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ABSTRACT

This paper presents bootstrapping approach for neural net-

work training. The neural networks serve as bottle-neck fea-

ture extractor for subsequent GMM-HMM recognizer. The

recognizer is also used for transcription and confidence as-

signment of untranscribed data. Based on the confidence, seg-

ments are selected and mixed with supervised data and new

NNs are trained. With this approach, it is possible to recover

40-55% of the difference between partially and fully tran-

scribed data (3 to 5% absolute improvement over NN trained

on supervised data only). Using 70-85% of automatically

transcribed segments with the highest confidence was found

optimal to achieve this result.

Index Terms— Semi-supervised training, bootstrapping,

bottle-neck features

1. INTRODUCTION

One of the fundamental components in todays state-of-the-art

LVCSR systems are neural networks (NNs) either in the role

of feature extractor for subsequent GMM-HMM system [1]

or in the role of probability distribution model for HMM in so

called hybrid system [2]. To train such system, large amount

of labeled data is needed. The demand for transcribed data

is even more accented in case of NN training as they are

trained on pairs of input feature vectors xi and output labels

yi. Thus the transcription has to be done on frame level. This

is achieved by forced alignment using a simpler system.

Since obtaining audio data is relatively easy, the bur-

den of building a recognition system for a new language

lies in the transcription of collected data. This process gets

more demanding for more “exotic” languages and languages
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with small populations. If the scenario of a completely “un-

touched” language is considered, these costs are unavoidable

since the transcription is needed not only for acoustic model

training but also for language model training as the written

and spoken forms may (and usually do) differ.

To save the costs, the use of untranscribed data together

with transcribed one leads to development of semi-supervised

learning (SSL) techniques. To accommodate the untran-

scribed data into the training, two main approaches can be

considered: In the bootstrapping approach, the untranscribed

data are automatically transcribed using model trained on

transcribed data only. Then, the reliable segments are se-

lected based on some measure and added to the next stage

of training [3, 4, 5]. The second approach relies on an ob-

jective function which reflects reasonable assumption about

labeled and untranscribed data. One such assumption is that

the data belonging to the same class are close to each other

after projection to a low-dimensional manifold. This is repre-

sented by graph-based methods [6]. Other assumption is that

the decision boundaries lie in the regions where the data has

lower density used in Transductive-SVM [7] or incorporating

conditional entropy criterion [8].

It has been shown that increasing the amount of training

data improves also the performance of NN [9, 10]. From

this perspective, it would be highly desirable to accommodate

the untranscribed data in the NN training especially when the

amount of labeled data is low. Unfortunately, it seems that the

extension of SSL to neural network training is less studied.

The work [11] introduces graph-based SSL training objec-

tive together with entropy regularizer.

Although some authors disrespect the bootstrapping due

to insufficient theoretical background, it performs similarly to

graph-based methods - the data points nearby a labeled data

point are given the same label. The labeling in bootstrapping

can be done on several levels, depending on the knowledge

about the data presented in the labeling process. Low-level

includes frame by frame labeling, where individual vectors

are labeled with respect to the closest transcribed one(s) by

means of vector quantization, GMM, NN or other classifier.

This approach does not assume any other knowledge about

the data but it may cause problems with outliers and on label

boundaries. Medium-level labeling, which incorporates some

knowledge about the data, can label several frames together,
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Table 1. Data analysis

Language PA TU VI

FLP training speakers 1189 980 991

FLP training hours 194.3 192.7 181.0

LLP training speakers 126 121 121

LLP training hours 21.0 22.1 21.0

LM training sentences 9536 12025 11192

LM training words 108025 67706 110980

dictionary size 7025 12124 3119

dev speakers 121 121 119

dev hours 19.9 20.0 19.7

number of words 101803 9145 111957

OOV rate [%] 4.2 12.2 1.2

as, for example, phonemes. The high-level incorporates all

knowledge about the data available - it forms words and sen-

tences. In this case, whole recognition system is employed in

the labeling process. The weakness of this approach lies in

limited amount of transcribed data as there might be out-of-

vocabulary (OOV) words and/or incomplete language model

which will cause the wrong classification.

This paper focuses on bootstrapping approach of SSL for

NNs used for feature extraction. The labeling is done using

the “seeding” recognition system trained on transcribed data.

The data are selected based on a confidence measure of the

most likely path through the segment. Similar approach is

used by our colleagues [12] in hybrid (Deep)NN-HMM sys-

tem where they focus on the means of data selection together

with training method of DNN.

2. EXPERIMENTAL SETUP

2.1. Data

The IARPA Babel Program data1 simulate a case of what

one could collect in limited time from a completely new lan-

guage: it consists of two parts: scripted (speakers read text

through telephone channel) and conversational (spontaneous

telephone conversations). The dev data contains conversa-

tional speech only. Two training scenarios are defined for

each language – Full Language Pack (FLP), where all col-

lected data are available for training; and Limited Language

Pack (LLP) — only one tenth of FLP. For the LLP condition,

the rest of the audio material can be used as untranscribed

(blind) audio data. Vocabulary and language model training

data are also defined with respect to the scenario.

To evaluate the bootstrapping SSL approach, three lan-

guage collections were selected: Pashto language collection

release babel104b-v0.4aY (PA), Turkish language collection

release babel105-v0.6 (TU) and Vietnamese language collec-

tion release babel107b-v0.7. The overview of training ma-

1Collected by Appen http://www.appenbutlerhill.com

Table 2. Baseline results for individual Language packs.

Lang. num. WER [%]

Pack targ. hours HLDA-PLP BN

FLP 216 64.7 62.0
PA

LLP 126 7.1
76.9

71.4

FLP 126 56.6 61.9
TU

LLP 126 7.3
77.4

69.3

FLP 303 52.3 63.6
VI

LLP 273 6.5
79.9

72.1

terial for these languages is given in Tab. 1. The selection

of languages covers one with almost 100% complete dictio-

nary - Vietnamese. This is a syllable-based language and the

OOVs are mainly foreign words. Pashto is language with rea-

sonable OOV rate which one can expect when having small

amount of training data. Turkish is extensively agglutinative

which increases number of words in the language. This leads

to high OOV rate. Thus it is possible to compare the effect of

imperfect labeling on the SSL procedure.

Note, that the amounts of the raw audio are given, which

in case of conversational speech, includes one recording for

each side of the conversation. Thus the data contains huge

portion of silence useless for training. The amounts of data

used for training are given in Tab. 2.

2.2. NNs for feature extraction

The features obtained using Neural Networks are the Bottle-

Neck (BN) features. A structure of two 6-layer NNs is em-

ployed according to [13]. It is depicted in Fig. 1.

The NN input features are based on critical band energies

(squared FFT magnitudes binned by Mel-scaled filter-bank

and logarithmized) concatenated with estimates of F0 and

probability of voicing. The estimation of F0 is based on

normalized cross-correlation function. The maximum of

this function indicates F0 value. Dynamic programming is

used for smoothing the estimates. It is implemented ac-

cording to [14]. Although it might seem not necessary to

use the F0 and probability of voicing parameters for non-

tonal languages, it turns out that these features are useful

and their incorporation brings nice improvement of the final

systems [15].

The conversation-side based mean subtraction is applied

on the whole feature vector. 11 frames are stacked together.

Hamming window followed by DCT consisting of 0th to 5th

base are applied on the time trajectory of each parameter re-

sulting in 102 coefficients on the first stage NN input.

The first stage NN has four hidden layers with 1500 units

each except the BN layer. The BN layer is the third hidden

layer and its size is 80 neurons. Its outputs are stacked over

21 frames and downsampled before entering the second stage

NN. This NN has the same structure and sizes of hidden layers

as the first one. The size of BN layer is 30 neurons and its
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Fig. 1. Block diagram of Bottle-Neck feature extraction. The blue parts of NNs are used only during the training. The green

frames in context gathering between the NNs are skipped. Only frames with shift -10, -5, 0, 5, 10 form the input to the second

stage NN.

outputs are final outputs forming the BN features for GMM-

HMM recognition system.

Neurons in both BN layers have linear activation func-

tions as they were reported to provide better performance [16].

Before the features enter the NNs’ input layer, global mean

and variance normalization is performed.

The NN targets are phoneme states obtained by forced

alignment of training data. The numbers of targets for indi-

vidual language packs are given in Tab. 2. The forced align-

ments were generated with provided segmentations, however

it was found that they still contain large portion of silence

(50%–60%). Therefore, new segmentation, which reduced

the amount of silence to 15%-20%, was generated. The final

amounts of data used for NN training are also given in Tab. 2.

2.3. Recognition system

First, a system based on standard Mel-PLP features is cre-

ated. 13 PLP coefficients are generated together with first,

second and third order derivatives. HLDA is estimated with

Gaussian components as classes to reduce the dimensionality

to 39. Then the conversation-side based mean and variance

normalization is applied. Based on these features, baseline

HLDA-PLP speech recognition system system is trained us-

ing LLP data only. It is HMM-based cross-word tied-states

triphone system, with approximately 4500 tied states and 18

Gaussian mixture components per state for all languages. It is

trained from scratch using mix-up maximum likelihood train-

ing. The HLDA-PLP system is used for alignment of training

data for NN training.

To train the system on Bottle-Neck features, the BN out-

puts are transformed by Maximum Likelihood Linear Trans-

form (MLLT), which considers HMM states as classes. Then,

new models are trained by single-pass retraining from HLDA-

PLP baseline system. 12 Gaussian components per state were

found to be sufficient for BN features trained from single-pass

retraining. Next, 12 maximum likelihood iterations follow to

better settle new HMMs in the new feature space.

Final word transcriptions are decoded using 3gram Lan-

guage Model (LM) trained only on the transcriptions of LLP

training data2.

The results obtained with baseline HLDA-PLP systems

are given in Tab. 2. The rather poor performance is given by

the limited amount of data for acoustic as well as language

model. Also note, that Turkish has quite high OOV rate.

2.4. Supervised NN systems

First, two systems with NNs trained on transcribed data were

evaluated. The first one used only the LLP data for NN train-

ing. This one is the baseline for the semi-supervised systems

trained later. The second one uses FLP for NN training, but

the rest of the system is trained with LLP data only. This sys-

tem serves as upper bound for the SSL experiments - the goal

is to get as close as possible to its performance. Both systems

use only BN features (no PLP ones). The WER obtained by

these systems are given in Tab. 2.

It is important to state that forced alignments for training

of NNs were obtained with a HLDA-PLP system trained on

respective language pack. Since some phonemes are under-

represented in LLP, they are merged with acoustically closest

ones to form more compact phoneme set. That is why there

are different numbers of NN targets (phoneme states) for LLP

and FLP.

2.5. Seeding system

To obtain the best labels for the SSL, more sophisticated seed-

ing system was constructed. PLP-HLDA (39dim.), BN fea-

tures (after the MLLT – 30dim.) and F0 (see sec. 2.2) with

delta and acceleration coefficient (3dim.) are concatenated

to form 72 dimensional feature vector. Next, two iterations

of speaker-based Constrained Maximum Likelihood Linear

Regression (CMLLR) transforms estimation and retraining

the HMM in speaker adaptive training (SAT) scheme were

done [17].

Finally, two sets of Region Dependent Transform (RDT) [18]

were estimated, both performed dimensionality reduction

from 72 to 69 dimensions: RDTconcat on top of original

2This is coherent to BABEL rules, where the provided data only can be

used for system training.
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Fig. 2. The amount of data and number of segments in individual sets for all languages.

72dimensional features and RDTSAT on top of CMLLR

rotated features. RDT parameters and ASR acoustic model

parameters are alternately updated in several iterations. RDT

parameters are updated using discriminative MPE criterion,

ML update is used for acoustic model parameters. For de-

tailed information, see [15].

The untranscribed data were decoded twice: The RDTconcat

transforms and models were used to produce 1best output for

CMLLR adaptation and RDTSAT system was used to gener-

ate lattices for confidence measure.

Utterance level confidence is weighted average of non-

silence words in the segment:

Cutt =
1

T

W∑

w=1

twCw

max, (1)

where W is number of words, Cw
max is word confidence mea-

sure [19], tw is length of the word in frames and T is length

of all non-silence words.

3. EXPERIMENTS AND ANALYSIS

The goal of the experiments is to minimize the difference

in performance of system trained in semi-supervised manner

and one trained on FLP data. The automatic transcription are

naturally erroneous due to many reasons such as imperfect

acoustic model, OOVs or poor language model. Thus it is im-

portant to select sentences with reasonable transcription with

high confidence.

However, the question of optimal threshold setting is more

complicated. Lowering the threshold will increase the amount

of data used for the training so that the degrading effect of er-

roneous part of the data might diminish or disappear. Improp-

erly set threshold can cause degradation in further processing.

Thus it is also interesting to see how does adding high-

confidence data compare with adding low-confidence data. To

investigate this behavior with only one threshold (taking into

account that by decreasing the threshold, we always want to

include more data), we introduce the following notation:

• the complete set of automatically transcribed segments

is denoted AT .

• the confidence threshold is denoted ct, in our experi-

ments, we use the following values: ct = {1.1; 0.95;
0.9; 0.7; 0.5; 0.3; 0.1; 0.05;−0.1}.

• for a given value of ct

– the set of high-confidence data AThct is given

by selecting all segments with confidence value

higher than ct.

– the set of low-confidence data ATlct is given

by selecting all segments with confidence value

lower than 1− ct.

Obviously,

ATh1.1=∅ ATl1.1=∅
ATh

−0.1=AT ATl
−0.1=AT

Note, that in figures, the boundary confidence thresholds

1.1 and −0.1 will be replaced by points at 1 and 0 respec-

tively. The amounts of data and the numbers of segments in

sets are depicted in Fig 2. Note also, that the amount of AT

data is not equal FLP - LLP as the segmentation is based on

voice activity detection and not on provided transcriptions.

It can be seen that the amount of data with confidence

below 0.3 (ATl0.7) is relatively small for all languages (less

than 1.9 hours). On the other hand, the amount of data with

the highest confidence is relatively large. There are 3.3 to 8.2

hours of data with confidence higher then 0.9 (ATh0.9) and

2.4 to 5.7 hours of data with confidence above 0.95 (ATh0.95)

depending on language. That means that segments with high

confidence transcription are able to double the amount of

training data.

For the training of neural network, the selected set of au-

tomatically transcribed data is mixed with the training part of

LLP data. The cross-validation part (about 10% of LLP data)

is kept unchanged which will allow to observe the behavior

also on the CV frame level accuracy.

For each set, new NNs are trained from random initial-

ization without any seeding by NN trained on LLP data only.

The differences in achieved CV frame accuracy are given in

Fig. 3. The behavior is somewhat unexpected. Adding data
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with high confidence transcripts leads to a drop in frame accu-

racy. But when segments with low confidence transcripts are

added to training data, the frame accuracy improves. Also,

only the NNs for Turkish language finally achieve better CV

accuracy.

The features provided by each new NN were also evalu-

ated in terms of WER. The results are shown in Fig. 4. Al-

though a degradation on frame accuracy was observed, the

WER shows improvement when segments with high confi-

dence transcription are added. The reason for the drop in

frame accuracy might be that these sentences are not the easy

ones and diverge the NN parameters far from LLP subset from

which the CV part is selected. The WER does not change

much when low confidence segments are added to NN train-

ing. Note, that the amount of such data is low (see above).

It can be also seen that adding data with confidence lower

than 0.5 does not improve the system performance. It stays

about the same, or, in case of Turkish, degrades slightly. Al-

though the degradation is not dramatic compared to overall

improvement from LLP NNs, the automatically transcribed

data are used only for feature extractor training here and

might hurt more in further processing. Thus the optimal

threshold can be set to 0.5.

Table 3. Summary of results

Language PA TU VI

FLP WER 62.0% 61.9% 63.6%

LLP WER 72.1% 69.3% 71.4%

LLP + ATh0.5 66.8% 65.7% 66.9%

absolute WER red. 4.8% 3.8% 3.3%

LLP to FLP dif. red. 47.5% 51.3% 42.3%

AT hours 68.7 59.4 52.5

ATh0.5 hours 55.4 50.6 38.8

ATh0.5/AT 80.6% 85.2% 73.9%

4. CONCLUSIONS

The suitability of bootstrapping SSL approach for neural net-

works training was evaluated. The untranscribed data were

handled at segment level and automatically transcribed by

sophisticated seeding system which includes Bottle-Neck

NN based features, HLDA-PLP features, speaker dependent

transform and region dependent transform. The system also

provided a confidence measure used for segment selection.

Selected segments were mixed with supervised data and

new NNs were trained. The BN features obtained with new

NNs were evaluated in a simplified recognition system. It

was observed that adding data with confidence less than 0.5

does not significantly improve the system performance and on

contrary, can be harmful.

The overview of achieved results is given in Tab 3. It can

be seen that the absolute WER improvement is 3.3 to 4.8%

over the situation when only supervised data is used for NN

training. This improvement corresponds to 40-50% recovery

of the gap between LLP and FLP training while using 70-

85% of the available untranscribed data. Note that it is not

possible to recover part of the performance difference due the

incomplete dictionary and poor LM which bring errors into

automatic transcriptions.

When the full recognition system (see the description of

the seeding system in sec.2.5) is used for recognition of Viet-

namese dev set, 66.0% WER is achieved with NN trained

on LLP data only. The WER decreases to 60.5 when NN is

trained also on automatically transcribed data.

Our future work will focus on the improvement of NN

training procedure to get more advantage from supervised

part of the data. Other direction we would like to investi-

gate is the combination of multilingual and semi-supervised

training.

5. REFERENCES

[1] H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem

connectionist feature extraction for conventional HMM

systems,” in Proc. ICASSP 2000, Turkey, 2000.

474



[2] N. Morgan and H. Bourlard, “Continuous

speech recognition: An introduction to the hybrid

HMM/connectionist approach,” IEEE Signal Process-

ing Magazine, vol. 12, no. 3, pp. 25–42, 1995.

[3] Lori Lamel, Jean-Luc Gauvain, and Gilles Adda,

“Lightly supervised and unsupervised acoustic model

training,” Computer Speech & Language, vol. 16, no.

1, pp. 115–129, 2002.

[4] Frank Wessel and Hermann Ney, “Unsupervised train-

ing of acoustic models for large vocabulary continu-

ous speech recognition,” Speech and Audio Processing,

IEEE Transactions on, vol. 13, no. 1, pp. 23–31, 2005.

[5] Lan Wang, M. J. F. Gales, and P. C. Woodland, “Unsu-

pervised training for mandarin broadcast news and con-

versation transcription,” in Proc. ICASSP. IEEE, Apr

2007, vol. 4.

[6] Amarnag Subramanya and Jeff Bilmes, “The semi-

supervised switchboard transcription project,” in Proc.

INTERSPEECH 2009, Sep 2009.

[7] Thorsten Joachims, “Transductive inference for text

classification using support vector machines,” in ma-

chine learning-international workshop then conference.

Morgan Kaufmann Publishers, INC., 1999, pp. 200–

209.

[8] Jui-Ting Huang and Mark Hasegawa-Johnson, “Semi-

supervised training of Gaussian mixture models by con-

ditional entropy minimization,” Optimization, vol. 4, pp.

5, 2010.

[9] D. Ellis and N. Morgan, “Size matters: An empirical

study of neural network training for large vocabulary

continuous speech recognition,” in Proc. ICASSP 1999,

Phoenix, Arizona, USA, Mar. 1999, pp. 1013–1016.

[10] Petr Schwarz, Phoneme recognition based on long tem-

poral context, Ph.D. thesis, Brno University of Technol-

ogy, Czech Republic, 2009.

[11] Jonathan Malkinn, Amarnag Subramanya, and jeff

Bilmes, “On the semi-supervised learning of multi-

layered perceptrons,” in Proc. INTERSPEECH 2009,

Sep 2009.
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