
A region-specific feature-space transformation for speaker adaptation and
singularity analysis of Jacobian matrix
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Abstract
In this paper, we present an in-depth analysis of a recently pro-
posed method for speaker adaptation. The method involves
a region-specific feature-space transformation, which we refer
to as soft R-FMLLR. We argue that the method has certain
difficulties, the most significant being the fact that it is non-
invertible. An analysis that pertains to the singularity of the
Jacobian matrix is presented, from which we note that the ma-
trix becomes near-singular at certain points in the feature space.
It indicates that the transformation is non-invertible. We ob-
serve that under this case maximum likelihood estimation ad-
versely affects the speech recognition performance. Moreover,
sufficient statistics do not exist that makes the estimation pro-
cedure computationally very expensive. The concerns outlined
above render the method to be unattractive. We propose a sim-
ple yet important modification, hard R-FMLLR, and show that
the associated Jacobian matrix is assured to be full-rank, and
it is computationally efficient. On a large vocabulary contin-
uous speech recognition task the performance of the proposed
method is shown to be better than soft R-FMLLR. Further, it is
comparable to the widely used CMLLR with regression classes,
especially when higher number of transforms are used.

1. Introduction
It is well known that the effect of inter-speaker variability on
speech originating from different acoustic classes can be sig-
nificantly different [1]. It is therefore appropriate to modify the
widely used model-space transformation technique, constrained
maximum likelihood linear regression (CMLLR), to be specific
to each acoustic class rather than being global [2]. In [3], it is
achieved by dividing the acoustic space into a small number of
homogeneous regions and allowing each region to have a sepa-
rate linear transform. The collections of Gaussian mixtures in
the HMM (known as regression classes) are used to represent
the homogeneous regions. Speaker adaptation is achieved by

μ̂̂μ̂μjm = Brμμμjm − br , Σ̂̂Σ̂Σjm = B
T
r ΣΣΣjmBr, (1)

where (Br,br) is the CMLLR transform shared with regres-
sion class r, andμμμjm andΣΣΣjm denote the mean and co-variance
of the Gaussian mixtures in the speaker independent (SI) HMM,
respectively. We have suggested a similar scheme using lin-
earized vocal tract length normalization [4].

Motivated by [5], recently Kozat et al. [6] presented an
alternative method to enable class-specific speaker adaptation.
Unlike CMLLR, it is a fully feature-space transformation that
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“adapts features” to speakers before passing them to the acous-
tic model 1. In [6] the homogeneous regions are represented by
a separate GMM that is used to cluster the feature space. If C
denotes the number of mixtures in the GMM the transformation
can be formulated as :

f : Rd → R
d, yt = f(xt) =

C∑
l=1

γ
g
l
(xt)Wlx

+
t , (2)

whereWl denotes the transform associated with mixtures l; it
has a linear part and a bias, i.e.,Wl = [Al ; bl]. xt and yt are
the speaker un-normalized and the speaker normalized feature
vectors at time t, respectively, and d is the dimension of the
vectors. x+

t is the extended feature vector defined as x
+
t

T
=

[xT
t ; 1]T . γg

l (xt) denotes the posterior probability of mixture
l computed w.r.t. xt. The transforms are estimated using the
maximum likelihood (ML). We will refer to this scheme as soft
region-specific FMLLR (soft R-FMLLR) in this paper. The
same feature-space transformation was briefly discussed in [10].

One of the objectives of this paper is to present a detailed
study of the soft R-FMLLR model and discuss the underlying
difficulties. Further, we present a simple yet important exten-
sion that overcomes the difficulties.

The main concern with Eq. 2 is that since it involves a lin-
ear combination of two or more linear transforms, it may not be
an invertible function. In such case, the Jacobian matrix, dyt

dxt
,

would become singular that will force the likelihood function to
go to −∞. This would degenerate the system and hence might
lead to a degraded speech recognition performance. Although
the authors discussed the problem briefly in [6], steps had not
been taken to address it. The observations made by the authors
are as follows: (i) When the transforms were initialized with
the identity matrix for (iterative) ML estimation, the benefit ex-
pected due to region-specific transformation was not observed.
In fact, the recognition performance was worse than the perfor-
mance given by global transformation. (ii) In contrast, when
the transforms were initialized with the global transform, the
expected improvement was indeed achieved.

In this paper, we present a detailed study of the two cases
discussed above. The observations made by us are as follows:
(i) In the first case (initialization with the identity matrix), the
Jacobian matrix of the model in fact turned out to be very close
to be singular over a small number of feature vectors in the
test set. This is the critical problem with the technique and the

1Such feature processing is useful with deep neural network based
acoustic models [7, 8], which has recently been proved to be much
more effective than the traditional GMM-based systems [9]. Although
CMLLR with multiple transforms can be equivalently expressed as a
feature-space operation, it still depends on the acoustic model through
the regression-class definition to retrieve the transform-to-class map-
ping. Hence CMLLR is not a fully feature-space operation.
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reason for the degradation in the performance. (ii) In the second
case, the number of feature vectors where the Jacobian matrix
is near singular was found to be extremely small. As a result,
the detrimental effect was much less significant.

Such observations were made when we conducted an in-
depth analysis pertaining to the singularity of the Jacobian ma-
trix (Section 2.2). We conclude from the study that the transfor-
mation is highly likely to be non-invertible and in such case ML
estimation adversely affects the recognition performance. In ad-
dition, we noted that even with global initialization, the perfor-
mance was poorer than CMLLR. Moreover, sufficient statistics
of finite dimension do not exist; as a consequence, repeated pro-
cessing of adaptation data would be required while (iteratively)
estimating the transforms. Hence the computational cost be-
comes very high. The difficulties described above render soft
R-FMLLR to be unattractive.

We present a simple yet important extension – we propose
to quantize the original mixture posteriors such that each feature
vector is transformed by only one region-specific transform.
The resulting transformation is termed as hard R-FMLLR. It
offers the following advantages over soft R-FMLLR:
1. The Jacobian matrix is ensured to be full-rank over all

points in the feature space irrespective of the initialization.
2. The recognition performance is shown to be better than

soft R-FMLLR on an LVCSR task.
3. It allows collection of sufficient statistics; hence, it is com-

putationally more efficient (faster) than soft R-FMLLR.
Further, the performance of hard R-FMLLR is shown to be
comparable to CMLLR, especially when higher number (4 or
more) of transforms are used.

The organization of the rest of the paper is as follows. In
Section 2, we discuss soft R-FMLLR [6] and the associated
difficulties. The proposed hard R-FMLLR is described in Sec-
tion 3. The experimental results are presented in Section 4. Fi-
nally, we conclude in Section 5.

2. Soft R-FMLLR
Our implementation of soft R-FMLLR differs from [6] in that
we use the Expectation Maximization (EM) algorithm for ML
estimation of the transforms, whereas in the previous work the
likelihood function was directly maximized. The GMM is cre-
ated from a well trained SI HMM model by iteratively merging
the closest Gaussian mixtures [11] until the required number of
components is obtained. The EM auxiliary function for soft
R-FMLLR can be shown to be2

Q({Wl}
C

l=1) =
T∑

t=1

log |Jxt
|+

C∑
l=1

{
tr
(
WlKl

T
)
−

1

2

C∑
p=1

vec (Wl)
T
Glpvec (Wp)

}
(3)

Note that the auxiliary function (and the likelihood function) is
valid only for invertible transformation. The first and second
order statistics,Kl andGlp, are as follows:

Kl =
T∑

t=1

∑
jm

γ
g
l
(xt)γjm(t)ΣΣΣ−1

jmμμμjm(x+
t )T , (4)

Glp =
T∑

t=1

∑
jm

γ
g
l
(xt)γ

g
p (xt)γjm(t) x+

t (x+
t )T ⊗ΣΣΣ−1

jm
, (5)

2The steps for derivation of auxiliary function are similar to our ear-
lier work in [12]. The expressions are also valid for full co-variances.

where ⊗ denotes the Kronecker product. μμμjm andΣΣΣjm are the
mean vector and the co-variance matrix of mixture gjm in the
HMM set, respectively. vec(·) is the column-wise vectorization
operation on the matrix and tr(·) is the matrix trace operation.
The number of (existing) statistics to be collected is C + C2.
The Jacobian matrix, Jxt

, appearing in Eq. 3 is

Jxt
=

dyt

dxt

=
C∑

l=1

Al

(
xt

(
dγ

g

l
(xt)

dxt

)T

+ γ
g
l
(xt)I

)
, (6)

dγ
g
l
(xt)

dxt

= γ
g
l
(xt)

⎛
⎝ΣΣΣg

l

−1 (
μμμ
g
l
− xt

)
−

C∑
p=1

γg
p(xt)ΣΣΣ

g
p
−1
(
μμμg
p − xt

)⎞⎠ .

We note that the Jacobian matrix is a highly non-linear func-
tion of the feature vector, xt. A closed-form solution that maxi-
mizes the auxiliary function,Q, w.r.t. {Wl} does not exist. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [13] is used for the
optimization – 100 iterations are used in our experiments.

2.1. Limitations
As discussed earlier, since Eq. 2 involves a linear combination
of two or more (C ≥ 2) transforms, it may not be an invertible
function, i.e., yt = f(xt) may be a many-to-one mapping, i.e.,

card
{
xt | yt = f(xt) , xt ∈ R

d
}
≥ 1. (7)

In other words, a certain point in the range of the function may
correspond to more than one points in the domain. From the
practical point of view, the consequence of non-invertibility is
as follows: it would force the Jacobian matrix to become singu-
lar at certain points in the feature space3 and hence as we note
from Eq. 3 the auxiliary function (and the log-likelihood func-
tion) would go to −∞. In Section 2.2, we present a test con-
ducted to examine the singularity of Jacobian matrix and study
its implications on the recognition performance.

Moreover, we note from Eq. 3 through 6 that, although suf-
ficient statistics exist for the second and third terms of the aux-
iliary function, they do not exist for the term involving the Jaco-
bian matrix. Hence, it is necessary to process the data as many
times as the number of optimization iterations used while op-
timizing the transforms; this is computationally very expensive
(100 iterations are used both in our implementation and in [6]).

2.2. Proposed test for singularity of Jacobian matrix

We conducted the following experiments with the aim to detect
the feature vectors where the Jacobian matrix is singular. Refer
to Section 4 for the experimental set-up.

(1) In the first experiment, we used the transforms of the
final iteration of ML estimation and computed the ratio of the
largest to smallest singular values (singular value ratio, SVR) of
the Jacobian matrix at all feature vectors in the test set:

η(xt) =
λmax (Jxt

)

λmin (Jxt
)
, (8)

where Jxt
is the Jacobian matrix evaluated at xt (Eq. 6). A large

η(xt) therefore would imply that Jxt
is close to be singular4

at xt. The following criterion is used to compute the average
number of unsafe frames, i.e., the points where η(xt) ≥ 105:

Nu =
1

R

R∑
r=1

Tr∑
t=1

δ(xt) , δ(xt) =

{
1 if η(xt) ≥ 105

0 otherwise

3This is based on the inverse function theorem, Chapter 9 in [14].
4Although the test set includes a large number of feature vectors, the

vectors where the Jacobian matrix is exactly singular may not appear.
Hence, SVR has been used as a measure for closeness to singularity.
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Table 1: Jacobian test on soft R-FMLLR: Average auxiliary function values (Q) and average number of unsafe frames (Nu) are
shown for with and without feature compensation and different initialization conditions. Number of frames per-speaker is about 11090.

initialization with: initialization with: initialization with:
# of transforms Identity matrix (case I) Global transform (case G) Diagonal transforms (case D)
per speaker feature compensation feature compensation feature compensation

without with without with without with
C Nu Q Q Nu Q Q Nu Q Q

No Adaptation - -19.54 -19.54 - -19.54 -19.54 - -19.54 -19.54
1 (global) 0 -18.43 -18.43 0 -18.03 -18.03 0 -18.23 -18.23

2 4.05 -18.69 -17.91 0.37 -17.53 -17.31 9.61 −∞ -17.76
4 2.60 -17.67 -17.26 0.22 -16.95 -16.78 5.1 -17.79 -17.13
6 0.71 -17.06 -16.87 0.10 -16.48 -16.36 1.99 -16.85 -16.48

Table 2: Jacobian test on soft R-FMLLR: WER (%) with and
without feature compensation. Column 1 indicates number of
transforms per speaker. NA=No adaptation.

initialization with
Identity (case I) Global (case G) Diagonal (case D)

C compensation compensation compensation
without with without with without with

NA 43.0 43.0 43.0 43.0 43.0 43.0
1 39.9 39.9 39.8 39.8 39.8 39.8
2 41.2 40.2 39.7 39.5 42.0 40.2
4 40.6 39.6 39.2 39.0 41.6 40.3
6 40.4 39.3 39.0 38.9 40.6 39.5

where R is the number of speakers in the test set and Tr is the
number of frames from speaker r. Three cases are considered
– the region-specific transforms being initialized with identity
matrix (case I), the estimated global transform (case G) and the
diagonal transforms (case D). The average (per-speaker, per-
frame) auxiliary function value, Q, and Nu, are presented in
Table 1 (shown as without feature compensation).

(2) In another experiment, the detected unsafe frames were
removed from the test set in all iterations of estimation. The
value of auxiliary function, Q, of the final iteration is presented
in the same Table (shown as with feature compensation).

The following observations pertain to the cases when two
or more transforms are used: (i) The number of unsafe frames
(Nu) is observed to be non-zero in all initializing conditions
(I, G, D). It constitutes a small fraction of the total number of
frames (≈ 11090 frames per-speaker). (ii) Under cases I and
D and with compensation, the value of auxiliary function is sig-
nificantly higher than without compensation. (iii) In particular,
in case D with two transforms being used, the Jacobian ma-
trix turned out to be exactly singular. This forced the auxiliary
function to reach −∞. With compensation, the auxiliary func-
tion increased from −∞ to −17.76. (iv) In case G, although
the number of unsafe frames is very small, it is still non-zero.

2.3. Results of recognition experiments

Percentage of word error rates (WER) comparing with and
without feature compensation are presented in Table 2. With
compensation, the unsafe frames were again removed during
decoding. The following observations can be made:

(i) Under cases I and D, without compensation, the WER
with region-specific transformation is poorer than that with
global transformation. Significant reduction in WER results
with compensation. (ii) Under these cases (I and D) and with
compensation, the WER with region-specific transformation is
inconsistent compared to global transformation. This is because
the Jacobian based feature compensation is not meant to pro-
vide complete removal of all unsafe frames – it can only reduce
them based on the threshold set on η. (iii) In case G,Nu is close

to zero. In this case, WER with region-specific transformation
can be observed to be better than global transformation without
compensation. However, relatively small additional improve-
ment can still be seen with compensation.

From the experiments, we note that there are certain feature
vectors in the acoustic space where the Jacobian matrix is sin-
gular or is near-singular. Therefore, the transformation is most
likely to be non-invertible. Further, the transforms obtained by
ML estimation adversely affect the recognition performance.
Although initialization with the global transform leads to a very
smallNu, it is based on heuristics, hence it may not be reliable.

3. Proposed Hard R-FMLLR
We propose to quantize the original GMM posteriors such that
they take binary values (i.e., 0 or 1). In this section we show that
the resulting feature transformation model is free of the difficul-
ties associated with the previous model.

With the quantized posteriors only one region-specific
transform would normalize each feature vector over the com-
plete space, instead of a linear combination. To formulate the
transformation model with hard R-FMLLR, let us define the
indicator function as follows:

1(Rl)(xt) =

{
1, xt ∈ Rl,

0, otherwise , (9)

where Rl is the collection of feature vectors (or, the region in
the acoustic space) where the quantized posterior of mixture l in
the GMM is unity. Hence, the space of feature vectors is divided
intoC disjoint regions by the GMM. The speaker normalization
model can now be expressed as

yt = f(xt) =

C∑
l=1

1(Rl)(xt)Wl x
+
t . (10)

The EM auxiliary function for hard R-FMLLR can be ob-
tained from that of soft R-FMLLR using the fact that the pos-
terior probabilities are binary:

Q =
T∑

t=1

log |Jxt
|+

C∑
l=1

tr
(
WlKl

T
)
−

1

2
vec (Wl)

T
Glvec (Wl) ,

where the second order statistic is

Gl =
∑

xt∈Rl

∑
jm

γjm(t) x+
t (x+

t )T ⊗ΣΣΣ−1
jm (11)

(the first order statistic, Kl, can be similarly obtained from
Eq. 4) and the Jacobian matrix is

Jxt
=

dyt

dxt

=
C∑

l=1

Al

(
xt

(
d 1(Rl)

(xt)

dxt

)T

+ 1(Rl)
(xt)I

)
. (12)
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Table 3: WER (%) with CMLLR and R-FMLLR. The initial-
ization conditions are shown in bracket. Results with soft R-
FMLLR correspond to the case when feature compensation was
not used. Column 1 indicates number of transforms per speaker.

# of transforms CMLLR R-FMLLR
per speaker soft hard

C (diagonal) (global) (diagonal)
No adaptation 43.0 43.0 43.0
1 (global) 39.8 39.8 39.8

2 39.0 39.7 39.4
4 38.8 39.2 38.9
6 38.8 39.0 38.8
8 39.0 39.1 39.0

Using the Dirac delta to compute the derivative of the indicator
function, the Jacobian matrix turns out to be

Jxt
=

C∑
l=1

1(Rl)
(xt)Al. (13)

Unlike the Jacobian matrix of soft R-FMLLR, Eq. 13 has a
simple structure – it depends on the feature vector via the indi-
cator function, which implies that the Jacobian matrix is equal
to one of the C transforms at each point in the feature space.
Hence, it is assured to be non-singular5 over the entire space.

Further, using the disjoint property of the regions, the Jaco-
bian determinant simplifies to

T∑
t=1

log |Jxt
| =

C∑
l=1

βl log |Al| , (14)

where βl is the number of frames in the adaptation set belong-
ing to region Rl. βl is the order zero statistic. Therefore, with
quantized posterior, sufficient statistics of finite dimension ex-
ist, which are {βl,Kl,Gl}

C

l=1. They can be collected by pro-
cessing adaptation data only once. The total number of statis-
tics to be collected with hard R-FMLLR is 3C. In contrast
soft R-FMLLR requires as many times processing of data as
the number of optimization iterations. Hence, hard R-FMLLR
is computationally more efficient than its soft counterpart.

Further, since the region-specific transforms independently
contribute to the auxiliary function, they can be optimized sep-
arately. The gradient ascent algorithm is used to iteratively op-
timize the transforms. 100 iterations are performed after initial-
izing them with the diagonal matrices.

Another difference between soft and hard R-FMLLR is
that with soft R-FMLLR the number of statistics to be col-
lected is C + C2 (each is a matrix), whereas with hard R-
FMLLR, it is only C (scalars) + 2C (matrices).

3.1. Comparative analysis and future direction

The comparison between CMLLR and both form of R-FMLLR
is summarized in Table 4. We emphasize that R-FMLLR is
favorable for deep neural network (DNN), which has recently
been shown to be more effective than GMM based systems. In
this “hybrid” frame-work, an artificial neural network is trained
to output HMM state level posterior probabilities [15, 9]. Since
DNNs do not contain Gaussian mixtures, the regression classes
are not defined; hence CMLLR with multiple transforms cannot
be incorporated into this frame-work. On the other hand, since
R-FMLLR is a fully feature-space transformation we can gen-
erate the speaker adapted features and pass them as the input
to the neural network, following ideas similar to [7, 8]. There-
fore, R-FMLLR has an advantage over CMLLR in this sense.

5We assume each of the C transforms to be full-rank.

Table 4: A comparative analysis of CMLLR and R-FMLLR.
Attributes CMLLR R-FMLLR

(regression) soft hard

Jacobian Matrix Full Rank Singular Full Rank
Sufficient Stats (Fast?) Yes (Fast) No (Slow) Yes (Fast)
Memory Requirement to O(C) O(C2) O(C)
store existing statistics (∗)

Favors Neural Network? No Yes Yes
(∗) The order-zero statistic of soft R-FMLLR does not exist.

Our future direction includes investigation of R-FMLLR with
the DNN systems. We are interested mainly in the proposed
hard version because of the advantages it offers.

4. Experimental setup and Results
For the experiments [12], the SI HMM model was trained on
the ctstrain-04 training set, which is a subset of the h5train-03
set. The training set contains about 278 hours of speech from
Switchboard I, II and Call Home English. Test was done on
the Hub5 Eval-01 test set, which was used during NIST 2001
CTS evaluation. It consists of 3 subsets of 20 conversations
from Switchboard-1, Switchboard-2 and Switchboard cellular
corpora and contains more than 6 hours of speech. Bi-gram
language model from AMI speech recognition system for NIST
Rich Transcriptions 2007 was used during decoding [16]. 39-
dimensional MFCC features that consist of 13 (C1 to C12 and
C0) static, Δ and ΔΔ components were used. Speaker-wise
cepstral mean and cepstral variance normalization were per-
formed both during training and test. 3-state cross-word tri-
phone HMM models with 20 (diagonal co-variances) mixtures
per state were used. The un-supervised adaptation was used and
speaker adaptive training [2] was not applied. The test set in-
cluded data from 120 speakers. The duration of test data per
speaker was 3 minutes in average.

The WER (%) comparing the three methods are presented
in Table 3. The following observations can be made. (1) The
WER with all three methods decreased monotonically from a
single transform up to 6 transforms per speaker, where the best
performance is achieved. (2) The WER with hard R-FMLLR
and CMLLR are comparable in all cases, except with 2 trans-
forms where hard R-FMLLR is slightly inferior. (3) The best
performance with hardR-FMLLR is same as the best with CM-
LLR (with 6 transforms). (4) The WERwith soft R-FMLLR is
consistently inferior to both CMLLR and hard R-FMLLR. We
may expect the soft classification of the frames into regions (as
with soft R-FMLLR) to provide better performance than hard
classification. We believe, such effect has been diminished by
the adverse effect caused by the fact that the Jacobian matrix is
singular. (5) With 6 transforms, the WER with soft R-FMLLR
is slightly inferior to the other two. However, as mentioned
before, since sufficient statistics of soft R-FMLLR do not ex-
ist, the computational cost becomes very high, which makes the
method prohibitive to use in practice.

5. Conclusions
In this paper, the difficulties associated with soft R-FMLLR
are addressed. By analyzing the Jacobian matrix, it was con-
cluded that the transformation is most likely to be non-invertible
and in this case ML estimation adversely affects the perfor-
mance. A new transformation, hard R-FMLLR, is presented. It
is shown that the performance of the proposed method is better
than soft R-FMLLR and it is computationally more efficient.
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