihood ratios which do not,
in principle, require score normalization. In [4] this has been
confirmed in the case of telephone speech, for heavy-tailed
distributions, whereas normalization was needed for Gaussian
distributions. A complete symmetry of the train and test seg-
ments is another interesting characteristic of these approaches.
Besides generative models, remarkable success has been

also obtained by discriminative systems based on Support
Vector Machines, usually in combination with Nuisance At-
tribute Projection [8], [9] for inter–session compensation.
However, SVM–based systems have mostly been trained as
one–versus–all classifiers, i.e., using the utterances of a given
speaker against the utterances from a background cohort of
impostor speakers. This approach has a major weakness: the
available samples for the target speaker are often scarce, and
can easily reduce to just one. Moreover, in a scenario where a
single enrollment and test utterance are available for a speaker,
the two utterances play a completely different role, which
implies that the score for a given trial is not symmetric with
respect to the segments.
In this work we present a new framework for discriminative

speaker classification that aims at overcoming the problems of
the classical SVM approach while retaining most of the inter-
esting characteristics of Bayesian systems, namely almost cali-
brated scores and symmetry between enrollment and test utter-
ances. In this approach we do not model speaker classes, but we
train a binary classifier which classifies a pair of utterances as
belonging to either the same speaker or different speakers [1].
In particular, the speaker verification score for a pair of -vec-
tors is computed using a function having a form derived from
the PLDA generative model. The parameters of the function,
however, are estimated using a discriminative training criterion.
Discriminative training of a PLDA-like model for speaker ver-
ification was originally proposed in [5], and some preliminary
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work was done in [1] using as features the speaker factors ex-
tracted using Joint Factor Analysis [10].
We show that the same functional form derived from PLDA

can be obtained without making reference to the distribution of
the –vectors, and that we can train an SVM that estimates the
parameters of a second order approximation of good symmetric
score functions using an expansion of each –vector pair. We
also show that this pairwise SVM corresponds to a second de-
gree polynomial kernel SVM.
Experiments performed on a NIST SRE 2010 evaluation task

[11] show that this new approach achieves state–of–the–art
performance with a scoring time comparable to the simplest
–vector based systems. Moreover, our approach was directly
used to train a gender–independent speaker recognition system,
ignoring the gender labels both in training and in test, with
accuracy comparable to the one of gender–dependent systems
trained on the same data.
The outline of the paper is as follows: Section II briefly in-

troduces the –vectors, and Section III recalls the PLDA ap-
proach and the two–covariance model, where both the speaker
and the intra–speaker variability sub–spaces are assumed to be
full–rank. It also shows how to obtain a binary linear classifier
in an appropriate nonlinearly expanded space of -vector pairs.
In Section IV, using an expanded vector representing a pair of
–vectors in a trial, we derive an SVM model. A fast solution
to the computation of gradient and score, which are needed for
efficient training and scoring, is presented in Section VI. The
experimental results comparing the performance of the discrim-
inative and generative models are given in Section VII, and con-
clusions are drawn in Section VIII.

II. –VECTORS

–vector based techniques represent the state–of–the–art in
speaker verification [2], [12]. –vectors provide an elegant way
of reducing large-dimensional input data. In this approach, a
speech segment is mapped to a fixed small-dimensional vector
retaining most of the relevant information necessary to give
state-of-the-art speaker recognition performance. The mapping
is obtained by modeling the sequence of feature vectors by
a large GMM, the parameters of which are constrained to
lie in a low dimensional subspace. In particular, the –vector
model constrains the GMM supervector , representing both
the speaker and inter–session characteristics of a given speech
segment, to live in a single subspace according to:

(1)

where is the Universal Background Model (UBM) GMM
mean supervector, with GMM components of dimension .
is a low-rank rectangular matrix, of rows and

columns, spanning the subspace including important inter– and
intra–speaker variability in the mean supervector space, and
is a realization of a latent variable of size with standard
normal distribution. AMaximum-Likelihood estimate of matrix
is usually obtained by minor modifications of the Joint Factor

Analysis approach [10]. Given the sequence of features repre-
senting an utterance, , its -vector is computed as the Max-

imum a Posteriori (MAP) point estimate of the variable , i.e.,
the mean of the posterior distribution .
The main advantage of the –vector representation is that the

problem of intersession variability can be deferred to a second
stage. The possibility of dealing in this second stage with low-
dimensional vectors, rather than with the high-dimensional su-
pervectors of the GMM means, boosted the study of proba-
bilistic generative models [4], [6]. A procedure for extracting
-vectors has been described and effectively used in [2], [12].

III. GENERATIVE MODELS

Good speaker recognition accuracy has been obtained using
–vectors and simple LDA and cosine distance scoring [2].
However, since the introduction of these low–dimensional
features, the speaker recognition community has focused on
more accurate models for computing speaker detection scores
directly from –vectors. The generative models analyzed in [4],
[7] are among the best models for comparison of –vectors.
In this section we briefly recall the PLDA framework and a
simplified model that will be used for deriving the formulation
of our discriminative speaker verification approach.

A. PLDA

Probabilistic Linear Discriminant Analysis (PLDA) [7], [4]
is one of the most successful models for –vectors comparison.
PLDA assumes that the –vector generation process can be de-
scribed by means of a latent variable probabilistic model where
–vector is modeled as the sum of three factors, namely a
speaker factor , an inter–session (channel) factor and the
residual noise as:

(2)

Matrices and typically constrain the speaker and
inter–session factors to be of lower dimension than the –vectors
space. The generation of an -vector requires choosing a random
speaker factor according to speaker prior distribution
and a random inter–session factor according to a prior distri-
bution . The -vector is then the sum of , the
mean vector and of the residual noise generated according
to the distribution .
PLDA estimates the matrices , , and the values of the

hyper–parameters of possible parametric priors [4], which max-
imize the likelihood of the observed –vectors, assuming that
–vectors from the same speaker share the same speaker factor,
i.e., the same value for latent variable .
The simplest PLDA model (G-PLDA) assumes a Gaussian

distribution for the prior parameters. However, in [4] it is shown
that ML estimation of the PLDA parameters under a Gaussian
assumption fails to produce accurate models for -vectors. Thus,
heavy–tailed distributions for the model priors have been pro-
posed leading to the Heavy-Tailed PLDA model, which how-
ever, is computationally expensive.
A simpler approach preserves the Gaussian distribution

assumption, but incorporates a pre–processing step where the
vector dimensionality is possibly further reduced by LDA,
and more importantly, within-class covariance and length
normalization is applied to the resulting patterns [13]. Using
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these dimension reduced and normalized –vectors, the per-
formance of the Heavy–Tailed and Gaussian PLDA models is
comparable, the latter being much faster both in training and in
testing.

B. Two-Covariance Model

Further model simplification is obtained by merging together
the residual noise and the inter–session components, assuming
that the speaker and inter–session subspaces span the entire
–vector subspace. This simplified model is referred to as the
two–covariance model [5], [6]. An -vector is assumed to be
produced by a linear-Gaussian generative model that ac-
counts for a speaker and a Gaussian–distributed component
, including inter–session variability, as:

(3)

If we assume that the speaker component is Gaussian–dis-
tributed as:

(4)

where is the between–speaker covariance matrix, and the
distribution of the –vector given the speaker identity is also
Gaussian:

(5)

where is the within–speaker covariance matrix, then,
given a set of -vectors associated to the
same speaker, the posterior of is also normal [14]:

(6)

and the parameters of the distribution are:

(7)

C. Two–Covariance Scoring

The conditional likelihood of two -vectors allows obtaining
the speaker verification log–likelihood ratio score between
the “same–speaker” hypothesis and “different–speaker”
hypothesis :

(8)

where , are two -vectors that are scored.
The numerator probability is computed assuming that the
–vectors and belong to the same speaker, i.e they share
a common value of the hidden variable . According to Bayes
rule this probability can be computed as:

(9)

where is any value which does not cause the denominator
to be zero. Since the intersession variability components of
different utterances are assumed to be independent, i.e., the
–vectors are independent given the speaker variable, (9) can
be rewritten as:

(10)
The denominator probability in (8) is computed, instead, as-
suming that the –vectors and belong to different speakers,
as:

(11)

where the first equality derives from the independence of the
speaker factors, and the second equality from Bayes rule.
Substituting (10) and (11) in (8) we get:

(12)

Using (4) and (6), and selecting , we finally get the
log–likelihood ratio:

(13)

where, according to (7):

(14)

Collecting in a constant all the terms in the sum that are not a
function of , , and , (13) can be rewritten as:

(15)

with

(16)

Substituting (14) in (15) to make the role of the two –vectors
in the log–likelihood ratio computation explicit, we obtain the
score:

(17)
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which can be rewritten as:

(18)

Thus, the speaker verification score is a quadratic function of
the –vector pair in a trial, where the original model parameters
are related to , , and according to:

(19)

Since the two–covariance model is a particular case of the
PLDA approach, where the dimensionality of the speaker and
channel spaces is full, its parameters, , , and can be
trained by means of the same EM algorithm that has been used
for PLDA [4].
Another derivation, based on the two–covariance model

leading to the same formulation has been illustrated in [15].

D. Expanded Vector Linear Classifier

To demonstrate that the log–likelihood ratio score
of (18) can be computed as a dot–product in an –vector pairs
expanded space, we recall that the computation of the bilinear
form can be expressed in terms of the Frobenius inner
product as , where

is the operator that stacks the columns of a matrix into
a vector and denotes the dot–product between matrices
and Hence, the expression for the speaker verification log-

likelihood ratio score (18) can be rewritten as:

(20)

By stacking the parameters as:

(21)

and expanding an -vector pair as:

(22)

can be written as the dot–product of a vector of
weights (the model hyper–parameters) and an expanded
vector representing a trial:

(23)

E. Taylor Approximation of the Speaker Verification Score

In this section, we show that it is possible to discriminate
between same–speaker and different–speaker trials, without
having to explicitly model the distributions of -vectors, i.e.,
without making reference to the two-covariance model.
The same expansion defined in (22) can be ob-

tained as a second order Taylor expansion of a speaker verifi-
cation score. Let’s assume that the speaker verification score is
an analytic function of the –vector pair , in-
variant to –vector swapping, i.e., . The
Taylor expansion for , around a point , is:

(24)

where is the vector of differential operators

(25)

and is the dimension of the –vector pair.
In order to preserve the symmetry of the Taylor polynomials

without having to further constrain the score function we con-
sider Taylor series around symmetric points, i.e.,
for some . In particular, let’s consider the second order Taylor
expansion for around the point :

(26)

where is the Hessian of function . If we define:

(27)

with a symmetric , we obtain the same score formulation as
in (18). It is worth noting that the structure imposed by (27)
arises naturally from the symmetry of the score function
and from the symmetry of the expansion point . It does not
depend on the particular choice of . It is possible to
prove (see Appendix A) that, for any choice of a symmetric
all Taylor expansion polynomials for at are symmetric,
and that the coefficients of the Taylor expansion of at
have exactly the structure of (27).
Since the second order Taylor approximation of the scoring

function around a symmetric point has the structure described
in (18), the pairwise discriminative training approach, which is
illustrated in the next section, can be interpreted as a procedure
that estimates the parameters of the second order approximation
of a good score function, according to the SVM optimization
criterion.

IV. DISCRIMINATIVE CLASSIFIERS

Using the expanded vector representing a trial,
pairwise discriminative training can be performed by estimating
the weights in (23). We estimate these weights by means of a
linear discriminative classifier, e.g., a Support Vector Machine.
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A Support Vector Machine [16]–[18] is a binary classifier
which estimates the hyperplane that best discriminates two
given classes of patterns according to a maximum separation
margin criterion. The separation hyperplane is obtained by
solving the problem:

(28)

where is the number of training patterns, denotes
a ( –dimensional) training pattern with associated label

, and is a regularization factor. The second term in
this expression is the empirical risk evaluated on the training
set, whereas the first term — the squared norm of the sepa-
rating hyperplane — is a regularization contribution, which
is related to the generalization capability of the model [17]. The
regularization factor allows tuning the trade–off between the
margin and the empirical risk. The latter is the sum of so–called
hinge (L1) loss function:

(29)

The minimization of (28) gives the maximum soft–margin clas-
sifier. The SVM is a linear classifier, however, a non–linear clas-
sifier can be obtained by means of the so called “kernel trick”
[19] where every dot product is replaced by a nonlinear kernel
function, or as in our case, by means of a non–linear feature ex-
pansion. In fact, the feature mapping (22) defines a linear kernel
that is equivalent to a second degree inhomogeneous polyno-
mial kernel:

(30)

where and define two different
speaker recognition trials. The kernel

(31)

can be rewritten as:

(32)

Defining the feature mapping:

(33)

where is used to denote equivalence of vectors ignoring
the order of their elements, we can conclude that the kernel

is the dot–product of two expanded vectors:

(34)

Looking at the log–likelihood in (18) and halving its (unknown)
parameter as , so that the linear term of the log–like-
lihood becomes , the feature expansion given in
(22) becomes:

(35)

and it is easy to verify that the two expansions:

(36)

are equivalent, i.e., correspond to the same kernel.
Often, SVM classifiers are trained using a solver of the dual

problem, where a Gram matrix needs to be evaluated. The
Gram matrix contains the dot–products between every pair of
training examples. Since our training examples are –vector
pairs, the size of the Gram matrix — due to the square
of –vector pairs — would be unacceptably large. Therefore,
we train an SVM by solving the primal problem using a general
solver (see Section V), and an efficient evaluation of loss
function gradient that allow both memory and computational
resources to be constrained.
Although the G–PLDA and the pairwise SVM expressions

are formally equivalent, an important difference has to be high-
lighted considering the hyper–parameters that are trained. The
parameters estimated in G–PLDA (and two–covariance) model
are constrained, due to the positive definiteness constraints
of their covariance matrices. In the pairwise discriminative
training approach, instead, no parameter constraints are im-
posed, except for the ones arising from the regularization of
the optimization function. Thus, the latter approach is more
flexible and does not make a priori assumptions about the
–vector distribution.
It is also worth noting that the same task can be performed

by Logistic Regression (LR), another widely used linear classi-
fier, which allows estimating class posterior probabilities given
a set of patterns [18]. Normalizing the loss function of LR by
the number of patterns , and including a regularization factor

, the regularized LR objective function is:

(37)

which is similar to the SVM objective function. SVM and LR
optimization can be seen as the solution of a particular instance
of the unconstrained convex regularized risk minimization
problem:

(38)
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with loss function

(39)

and

(40)

respectively. The SVM optimizes the margin separation be-
tween the classes, whereas LR minimizes the cross–entropy
error function.
In the following we will illustrate our solutions and report re-

sults for the SVM classifier, but the same considerations apply
to LR, just changing the loss function. The results of some ex-
periments comparing these two discriminative classifiers have
been reported in [15].

V. PAIRWISE SVM TRAINING

Since our training patterns are all possible pairs of –vectors
in the training set, their number grows as . The feature
mapping described in Section III-D produces mapped features
having components, thus the global dataset size would
be . Caching the complete kernel matrix is impractical
even for relatively small sized datasets because it would require

memory. In [20] we have shown that SVM training of the
–vector pairs by means of a dual solver requires either keeping
in memory the complete dataset of mapped features ( ),
or mapping the feature on–line, with a complexity
for each iteration. Since in our experiments and
is approximately 20000, a standard dual solver approach is not
viable.
Training is feasible, instead, by using a primal solver because,

as we show in Section VI, it is possible to efficiently evaluate
the loss function and its gradient with respect to over the set
of all training trials in time, without the need
to expand the –vectors. Due to the small size of the –vectors,
the dataset of training utterance can easily be loaded in main
memory. The evaluation of loss functions and gradients in these
algorithms requires matrix–by–matrix multiplications of large
matrices ( ), however it is not necessary to store the com-
plete matrices in main memory because the computations can
be performed through block decomposition of the matrices.
An analysis of large-scale SVM training algorithms suited to

speaker recognition tasks [20] allowed us to select, among the
primal solvers, the Bundle Methods for Regularized Risk Min-
imization (BMRM) [21], [22], which offer a general and easily
extensible framework for solving convex unconstrained regu-
larized risk minimization problems. In particular, we trained our
SVM using the Optimized Cutting Plane Algorithm (OCAS) ap-
proach proposed in [23], [22], which is an extension to BMRM
that shows better and smoother convergence properties.
An important advantage of these methods is that they do

not require the loss function to be differentiable in the whole
domain.

VI. EFFICIENT SCORE AND GRADIENT COMPUTATION

Using the OCAS technique, the SVM parameters are opti-
mized by evaluating the loss function and a sub–gradient of its
error function (38):

(41)

The use of sub–gradients for optimization [24] is necessary be-
cause the hinge loss function is not differentiable everywhere.
A sub–gradient for the SVM hinge loss function is:

if
otherwise

(42)

where is the label of the –vector pair .
The derivative of the score with respect to the classifier param-
eters is simply the expanded trial vector:

(43)

The evaluation of the loss function and its gradient requires,
in principle, a sum over all the expanded –vector pairs in the
training set. Since their number is , which can easily reach
the order of hundred of millions for typical training sets, these
evaluations would be not effective or even feasible because the
complexity would be . In the next section, however, we
show that these computations can be done without an explicit
full expansion of all the -vector pairs, with a complexity that
reduces to .

A. Fast Scoring

In order to obtain effectively the loss contributions of all
training pairs, we need a fast procedure for computing the scores
of all the training –vector pairs, obtaining the matrix of the
scores of every –vector against each other.
Given a trained classifier, a verification score for a trial pair

can be computed bymeans of the expanded vector and
the dot–product in (22) and (23). However, a much more effi-
cient solution in terms of memory and computation can be ob-
tained using (18). In particular, let be a ma-
trix including stacked -vectors, and let
denote the score matrix for all possible trials related to compo-
nent of , where . From (23) and (18) the
score matrices can be evaluated as:

(44)

where

(45)
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and

(46)

The operator returns the diagonal of a matrix as a column
vector, and is an matrix of ones.
No explicit expansion of -vectors is therefore necessary for

this evaluation.

B. Loss Function Evaluation

Denoting by the sum of the partial
score matrices, the SVM loss function can be obtained as:

(47)

where is an matrix of zeros, is the matrix of
the trial labels for each –vector pair , and is the
element-wise matrix multiplication operator.

C. Gradient Evaluation

The sub–gradient of the loss function can be evaluated from
its derivative with respect to the -th dimension of as:

(48)

where is the derivative of the hinge loss function with re-
spect to the score :

if
otherwise

(49)

Considering the –vector expansion (22), the loss function gra-
dient (48) can be written as:

(50)

Defining the matrix of the elements , and taking into ac-
count that it is symmetric, the terms of the sub–gradient of the
loss function, related to a component of , can be expressed
in terms of dot–products and element–wise matrix products as:

(51)

where is a matrix of ones ( is the –vector dimen-
sion) and is a size column vector of ones.
Again, no explicit expansion of -vectors is necessary for this

evaluation.

D. Estimation of the Regularization Factor

Training a risk minimization problem (38) entails the selec-
tion of an appropriate value for the regularization factor . Dif-
ferent approaches have been proposed to estimate a good factor,
such as cross–validation, or fitting the models for all possible
regularization factors [25]. After a few cross-validation search
strategies were tried, we found that the simple heuristic factor
proposed as the default regularization parameter in
[26] is sufficient to produce accurate models. It has the advan-
tage that it can be easily computed from the training data as:

(52)

where is one of the patterns in the training set . In our
approach a pattern is an –vector pair. Looking at (34) and
(31), by replacing and with and , respectively, the
norm of the expanded features for the –vector pair

can be computed as:

(53)

Thus the regularization parameter can be set so that:

(54)

VII. EXPERIMENTAL RESULTS

The -vector extractor used for the first set of experiments is
based on 60-dimensional cepstral features and a 2048-compo-
nent full covariance GMM. The UBM and -vector extractor are
trained on NIST SRE 2004, 2005 and 2006, Switchboard and
Fisher data. The PLDA systems and discriminative classifiers
have been trained using -vectors with dimension or

, respectively, extracted from NIST SRE 2004, NIST
SRE 2005, NIST SRE 2006, Switchboard II Phases 2 and 3, and
Switchboard Cellular Parts 1 and 2.
Table I presents the results for the extended condition 5

(tel–tel) from NIST SRE 2010 evaluation in terms of percent
Equal Error Rate and normalized minimum Detection Cost
Function (minDCF) as defined by NIST for SRE08 and SRE10
evaluations [11].
The system denoted as G–PLDA without length normaliza-

tion is based on a generatively trained PLDA model with a
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TABLE I
COMPARISON OF THE PERFORMANCE OF G–PLDA WITH AND WITHOUT –VECTOR LENGTH NORMALIZATION AND PSVM

Fig. 1. minDFC08 and minDCF10 as a function of the speaker subspace dimensionality for the female and male speakers.

120–dimensional speaker variability subspace, and full channel
variability subspace. For the system denoted as G–PLDA
with length normalization, which is our reference, we perform
in sequence within-class covariance normalization [27] and
length normalization of the –vectors [13]. This configuration
was found to give the best minDCF10, which was the primary
performance measure in NIST SRE 2010 evaluation focusing
on low false alarm rates.
In the Pairwise SVM (PSVM) system, the lack of normaliza-

tion of the -vector dimensions would affect the regularization
term in the SVM objective function (28). Thus, to
make SVM regularization effective, we normalize the –vectors
so that they have identity within-speaker covariance matrix.
In these conditions, the behavior of the two systems is similar

(andmuch better than G–PLDAwithout –vector length normal-
ization [13]).

Since the G–PLDA with length-normalized –vectors per-
forms slightly better than PSVM, we performed another set
of experiments to assess the effects of size of the speaker
variability subspace on G–PLDA accuracy. Fig. 1 shows the
minDFC08 and minDCF10 as a function of the speaker vari-
ability subspace dimension for the female and male speakers
separately. We can observe in these figures that the dimension
of the speaker variability subspace must be carefully tuned
because it affects system performance. No tuning is necessary
in our pairwise SVM models because we always estimate
full–rank and matrices.

A. Gender–Independent Pairwise SVM

State–of–the–art text–independent speaker recognition sys-
tems are designed to achieve best performance when the gender
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TABLE II
EER AND MINDCFS FOR PSVM ON SRE2010 TESTS WITH 400 AND 600 DIMENSION –VECTORS

label is known both at training and testing time. Gender infor-
mation, however, is not available in a number of real applica-
tions. Although the speaker gender can be estimated from the
trial data, this preliminary classification is a potential source of
accuracy degradation.
The interpretation of pairwise discriminative training illus-

trated in Section III-E provides the rationale for a straightfor-
ward approach to gender–independent pairwise discriminative
training. If we consider the most elaborated generative models,
such as Heavy-Tailed [4] or Mixtures of PLDA [28], we can
notice that they differ only in the formal expression of their
log–likelihood ratio score function. Since in pairwise SVM
training we directly optimize a second order approximation
of a good score function, a gender–independent SVM can be
implemented by training a single system with pooled gender
–vectors, without the need for gender labels both in training
and in testing. The gender prior is implicitly built into the
SVM solution via the proportions of males and females in the
training data, thus some care might be required in case of very
unbalanced male and female training sets. The PLDA mixture
solution has the advantage (at least in principle) that the user
can specify this prior externally at run-time, if the user knows,
for example, that females may be scarce in a certain applica-
tion. In practice however, calibration of the gender likelihoods
relative to the prior may cause the user’s prior not to have much
effect. A gender–independent system has two benefits: a larger
amount of training data can be used for off-line estimation of
the UBM and of the speaker and inter–session sub–spaces,
moreover its models require less memory and computation
during testing. Memory is saved because there is no need to
keep separate gender models, and unless the knowledge of the
gender is a–priori known, a gender detector is needed for a
gender–dependent system.
It is worth noting that from the experiments with GD systems,

reported in Table I, we know that the pairwise SVM system
and the PLDA systems using the same GD –vectors give com-
parable performance. We did not train, however, a GI PLDA
system using GI –vectors because the results given [28] for sim-
ilar telephone tests, show that it is necessary to use mixtures of
PLDA models to reach the performance of a GD PLDA system
trained with the same GI –vectors. We focused, thus, only on
pairwise SVM systems using GI –vectors, to assess their per-
formance in a fully GI speaker verification task. In particular,
we trained three types of PSVM systems using –vectors of 400
and 600 dimensions, respectively:

• a fully gender–dependent (GD) system, where both
–vector extraction and SVM training is gender–
dependent,

• a partially gender–independent (PGI) system, where the
–vectors are gender–independent, whereas two SVMs are
trained using GD segments,

• a totally gender–independent (GI) system, where both
–vector extraction and SVM training is performed
without using gender labels.

For GD and PGI systems gender labels are provided at test time,
while for the GI system no gender information is used to score
the trials.
The results for these models, reported in Table II on the same

extended tel-tel SRE10 evaluation set1, show that a fully GI
system, using both 400 or 600 GI –vectors, gives comparable
performance to a partially gender independent system, which
needs the gender labels at test time, and is competitive with the
more expensive GD models, which of course not only use GD
models but also GD –vectors. Thus, the relative loss of perfor-
mance observed with respect to the GD systems is due to the
use of GI –vectors, not to model deficiency.

VIII. CONCLUSIONS

In this work we presented a novel framework for discrim-
inative training of speaker verification systems, where a trial
is represented, as in the PLDA approach, by an –vector pair,
and the task is discrimination between same–speaker and dif-
ferent–speaker classes. This pairwise SVM approach provides
a more natural paradigm to speaker verification compared to
the classical one–vs–all discriminative training.We showed that
this technique has strong connections with the state–of–the–art
generative models, but does not need to explicitly model the
–vector distribution. Rather, it can be interpreted as a procedure
that estimates the parameters of a second order approximation
of a good score function, or simply as a pairwise second degree
polynomial kernel classifier in the –vector pairs space.
We addressed and solved the time and memory issues raised

by a naïve quadratic expansion of the –vector pairs for an effi-
cient computation of the loss function gradients and of the ver-
ification scores.
A fully Gender–Independent discriminative system has been

trained which achieves, using GI –vectors, an accuracy compa-
rable to the one offered by similar Gender–Dependent systems,

1The GD results of Table II are different with respect to the ones given in
Table I because the list for training matrix included two additional datasets:
Part 1 and 2 of the Fisher English Corpus.
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with the advantage of not requiring two separate models nor
gender knowledge.
While some issues are still open, for example extensions

of the model to deal with more than a pair of utterances or
large–scale training, pairwise discriminative training provides
models that allow fast scoring of test utterances achieving
state–of–the–art performance.

APPENDIX

Proposition 1: For , all Taylor polynomials
of at are symmetric with respect to –vector swapping.

Proof: Since is symmetric, the functions
and are equal and,

therefore, have the same Taylor polynomials for any
given order. Let , and denote the –th order
Taylor polynomials for , and , respectively. We have

, thus
the Taylor polynomials for at are
symmetric for any .

Proposition 2: The coefficients of the first and second
order Taylor expansion of at have the
symmetric structure given in (27).

Proof: To derive the structure of the Taylor coefficients
given in (27), we first consider the Taylor series of around

:

(55)

We can rewrite the first three terms of the series as:

(56)

From the symmetry of the Hessian it directly follows that and
are symmetric and that .
In order to prove that , , and is also sym-

metric, we consider the Taylor expansion of around , com-
puted in and in the symmetric point .
Since is symmetric, in these two points the series has the same
value. In particular,

(57)

Since , we have that for
any . Therefore, combining (55) and (57) we get:

(58)

The equality (58) holds for any choice of only if all coeffi-
cients of the two polynomials are equal, i.e., if , ,
and is symmetric.
Finally, consider a generic symmetric point ,

and let . The Taylor expan-
sion of around has, by definition, the same coefficients of
the Taylor series for around . Moreover, is symmetric,
therefore the Taylor coefficients of its second order Taylor poly-
nomial have the same structure as in (27).
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