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ABSTRACT

In this paper, we investigate semi-supervised training for low
resource languages where the initial systems may have high
error rate (≥ 70.0% word eror rate). To handle the lack of
data, we study semi-supervised techniques including data
selection, data weighting, discriminative training and multi-
layer perceptron learning to improve system performance.
The entire suite of semi-supervised methods presented in this
paper was evaluated under the IARPA Babel program for the
keyword spotting tasks. Our semi-supervised system had the
best performance in the OpenKWS13 surprise language eval-
uation for the limited condition. In this paper, we describe
our work on the Turkish and Vietnamese systems.

Index Terms— semi-supervised training, low resource
languages, keyword spotting

1. INTRODUCTION

Semi-supervised training is an important area for speech
recognition and its applications. Given a relatively small
amount of supervised (transcribed) data, the goal is to im-
prove system performance using unsupervised data. Since
collecting supervised data can be costly [1, 2, 3], a robust
semi-supervised training procedure can significantly reduce
the cost of developing a speech-to-text (STT) system. This is
especially true for many low resource languages where tools
and language experts are not immediately available.

Performing semi-supervised training can be challenging
for low resource languages since without enough data on the
target language, one may expect the bootstrap system using
only the supervised data is suboptimal. Under the IARPA
Babel program, we focus on rapidly developing speech tech-
nologies for new languages with limited resources, say 10
hours of transcribed audio. We notice that the initial sys-
tems under such condition often have over 70% word error
rate (WER). Therefore, we revisit semi-supervised training
and explore techniques which may help in this condition.

The basic approach for semi-supervised training is first
building a bootstrap model using some supervised data, and
then using this model to transcribe the unsupervised data.

This automatically transcribed data is then used to supple-
ment the supervised data for building the final model. While
the process is similar to supervised training, additional steps
like data selection [1] are often applied to select data with
high confidence for the transcription. Since the performance
of the bootstrap system is not ideal, the automatic transcrip-
tion may contain mostly errors. In addition, using transcrip-
tions with high error rates may have more impact on discrim-
inative training, which tries to minimize the errors against the
reference transcriptions. The difficulties of semi-supervised
discriminative training have been discussed in [3, 4, 5].

In this paper, we aim to improve semi-supervised training
for low resource languages, where initial systems may have
high WER (≥ 70%). We propose confidence weighted train-
ing which uses a confidence model to select data and also
weigh the supervised and unsupervised data. Then, in the
context of semi-supervised training, we study the advantages
and disadvantages of two widely used objective functions:
Minimum Phone Error (MPE) [6] and Boosted Maximum
Mutual Information (BMMI) [7] for discriminative training,
and propose an optimization algorithm for robust discrimi-
native training. In addition, we investigate semi-supervised
Multi-Layer Perceptron (MLP) training. The entire suite of
semi-supervised methods presented in this paper was evalu-
ated under the IARPA Babel program for the keyword spot-
ting tasks. Our semi-supervised system had the best perfor-
mance in the OpenKWS13 surprise language evaluation for
the limited condition.

2. BABEL PROGRAM AND SYSTEM DESCRIPTION

The IARPA Babel program is a research program for rapid de-
velopment of keyword spotting systems for low resource lan-
guages. In the first year of the program, Cantonese, Pashto,
Turkish and Tagalog were used as the development languages
and Vietnamese was chosen to be the surprise language for
open evaluation. The evaluation has different conditions and
one of them is the limited condition which consists of 10
hours of transcribed audio and roughly 90 hours of unsuper-
vised data. The audio data is mainly conversational speech
between two persons in a telephone channel, but each lan-
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guage pack also comes with a small amount of read speech.
The telephone channels can be landlines, different kinds of
cellphones, or phones embedded in vehicles, and the sam-
pling rate is 8000 Hz. The development set for each lan-
guage consists of roughly 10 hours of conversational tele-
phone speech. The evaluation set, given by IARPA, contains
15 hours of speech for each language, except Vietnamese,
which has around 75 hours of data. In this paper, we eval-
uate our approaches on the IARPA Babel Program Turkish
language collection release (babel105b-v0.4) and Vietnamese
language collection release (babel107b-v0.7), and we report
our results on the development set. Table 1 summarizes the
data of these two languages. For Vietnamese, we attached the
tones to the vowels and created a phone set of 123 phones.

Turkish Vietnamese
vocab 11.5k 3.1k

# phones 51 123
text data 100k 110k

transcribed data 10-hr 10-hr
untranscribed data 90-hr 90-hr

tonal no yes
OOV on dev 23.0% 8.5%

Table 1. Turkish and Vietnamese data in limited condition

For keyword spotting, each language has two set of key-
words: a development keyword list and an evaluation key-
word list. The development keyword list contains 300 to 1000
keywords which were selected by the performers for develop-
ment. The evaluation keyword lists consists of 3000 to 4000
keywords, and they were given during the evaluation. Each
keyword may contain several words and it may or may not
be in the training vocabulary. The performance of a keyword
spotting system is measured by the Actual Term Weighted
Value (ATWV) and WER is also measured for the underlying
STT system. ATWV is computed by,

ATWV = 1− 1
K

K∑
w=1

(
#miss(w)
#ref(w)

+ β
#fa(w)

T −#ref(w)

)
(1)

where K is the number of keywords; #miss(w) is the num-
ber of true keyword tokens that are not detected; #fa(w) is
the number of false alarms; #ref(w) is the number of words
in reference; T is the number of trials (e.g., seconds in the
audio), and β is a constant set at 999.9. The details and the
design of this metric are available in [8].

The BBN keyword spotting system is divided into sev-
eral components. At a high level, the speech recognition sys-
tem [9] is run to produce a detailed lattice of word hypothe-
ses. This lattice is used to extract keyword hits with nom-
inal posterior probability scores produced by various meth-
ods. Different extraction methods are necessary because, for
example, we can use whole-word extraction methods for the
known keywords but we must use phonetic extraction for the

keywords that were not known when the recognizer was run.
Also, multiple extraction methods help the system to be more
robust for different languages. The scores are normalized so
that they are consistent across keywords and so that they are
good estimates of posteriors. Details of score normalization
are available in [10].

3. CONFIDENCE WEIGHTED TRAINING

As shown in figure 1, the semi-supervised training in this
work consists of two steps: (1) unsupervised data selection
followed by (2) semi-supervised acoustic model training.
The main differentiator from our previous semi-supervised
training method [11] is the use of utterance-based confidence
weights in acoustic model training.

Fig. 1. Overview of the confidence weighted training

The data selection procedure for semi-supervised train-
ing is described in [11]. First, the untranscribed audio data
is segmented into utterances using a speech activity detection
system which is trained on the 10-hour training corpus us-
ing an architecture similar to [12]. It is then decoded using
the system trained on the same 10-hour manually transcribed
corpus. The confidence of each utterance is computed based
on a confidence model trained on the development set. Fi-
nally, the best half of the utterances are selected according to
their confidence scores for acoustic model training.
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Fig. 2. Confidence score versus WER for the Turkish semi-
supervised data using the 10-hr PLP-only baseline system

Although utterances with the worst confidence scores are
excluded from the training, the quality of the selected auto-
matic transcripts varies. The plot of confidence score against

441



WER for the selected 43 hours of the Turkish unsupervised
data is shown in figure 2 and it is computedusing the 10-hour
PLP-only STT system. The plot is created by grouping the
utterances into eight bins according to their confidence scores
and the average WER is computed for each of the bins. As
shown in the figure, the average WER fluctuates from 31% to
77%, and the WERs are highly correlated to the confidence
scores. To take into account the quality of the transcripts for
acoustic model training, a weight is assigned to each of the
utterance based on the confidence score using the following
affine equation:

wi = s× ci + b (2)

where wi is the weight for utterance i, s the slope, ci confi-
dence score for utterance i, b the bias. In this work, s is 2.0
and the average of the utterance-level weights is constrained
to one. Hence, b = 1 −

PN
i=1 s×ci

N with N being the total
number of utterances.

The WER on the Turkish development set from different
semi-supervised training approaches shown in Table 2. By in-
cluding the 43 hours of untranscribed data into acoustic model
training a 2.9% absolute reduction in WER (from 70.9% to
68.0%) is obtained as compared to the 10-hour baseline sys-
tem. An additional WER absolute reduction of 0.7% (from
68.0% to 67.3%) is observed by using weighted training in
both ML and MPE training for the semi-supervised training
for Turkish.

System sup. : unsup. WER(%)
10-hour baseline - 70.9
semi-supervised unweighted 68.0
semi-supervised 4 : 1 67.3

Table 2. WER of the Turkish MPE PLP systems using confi-
dence weighted training

4. SEMI-SUPERVISED DISCRIMINATIVE
TRAINING

Discriminative training can significantly improve acoustic
models, but its application to semi-supervised training has
been limited [3]. One of the reasons is because both numera-
tor and denominator statistics are collected from recognition
output. Hence, discriminative training may not be able to
identify the true errors and adjust the model parameters ac-
cordingly. This also becomes more serious if the initial model
does not achieve good performance. In such a case, the nu-
merator lattices may have high error rate and give adverse
effects for discriminative training. Reference [5] suggests a
different view that although both numerator and denomina-
tor statistics are artificial and contain errors, the numerator
lattice, which represents the reference, is generated by a
strong language model, while the denominator lattice is of-
ten produced by a weak language model. Therefore, one

would expect the numerator lattice may have better accu-
racy than the denominator lattice and discriminative training
may work under semi-supervised training. To compensate
the difference between supervised and unsupervised data,
discriminative training is further explored in [4]. In which,
unlabeled data is used for regularization and it is weighted
with the discriminative criterion.

In this study, we would first compare MPE and BMMI,
and study the behaviors of these two objective functions in
semi-supervised training. Then, we reinvestigate the opti-
mization problem for semi-supervised discriminative training
and explore how we could improve the performance.

4.1. MPE, BMMI and the EBW algorithm

MPE [6] and BMMI [7] are both considered to be the state-
of-the-art objective functions for discriminative training.
MPE aims to optimize the acoustic model for the phone
error rate while BMMI maximizes the margin between the
Viterbi state sequences of the references and the competing
sequences [13]. Although the target is different, two objective
functions are similar as shown in equation 3 and 4,

FMPE(θ) =
∑

i

P
W ′

i
P (Xi|W ′

i ;θ)P (W ′
i )A(W ′

i ,Wi)P
W ′

i
P (Xi|W ′

i ;θ)P (W ′
i ) (3)

FBMMI(θ) = log
∏

i
P (Xi|Wi;θ)P (Wi)P

W ′
i

P (Xi|W ′
i ;θ)P (W ′

i )e−b×A(W ′
i

,Wi)
(4)

where X is the observation; Wi and W ′
i are the i-th reference

and competing hypothesis respectively; A is the an accuracy
function to compare Wi and W ′

i ; θ represents the model pa-
rameters.

Although BMMI and MPE are similar and both dis-
criminative training procedures often give similar improve-
ments [7], the behavior can be different under semi-supervised
training, and the reason is due to the extended Baum-Welch
algorithm (EBW). During optimization, EBW does not op-
erate on the MPE or the BMMI objective function directly.
Instead, EBW operates on a regularized objective function.
As shown in [14] and [4], EBW uses KL-divergence for
regularization,

GMPE(θ) = FMPE(θ) + D(θ)KL(θ0||θ) (5)
GBMMI(θ) = FBMMI(θ) + D(θ)KL(θ0||θ) . (6)

where θ0 is a backoff model which is often the ML model or
the model from the previous EM iteration; D is a Gaussian
specific constant to control the weight of the regularization.
The value of D is often computed by a heuristic where D is
the maximum of E times the occupancy of the denominator
statistics or twice the value required to keep the covariance to
be positive definite [6]. Then, the value of E is tuned empiri-
cally and it is often set between 1.0 to 2.0.

The computation of D is different between MPE and
BMMI due to the way they compute the denominator statis-
tics. For BMMI, the denominator statistics are collected
from the entire denominator lattice which is generated by the
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recognizer. While for semi-supervised training, we cannot
attach the reference path to the lattice, but only the 1-best,
the statistics remain similar. However, for MPE, whether an
arc would contribute to numerator or denominator statistics
depends on whether the expected phone accuracy of all paths
going through this arc is higher than, or lower than the ex-
pected phone accuracy of the entire lattice [6]. As a result,
this would affect the value of D and thus, the weight of the
regularization. In the worst case, D can be too small which
may lead weak regularization, or the regularization is too
strong. In sum, we argue that the lack of references in the
unsupervised data may have more impact on MPE compared
to BMMI, hence, we investigate on this issue.

The results on comparing MPE and BMMI on semi-
supervised training is available in table 3. As shown by
the results, BMMI outperforms MPE for the unweighted
semi-supervised training while the performance is roughly
the same for the weighted semi-supervised training and the
10-hour supervised training. These results support our claim
that BMMI may have some advantages over MPE in semi-
supervised training. BMMI and MPE have roughly the same
performance for 10-hour supervised training since the cal-
culation of D for MPE is not affected by the unsupervised
data, and for weighted training, since the utterances with
low confidence have small weights, their contribution to the
denominator statistics is reduced as well. Therefore, MPE
benefits more using confidence weighted training.

System Obj sup. : unsup. WER(%)
10-hr supervised MPE - 70.9
10-hr supervised BMMI - 71.0
semi-supervised MPE unweighted 68.0
semi-supervised BMMI unweighted 67.1
semi-supervised MPE 4:1 67.3
semi-supervised BMMI 4:1 67.1

Table 3. WER of the Turkish PLP systems with MPE and
BMMI discriminative training

4.2. Robust model estimation for discriminative training

As discussed in [14], the backoff model (θ0 in equation 5
and 6) used in discriminative training does not necessarily
need to be the ML model or the model from the previous EM
iteration. Instead, one could plug in any model for regulariza-
tion, and it acts as a constraint that the final model should be
close to the backoff model in terms of KL-divergence. Given
that we have two types data: supervised and unsupervised
data, we propose that we may estimate the model using the
supervised data only, given that the output model should be
close to the estimate using the entire unsupervised and super-
vised data.

The motivation of this approach is that while discrimina-
tive training would benefit more from the supervised data, the

small amount of supervised data may not be sufficient for re-
liably estimating the model parameters. Hence, we enforce
that the output model should be close to the estimate using
the entire data set, which is likely to be more robust. The
implementation of this procedure is simple: one only needs
to accumulate the statistics from the supervised and unsu-
pervised data separately during the E-step, then, update the
model twice with different backoff models,

µ
(1)
j =

P
t∈U+S γn

t (j)xt−
P

t∈U+S γd
t (j)xt+D

(1)
j µ0

jP
t∈U+S γn

t (j)−
P

t∈U+S γd
t (j)+D

(1)
j

(7)

µ
(2)
j =

P
t∈S γn

t (j)xt−
P

t∈S γd
t (j)xt+D

(2)
j µ

(1)
jP

t∈S γn
t (j)−

P
t∈S γd

t (j)+D
(2)
j

, (8)

where µj is the j-th Gaussian mean; xt is the observation at
time t; γn

t (j) and γd
t (j) are the posterior probability of j-

th Gaussian at time t in the numerator and the denominator
lattice respectively; U represents the set of unsupervised data
while S represents the set of supervised data. As a result, µ(2)

j

is estimated using the supervised data and it would be close to
µ

(1)
j , which is estimated using the entire data set. Similarly,

the covariance matrices can also be updated in the same way.
This approach is similar to speaker adaptation in speech

recognition, where we take a speaker independent model
trained with large amount of data and adapt it using a small
amount of data from the target speaker. In fact, if we rewrite
equation 8 as,

µ
(2)
j =

P
t∈S γn

t (j)xt−
P

t∈S γd
t (j)xt+Djµ0

j+τµ
(1)
jP

t∈S γn
t (j)−

P
t∈S γd

t (j)+Dj+τ
(9)

then it is equivalent to the discriminative MAP adaptation
(DMAP) as described in [15], when Dj = 0 and τ = D

(2)
j .

In such a case, µ
(1)
j is treated as a prior model and we adapt

the model using the supervised data. The difference in our
approach is that now the prior model is also iteratively up-
dated under the EM framework. Figure 3 shows the overall
procedure of this proposed discriminative training for semi-
supervised data.

Fig. 3. Overview of our proposed semi-supervised discrimi-
native training

Table 4 shows the performance of our proposed semi-
supervised discriminative training on the PLP system. In this
experiment, we also explored different adaptation strategies
like the prior model was built on the unsupervised data and
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adapted the model using the supervised data (U → S); or the
prior model was built on the supervised data and adapted the
model using the entire data set (S → S+U ). The best strategy
was the one we described which the prior model was built us-
ing entire data set and we adapted the model using the super-
vised data (S + U → S). All BMMI results in the table used
confidence weighted training, and E was set to 2.0 for the
first M-step and 6.0 for the second M-step. We obtained 0.4%
absolute reduction in WER compared to the BMMI baseline.
While the improvement was modest, our proposed training re-
quired little extra computation since computing µ

(2)
j did not

require reprocessing the data but simply running another M-
step on top of µ

(1)
j .

System Obj M-step WER(%)
10-hr supervised BMMI S 71.0
semi-supervised BMMI S + U 67.1
semi-supervised BMMI U → S 67.0
semi-supervised BMMI S → S + U 67.0
semi-supervised BMMI S + U → S 66.7

Table 4. WER of the Turkish PLP system with different semi-
supervised discriminative training strategies

5. SEMI-SUPERVISED MULTI-LAYER
PERCEPTRON TRAINING

MLP training has shown to be effective in reducing the error
rate [16]. In the Babel program, we investigate whether semi-
supervised training would help MLP performance. Details of
the semi-supervised MLP training is available in [17].

In brief, an initial MLP is trained using the supervised
data and an STT system is built using these features. This
STT system is then used to transcribe the unsupervised data
and measure the confidence. The confidence is for data selec-
tion where only the data with confidence above certain thresh-
old is kept for the semi-supervised training. Finally, the semi-
supervised MLPs are trained using a mix of manually and au-
tomatically transcribed data. Figure 4 is an overview of this
procedure

Fig. 4. Overview of the semi-supervised MLP training

Table 5 shows the performance of using semi-supervised
MLP features. In this experiment, all systems used confi-
dence weighted training and semi-supervised discriminative
training. As shown in the results, the initial MLP features

trained only with supervised data already improved the base-
line PLP semi-supervised system by 7.0% absolute in WER.
Using semi-supervised training gave an additional improve-
ment of 1.1% absolute.

System MLP training WER(%)
PLP baseline - 66.7
initial MLP S 59.7

semi-supervised MLP S + U 58.6

Table 5. WER of the Turkish semi-supervised systems using
PLP and different MLP features

6. EXPERIMENTAL RESULTS

We evaluate our proposed semi-supervised training methods
in the Babel Turkish and Vietnamese evaluations. Under the
limited resource condition, the supervised data has about 10
hours of transcribed audio and 90 hours of untranscribed au-
dio. The development sets of these two languages consist of
10 hours of data, and in this experiment, we report the WER
and ATWV of the dev sets for these languages.

For the semi-supervised system, we first built a system
using the MLP features trained on the 10-hr supervised data
prepared. This system, trained solely on supervised data, is
used as the baseline system and used to transcribe the unsu-
pervised data. Then, we performed the confidence weighted
training, semi-supervised discriminative training and also the
semi-supervised MLP training for the final systems. Table 6
shows the improvement of each technique in terms of WER
and ATWV. All keyword search results are under the known
keyword condition which assumes keywords are known be-
fore decoding.

Turkish Vietnamese
System WER ATWV WER ATWV

10-hr MLP sys. 62.3% 35.2% 60.3% 39.4%
+cw training 60.2% 37.7% 59.0% 40.8%

+semi. sup. DT 59.7% 38.3% 58.7% 41.0%
+semi. sup. MLP 58.6% 39.2% 55.2% 45.6%

Table 6. Performance of Turkish and Vietnamese systems

The results show that semi-supervised training can im-
prove both speech recognition and keyword search perfor-
mance. Compared to the systems trained with only 10 hours
of supervised data, semi-supervised training improves the
Turkish system by 3.7% and 4.0% absolute in WER and
ATWV respectively. For the Vietnamese system, it improves
by 5.1% absolute in WER and 6.2% absolute in ATWV.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose confidence weighted training, semi-
supervised discriminative training and semi-supervised MLP
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training, to help semi-supervised training for low resource
languages and high WER environment. As shown in the Turk-
ish experiments, while the initial system has a high WER
of 70.9%, applying semi-supervised training and also MLP
training can improve the system significantly to 58.6% WER.
For the Vietnamese system, we start from the 10-hour super-
vised only MLP system with an WER of 60.3% and an ATWV
of 39.4%. Our proposed semi-supervised training improves
the system to 55.2% WER and 45.6% ATWV.

In the future, we will try to apply semi-supervised training
to the deep neural network, and extend our semi-supervised
training to language modeling. Out of vocabulary is also an
important issue for semi-supervised training which we will
also explore techniques which may help in this direction.
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