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Abstract

This paper presents our work on speech recognition of Can-

tonese spontaneous telephone conversations. The key-points

include feature extraction by 6-layer Stacked Bottle-Neck neu-

ral network and using fundamental frequency information at its

input. We have also investigated into robustness of SBN train-

ing (silence, normalization) and shown an efficient combina-

tion with PLP using Region-Dependent transforms. A combi-

nation of RDT with another popular adaptation technique (SAT)

was shown beneficial. The results are reported on BABEL Can-

tonese data.

Index Terms: speech recognition, discriminative training,

bottle-neck neural networks, region-dependent transforms

1. Introduction

This paper presents our recent effort to build an automatic

speech recognition (ASR) system for Cantonese spontaneous

telephone conversations. The work was mainly driven by our

participation in the BABEL project (“Babelon” consortium co-

ordinated by BBN). Unlike the “classical” style of ASR devel-

opment with almost infinite time and generous resources, BA-

BEL aims at building keyword spotting systems for languages

with limited resources in limited amount of time. This time

varies from almost one year to just one week at the end of the

project.

So far, the best keyword spotting systems developed are al-

ways based on Large Vocabulary Continuous Speech Recogni-

tion (LVCSR) front-end. Accuracy of such keyword spotting

system correlates with LVCSR because both tasks require high

quality acoustic models. Consequently, our initial focus was put

into LVCSR on four Babel languages released in the 1st year:

Cantonese, Pashto, Tagalog and Turkish. The main develop-

ment was done on Cantonese and the approaches were checked

on other languages later.

The basis of our system is a state-of-the-art Hidden Markov

model/Gaussian mixture model (HMM/GMM) recognizer that

our group has been developing since 2004 [1]. For this work,

we concentrated on three main topics:
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1. Neural Network (NN) based feature extraction. The re-

cently released Stacked Bottle Neck architecture [2] was

found to overcome the Bottle-Neck one. NNs are nowa-

days widely used for acoustic modeling as Deep Neural

Networks [3], which sparkled our interest to experiment

with deeper architectures also in Bottle-Neck feature ex-

traction (see section 5.2).

2. Cantonese is a tonal language, tonal information has an

important influence in speech recognition. Therefore,

we investigated into using fundamental frequency (f0)

and also probability of voicing as additional features pro-

cessed by NN (see section 5.2).

3. Finally, discriminatively trained Region-Dependent

Transforms (RDT) [4] provided an additional improve-

ment on top of NN based features (that are already dis-

criminatively trained to reduce Frame Error Rate !). Us-

ing RDT with speaker-adaptive training (SAT) was in-

vestigated as well. The definition of RDT is given in

section 3 and experimental results are in 5.3

2. Neural Network features in speech
recognition

Neural networks were used to generate Bottle-Neck (BN) or

Stacked Bottle-Neck (SBN) features. We introduced the SBN

structure in [2]; the scheme is given in figure 1. It contains

two NNs: the BN outputs from the first one are stacked, down-

sampled, and taken as an input vector for the second NN. This

second NN has again a BN layer, of which the outputs are taken

as input features for GMM/HMM recognition system. Our pre-

vious study [5] has shown that BN neurons with linear activa-

tion functions provide better performance.

3. Region-Dependent Transform

In the RDT framework, an ensemble of linear transformations

is trained, typically using the discriminative Minimum Phone

Error (MPE) criterion [6]. Each transformation corresponds to

one region in partitioned feature space. Each feature vector is

then transformed by a linear transformation corresponding to

the region the vector belongs to. The resulting (generally non-

linear) transformation has the following form:

FRDT (ot) =

N∑

r=1

γr(t)Arot, (1)

where Ar is linear transformation corresponding to rth region,

and γr(t) is probability that feature vector ot belongs to rth

region. The probabilities γr(t) are typically obtained using a

GMM (pre-trained on the input features) as mixture component

posterior probabilities. Usually, RDT parameters Ar and ASR
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Figure 1: Stacked Bottle-Neck Neural Network feature extraction.

Figure 2: Region Dependent Transform.

acoustic model parameters are alternately updated in several it-

erations. While RDT parameters are updated using discrimi-

native MPE criterion, ML update is typically used for acoustic

model parameters [7],[4].

RDT can be seen as a generalization of previously proposed

fMPE discriminative feature transformation. The special case

of RDT with square matrices Ar was shown [4] to be equivalent

to fMPE with offset features as described in [8]. From the fMPE

recipe [7], we have adopted the idea of incorporating context

information by considering γr(t) corresponding not only to the

current frame but also to the neighboring frames. From our ex-

perience, such incorporation of contextual information leads to

significantly better results compared to the RDT style proposed

in [4], where feature vectors of multiple frames were stacked at

the RDT input. Therefore, our RDT configuration (figure 2) is

very similar to the one described in the fMPE recipe.

4. System description

4.1. Data

The BABEL data1 simulate a case of what one could collect in

limited time from a completely new language: it consists of two

parts: scripted (speakers read text through telephone channel)

and conversational (spontaneous telephone conversations). The

test data contains conversational speech only. See table 1 for

details.

Ideally, the type of training data should be consistent with

the test, which would call for training on conversational part

only. However, according to our experiment on NN system (see

table 7), we gained 0.2% absolute by using scripted data, so we

used both parts for the training.

1Collected by Appen http://www.appenbutlerhill.com

Table 1: Data

Data No. of speakers size [h]

training-conv 965 109

training-scripted 399 29

training-all 1364 138

test 20 2.5

The phoneme set consists of 15 unvoiced phonemes and 24

voiced phonemes where 6 tones are distinguished, summing up

to 158 phonemes.

4.2. Baseline system and PLP feature extraction

Speech recognition system is HMM-based with cross-word

tied-states triphones, with approximately 4500 tied states and

18 Gaussian mixtures per state, trained from scratch using mix-

up maximum likelihood training. Final word transcriptions are

decoded using 3gram Language Model (LM) trained only on

the transcriptions of training data2.

Mel-PLP features are generated in classical way, the result-

ing number of coefficients is 13. Deltas, double- and in HLDA

system also triple-deltas are added, so that the feature vector

has 39, respectively 52, dimensions. Cepstral mean and vari-

ance normalization is applied with the means and variances esti-

mated per conversation side. HLDA is estimated with Gaussian

components as classes to reduce the dimensionality to 39. In

our experiments leading to the best results, the PLP features are

forwarded through HLDA and concatenated with SBN features.

4.3. SBNs for feature extraction

The input features of the first NN (figure 1) are 15 Critical-

Band Energies (CRBE) obtained with a Mel filter-bank, with

conversation-side-based mean subtraction applied. 11 frames

of these features are stacked and a Hamming window multi-

plies the time evolution of each parameter [9]. Finally, DCT is

applied, of which 0th to 5th coefficients are retained, making

the size of the feature vector 15× 6 = 90.

The sizes of the both NNs were set to 1M weights for most

of the experiments. When the best input features, structure

and normalization were found, NN sizes were increased to 2M

weights. Both NNs were trained to classify phoneme states (3

states per phoneme). These targets were generated by forced

alignment with baseline PLP models (section 4.2) and stayed

fixed during the training.

Final BN features produced by various NN structures

were transformed by Maximum Likelihood Linear Transform

(MLLT), which considers HMM states as classes. For any set

2This is coherent to BABEL rules, where the provided data only can
be used for system training in the primary condition
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Table 2: PLP system, BN and SBN baselines.

System CER[%]

ML PLP 62.8

ML PLP-HLDA 61.2

MPE SAT-RDT PLP-VTLN-HLDA 52.0

BN - NoSilenceReducion (MLP5) 63.8

SBN - NoSilenceReducion (MLP6) 53.3

of features, new models were trained by single-pass retraining

from PLP baseline system. Next, 12 maximum likelihood iter-

ations followed to better settle new HMMs in the new feature

space.

4.4. Pitch and voicing

We also experimented with F0 estimates and probability of

voicing as additional features concatenated with CRBE. The

estimation of F0 is based on normalized cross-correlation func-

tion. The maximum of this function indicates F0 value. Dy-

namic programming is used for smoothing. The implementa-

tion of F0 and probability of voicing estimation followed [10].

5. Experiments

5.1. PLP system

The baseline system trained using PLPs was giving 62.8%

Character Error Rate (CER), resp. 61.2% with HLDA which

is our standard feature post-processing (see Table 2). The im-

provement with PLPs using all discriminative approaches de-

scribed below was about 9% absolute. The basic PLP based sys-

tem generated forced alignments on phoneme-state-level that

were used as targets for further NN training.

5.2. Stacked Bottle-Neck NN features

Basic Bottle-Neck NN architecture with only one neural net-

work (the size of the BN layer is 30) performs about 1% worse

than PLP baseline. Table 2 also shows big improvement by us-

ing SBN instead of standard BN, by almost 10%. Note that the

results are not directly comparable, due to using different num-

bers of layers (6-layer SBN versus 5-layer BN), but we will see

later in table 4, that for SBN, the gain from MLP6 is only 2%.

5.2.1. Silence in the training

We found that the data contained huge amount silence (more

than 50%). Therefore, we hypothesized that NNs have been

focusing too much in silence/speech recognition rather than

phoneme-state classification. After removing silence, huge drop

of frame accuracy (from 70% to 40%) was observed on cross-

validation set during BN-NN training (due to removal of “easy”

silence frames) but the final BN features gave us 3.2% abso-

lute improvement (Table 3). The influence (or rather lack of in-

fluence) of silence removal is even more interesting with SBN

architecture: according to Table 3, no drop-off accuracy is ob-

served due to training on huge amount of silence: the first NN is

obviously affected by silence but the second one reads already

compressed information, therefore it can be better trained. Fi-

nally, we experimented with silence removal only for the train-

ing of the first NN (denoted as HalfSilenceReducion): the best

result indicates that this generates an NN structure working the

best with given segmentation. Unfortunately this improvement

Table 3: Silence reduction in standard bottle neck and stacked

bottle neck architecture.

System CER[%]

BN - NoSilenceReducion (MLP5) 63.8

BN - SilenceReducion (MLP5) 60.6

SBN - NoSilenceReducion (MLP6) 53.3

SBN - SilenceReducion (MLP6) 53.3

SBN - HalfSilenceReducion (MLP6) 52.3

Table 4: Number of layers in Stacked Bottle Neck NN.

System CER[%]

MLP5 55.2

MLP6 53.3

MLP7 53.7

was lost when we compared “SilenceReduction” and “HalfSi-

lenceReducion” on test segmentation given by Voice Activity

Detection (significantly less silence), therefore we returned to

“SilenceReduction” in the following experiments.

5.2.2. Making the NN deep

Using more hidden layers (Deep NN) is now widespread in the

community. Table 4 shows the effect of splitting parameters

lying in the first hidden layer (before BN layer) into more lay-

ers. Both NNs in Stacked BN structure were split in the same

way. We have shown that 6-layer architecture (so that 4 layers

are active in feature generation after the last two layers are cut

off) gives almost 2% absolute improvement, but splitting into

even more layers do not help anymore, probably due to difficult

initialization. We also experimented with Restricted Boltzmann

Machine initialization [3], but we did not get any improvement.

Therefore, 6-layer SBN was selected for further experiments.

5.2.3. Normalization

Usual pre-processing for NNs involves global mean and vari-

ance normalization of features. We used also conversation-

side based mean normalization. This gives us a nice improve-

ment of 0.3% compared to global normalization only (53.3%

vs. 53.6%).

5.2.4. F0

Cantonese is a tonal language, therefore the fundamental fre-

quency (f0) has significant effect on final system behavior. F0

is a “bad” feature in HMM modeling due to long constant parts

in unvoiced regions. It is also not Gaussian distributed. Pro-

cessing F0 through BN network encodes this information into

feature space which can be easier modeled by HMM. Moreover,

it should significantly help the NN to classify different versions

of voiced phonemes. Both should lead to improved BN feature

extraction.

By adding f0 (with derivatives) to the final feature stream,

an absolute improvement of 1.8% is obtained (table 5). If, how-

ever, F0 is added into NN input, we obtain nice 3.3% absolute

improvement. We experimented also with adding probability

of voicing (m) — here, it did not provide any improvement but

also no deterioration, and on other BABEL languages we found

this feature useful (0-0.5% absolute), so it was retained. The fi-

nal NN feature extraction structure is therefore SBN with f0 and
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Table 5: Adding additional features as input (SBN MLP6).

System CER[%]

SBN (CRBE) 53.3

SBN (CRBE)+f0 D A 51.5

SBN (CRBE+logf0) 50.7

SBN (CRBE+f0) 50.0

SBN (CRBE+f0+m) 50.0

SBN (CRBE+f0+m) (4M weights) 49.2

Table 6: Re-segmentation in HMM training and feature con-

catenation.

System OrigSegm VAD

CER[%] CER [%]

SBN 49.2 48.8

SBN reseg 47.7 47.3

PLP-HLDA+SBN+f0 D A reseg 48.0 47.9

probability of voicing. Finally, we increased the sizes of NNs

to 2M weights each (4M together) which gave us about 0.8%

absolute improvement. This structure will be further denoted as

SBN.

5.2.5. Silence in the training II.

Removing silence in NN training was found useful (sec-

tion 5.2.1, therefore we analyzed this re-segmentation also in

HMM training/test. For HMM training, we used the same seg-

mentation as in NN training (based on forced alignment) and a

Voice Activity Detection (VAD) based on NN was used for test.

The first two lines in Table 6 indicate 1.9% absolute improve-

ment by removing silence from training and also from test.

5.3. Region Dependent Transforms

The final feature stream was built by concatenation of PLP-

HLDA (39 dimensions), SBN (30) and f0 D A (3) adding up

to final dimensionality 72. (Note, our experiments showed a

marginal effect by using a VTLN on the PLP feature stream

therefore it was not applied due to simplicity.) This system is

0.6% absolutely worse than SBN features only (Table6). It is

caused by significant difference between SBN and baseline PLP

based systems (SBN is much better) and also by having f0 twice

in the system: one may question the independence of features,

as f0 is already integrated in the SBN output. RDT should fix

these problems.

5.3.1. Structure of RDT system

According to our previous experiments, GMM with 125 com-

ponents was chosen. In the RDT system, posterior probabilities

of GMM components for the current frame are stacked with the

averages of posteriors for adjacent frames 1-2, 3-5 and 6-9 on

Table 7: Removing of scripted data.

System VAD segm

CER[%]

SBN reseg - all. data 47.3

SBN reseg - conv. data 47.5

Table 8: RDT results.

System CER [%]

ML SBN 47.3

ML RDT30 SBN 46.0

ML PLP+SBN+f0 D A 47.9

ML RDT72 PLP+SBN+f0 D A 45.0

ML RDT72to69 PLP+SBN+f0 D A 45.0

ML RDT72to69 PLP+SBN+f0 D A CMLLR 44.4

ML SAT PLP+SBN+f0 D A 45.8

ML SAT RDT72to69 PLP+SBN+f0 D A 43.4

MPE SAT RDT72to69 PLP+SBN+f0 D A 42.4

the right and likewise on the left (i.e. 7 groups spanning 19 con-

text frames in total). The resulting 7×125-dimensional vector

serves as weights γr(t) in (1) for corresponding 7×125 trans-

formations: F ×F matrices, where F is feature dimensionality,

see block diagram in figure 2. In [11], we presented signifi-

cant gain by adding such posterior probabilities from adjacent

frames.

The GMM model is created by pooling and merging all

Gaussian components from well trained baseline ML models.

More details about the clustering can be found in [12].

5.3.2. RDT results

According to table 8, RDT applied on SBN features improves

the result by 1.3% absolute. When SBN feature stream is con-

catenated with PLP and F0 (with derivatives) it gives 2.3% im-

provement over pure SBN features. Therefore, RDT is obvi-

ously gaining from complementarity of PLPs.

Next, we played with dimensionality reduction by RDT. We

found that small dimensionality reduction (by 3, corresponding

to the size of F0 features) did not change the result. When we

tried to go further, a decrease of accuracy was observed.

Constrained Maximum Likelihood Linear Regression (CM-

LLR) adaptation [13] over RDT feature stream gave 0.6% abso-

lute improvement. Straightforward use of CMLLR is however

dangerous, as CMLLR is estimated by Maximum Likelihood,

therefore part of discriminability given by RDT is lost. To solve

this problem, we used Speaker Adaptive Training (SAT) sim-

ilarly to [14]: a set of CMLLR transforms was generated by

ML model and RDT was estimated on top of CMLLR-rotated

features. This gives a nice 1% additive gain to CMLLR esti-

mated on top of RDT. The last line in Table 8 shows 1% additive

improvement given by final discriminative retraining of HMM

with MPE criterion, it is our final result.

6. Conclusions

The novel things we have brought to our BABEL Cantonese

system include 6-layer Stacked Bottle-Neck features and using

f0 at the input of this NN. We have also investigated into ro-

bustness of SBN training (silence, normalization) and shown an

efficient combination with PLP and (again!) F0 features using

Region-Dependent transforms. Last by not least, a combination

of RDT with another popular adaptation technique (SAT) was

shown beneficial.

Our future work will include extensive testing of the inves-

tigated approaches on other BABEL languages, and study of

transforms in a DNN system, as suggested in [15].
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