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Mobile Biometrics:
combined Face and voice  
verification for a Mobile Platform

M odern smartphones not only 
have the memory capacity to 
store large amounts of sen-
sitive data (such as contact 
details and personal photo-

graphs), they also provide access, via the mobile 
Internet, to personal data stored elsewhere (for 

example, on social networking 
sites, through Internet bank-
ing, and in email). Although 
passwords provide protection 
against unauthorized access 
to this data, the sheer number 
of such sites makes it imprac-
tical to remember a different 
password for each one, yet 
using the same password for 
all is risky (all sites would be 
compromised if the password  
were discovered). Further-
more, storing the password 
on the device isn’t advisable, 
because mobile devices are eas-
ily lost or stolen.

An alternative is to au-
thenticate yourself using  
biometrics—physical charac-
teristics (such as fingerprints) 

unique to you and easy to remember yet not eas-
ily lost or stolen. Although biometric systems 
require data-capture facilities, modern smart-
phones come equipped with a video camera and 
microphone. The   Mobile Biometrics (MoBio) 
project exploits these features to combine face 

and voice biometrics for secure yet rapid user 
verification.

A major challenge, however, is to capture the 
signal in a way that isn’t confused by day-to-day 
variations. A face, for example, looks different de-
pending on the expression, and lighting and can 
change over time (such as when growing a beard). 
Similarly, a voice can sound different depending 
on the user’s health (for example, if the user has a 
sore throat) and is difficult to separate from back-
ground noise in loud environments. We must also 
make the system robust to spoofing by impostors; 
checking that the lips move, for example, ensures 
that photographs don’t fool the system.

The MoBio project provides a software 
verification layer that uses your face and voice, 
captured by a mobile device, to ensure that you 
are who you claim to be (see Figure 1). Although 
other studies have investigated face and voice 
authentication,1,2 MoBio is the first to assess 
bimodal authentication under the challenging 
conditions of a mobile architecture.

Face analysis
Using the integrated camera on the mobile de-
vice, we can verify that users are who they claim 
to be from their facial biometrics. First, how-
ever, we isolate the part of the image that con-
tains their face so that we can ignore the back-
ground that’s irrelevant.

Face detection
To capture the user’s appearance, we begin with 
an image that contains the user’s face, which 

The Mobile Biometrics (MoBio) project combines real-time face and voice 
verification for better security of personal data stored on, or accessible 
from, a mobile platform.
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we localize to get a rough estimate of 
its position and size (Figure 2). This is 
difficult because faces vary in appear-
ance depending on their shape and size, 
skin color, facial expression, and light-
ing conditions. Our system must be able 
to detect all faces regardless of these 
factors. Ideally, the system should han-
dle different orientations and occlusion,  

but in mobile verification, we assume 
the person is looking almost directly 
into the camera most of the time.

We approached this problem by 
classifying every region of the image 
as either “face” or “not face,” using 
modern pattern-recognition meth-
ods to learn the image characteristics 
that differentiate faces from nonfaces.  

We considered how to summarize the 
image region in a compact form (that is, 
compute its feature vector) and classify 
the image region based on its features.

When searching an image, there are 
thousands of possible locations for 
the face, and it’s important to quickly 
summarize every image region. Using 
a variant of the Local Binary Pattern,3 

Figure 1. The Mobile Biometrics (MoBio) identity verification system computes feature vectors from the captured and normalized 
face and voice, compares the features to stored models, fuses the scores for improved robustness, and performs a bimodal 
verification.
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Figure 2. A “window” slides across the image, and the underlying region is sampled and reduced to a feature vector. This feature 
vector feeds into a simple classifier that rejects obvious nonfaces. Subwindows that are accepted then feed into a succession of 
more complex classifiers until all nonfaces have been rejected, leaving only the true faces.
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we represented local image statistics 
around each pixel with a binary code 
indicating the image gradient direc-
tion with respect to its eight neigh-
bors. We then computed the histogram 
over transformed values for each patch 
and fed this into a classifier to decide 
whether the patch was “face” or “not 
face.” In practice, we used a cascade 
of increasingly complex classifiers4 to 
reject most image regions (that look 
nothing like a face) using simple, but 
efficient, classifiers in the early stages. 
We reserved the more accurate, but 
computationally demanding, classifiers 
for the more challenging image regions 
that look more like a face.

Our experiments on standard  
datasets—for example, the biomet-
ric access control for networked and 
ecommerce applications (Banca) and 
extended multimodal verification for 
teleservices and security applications 
(XM2VTS) datasets—suggested that 
these methods detect more than 97 
percent of the true faces. In our appli-
cation, however, we also prompted the 
user to keep his or her face in the center 
of the screen so that we could restrict 
the search to a smaller region, thus re-
ducing false positives and permitting 
more discriminative image representa-
tions to further increase detection rates.

To extend this baseline system, we 
developed a principled system that 
exponentially reduced false positives 
(background regions that were wrongly 
given the “face” label) and clusters of 
several detections around the same true 
face, with little or no reduction in the 
true acceptance rate.5

Face normalization
Although we could try to recognize the 
user from the rectangular image region 
approximately surrounding the face, fac-
tors such as background clutter, lighting, 
and facial expression could affect perfor-
mance. We therefore remove as many of 
these effects as possible by normalizing 
the face so that it has properties (with re-
spect to shape and texture) similar to the 
stored user model (see Figure 3).

First, we localize individual facial 
features, such as the eyes, nose, mouth, 
and jawline, using them to remove any 
irrelevant background. Next, we stretch 
the face to fit a predefined shape, thus 
compensating for differences due to the 
direction the person is facing, his or her 
expression, and the shape of the face  
(a weak cue for verification). Finally, we 
normalize lighting by adjusting bright-
ness and contrast to some fixed values. 
The resulting image can then be directly 
compared with a similarly normalized 
model image for accurate verification.

To locate facial features, we fitted 
a parametric model of the face to the 
image using a novel version of the Ac-
tive Appearance Model (AAM) that 
we developed specifically for a mobile 
architecture using modern machine-
learning techniques.6 The AAM uses 
statistical models of shape and texture 
variation—learned from a set of train-
ing images with hand-labeled feature 
locations—to describe the face using 
only a few parameters. It also learns to 
detect when the model is in the wrong 
place and adjust parameters to align the 
model with the image. To predict these 
corrections, we trained a linear regres-
sor to learn the relationship between 
sampled image data and true param-
eter values, using image samples with 
known misalignments.

When we fitted the model to a new 
image, we initially aligned the model 

with the coarse face-detection result. 
Then, we sampled and normalized 
the corresponding part of the image 
(see Figure 3). Our method then pre-
dicted and applied a correction to the 
shape and pose parameters to align 
the model more closely to the image. 
By repeating this sample-predict- 
correct cycle several times, we con-
verged on the true feature locations, 
giving a normalized texture sample 
for verification.

Compared with the AAM, our ap-
proach achieved similar or better accu-
racy (typically within 6 percent of the 
distance between the eyes) and a three-
fold speedup on a Nokia N900, reduc-
ing processing time from 44.6 ms to 
13.8 ms, and thus achieving frame-rate 
performance.6 Although we achieved 
this performance using a model that 
was trained from publicly available  
datasets and that could be adapted  
to a specific user by retraining the pre-
dictor (online or offline), our results 
suggest that performance would im-
prove little in return for the added com-
putational cost.

Face verification
Given a normalized facial image, the 
final step is to assign a score describing 
how well the image matches the stored 
model for the claimed identity. We 
then use that score to decide whether 
to accept or reject the person’s claim 

Figure 3. Statistical models of shape and texture are estimated from training data 
and fitted to a new image using the Active Appearance Model. The underlying 
image can then be sampled to remove background information, warped to remove 
irrelevant shape information (for example, due to expression), and normalized to 
standardize brightness and contrast levels.
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(see Figure 4). Again, we treat this as 
a classification problem, but here we 
want to label the person as a client or 
an impostor based on his or her ap-
pearance, as summarized by the image 
features. Clients are given access to the 
resource they need; impostors aren’t.

Because illumination conditions af-
fect appearance, we applied gamma 
correction, difference of Gaussian 
filtering, and variance equalization to 
remove as many lighting effects as pos-
sible. For added robustness, we sub-
divided the processed images into non-
overlapping subwindows to make the  
descriptor more robust to occlusion, 
and we computed the Local Binary 
Pattern (LBP) value for every pixel over 
three scales. We then summarized ev-
ery window by its LBP histogram and 
used the concatenated histograms as  
a feature vector for the whole image 
(Figure 4).

To classify an observed feature vec-
tor, we computed its distance to the 
stored model of the claimed iden-
tity. Although we could make a deci-
sion based on this similarity measure 
alone, we instead used a robust likeli-
hood ratio, whereby the distance to a  

background model provided a reference 
that expressed how far above average 
the observation matched the claimed 
identity, thus indicating our confidence 
in the classification. Using this method, 
we achieved half-total error rates 
(where false acceptances are as likely 
as false rejections) of approximately  
5 percent using the Banca dataset.

We also developed several novel im-
age descriptors that improved recogni-
tion performance. One based on Local 
Phase Quantization was designed for 
out-of-focus images and achieved a 
recognition rate of 93.5 percent (com-
pared with 70.1 percent for LBP) on 
a face image that had been blurred.7 
Further developing this descriptor to 
include information at multiple scales, 
we improved recognition rates—in 
some cases, from 66 to 80 percent—on 
a more challenging dataset with widely 
varying illumination.8

voice analysis
Although face verification technology 
is maturing, we also exploit the fact 
that we have a microphone at our dis-
posal by including voice-based speaker 
verification in our system.

voice activity detection
Given a sound sample captured using 
the mobile device’s microphone, our 
first step is to separate speech from 
background noise. As in face detec-
tion, however, speech detection is com-
plicated by variation from speaker to 
speaker (for example, due to character-
istics of the vocal tract, learned habits, 
and language) and from session to ses-
sion for the same speaker (for example, 
as a result of having a cold).

To summarize someone’s voice, we 
represented the variation in the shape of 
the vocal tract by a feature vector sum-
marizing frequency characteristics over 
a small window (on the order of a few 
tens of milliseconds) around any given 
time. More specifically, we used ceps-
tral analysis to compute this spectrum 
via a Fourier transform and decompose 
its logarithm by a second Fourier trans-
form, mapping the spectrum into the 
mel scale (where distances more closely 
match perceived differences in pitch) 
before the second decomposition to 
give mel-frequency cepstral coefficients 
(MFCCs).

We then used a Gaussian Mixture 
Model (GMM) to classify a feature vector  

Figure 4. A cropped face window is subdivided into blocks, each of which is processed with a Local Binary Pattern operator at 
several scales. We then capture the distributions of LBP values in histograms that we concatenate and reduce in dimensionality 
(for example, via principal component analysis) before comparing with the stored model.
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as speech or nonspeech, discarding the 
temporal ordering of feature vectors 
and low-pass smoothing the output. 
Although this proved to be an effective  
technique for examples with a high  
signal-to-noise ratio, environments 
with a lot of background noise de-
manded more complex methods that 
use more than the signal energies.

We therefore used an artificial neu-
ral network to classify MFCC vectors, 
derived from a longer temporal context 
of around 300 ms, as either one of 29 
phonemes or as nonspeech to give an 
output vector of posterior probabilities 
corresponding to the 30 classes. These 
vectors were smoothed over time using 
a Hidden Markov Model to account for 
the (language-dependent) known fre-
quency of phoneme orderings learned 
from training data, and the 29 pho-
neme classes were merged to form the 
“speech” samples.

Because this approach was com-
putationally demanding (and there-
fore not well suited to an embedded 
implementation), we also proposed a 
simpler feature set, denoted Boosted 
Binary Features,9 based on the re-
lationship between pairs of filter re-
sponses and performing at least as 
well as existing methods (65 percent 
correct classification over 40 possible 
phonemes) while requiring only mod-
est computation.

Speaker verification
After discarding background noise, we 
can then apply the useful segments of 
speech to compute how well the per-
son’s voice matches that of the claimed 
identity and decide whether to accept or 
reject the claim.

To describe the voice, we used 19 
MFCCs (computed over a 20 ms win-
dow), plus an energy coefficient, each 
augmented with its first and second de-
rivatives. After removing silence frames 
via voice activity detection, we applied 
a short-time cepstral mean and vari-
ance normalization over 300 frames.

As a baseline, to classify the claim-
ant’s feature vector, we used Joint 

Factor Analysis based on a paramet-
ric GMM, where the weights and co-
variances of the mixture components 
were optimized at the outset but the 
centers were specified as a function of 
the data. These weights, covariances, 
and means were learned using a large 
cohort of individuals, and the subject-
subspace was learned using a database 
of known speakers, pooling over ses-
sions to reduce intersession variability. 
The session-subspace was then learned 
from what was left.

When testing, we used every train-
ing example to estimate the speaker 
and session, and we adapted a generic 
model to be user specific. We then dis-
carded the session estimate (because we 
weren’t interested in whether the ses-
sions matched—only in the speaker) 
and computed the likelihood of the 
test example given the speaker-specific 
model. Score normalization then gave a 
measure to use for classification.

On the Banca dataset, this baseline 
system achieved equal error rates of 
approximately 3 percent for speaker 
verification. We showed, however, 
that we could improve the related  
i-vector estimation approach (the cur-
rent state of the art in speaker rec-
ognition) to make speaker modeling 
25 to 50 times faster using only 10 to  
15 percent of the memory, with only 

a small penalty in performance (typi-
cally increasing the equal error rate 
from 3 to 4 percent10).

We also demonstrated that decou-
pling the core speaker recognition model 
from the session variability model— 
letting us optimize the two models inde-
pendently and giving a more stable sys-
tem with limited training data—resulted 
in little or no penalty in performance.11 
Finally, we showed that using pairwise 

features achieved a half total error rate 
(HTER) of 17.2 percent compared to a 
mean HTER of 15.4 percent across 17 
alternative systems, despite being 100  
to 1,000 times more efficient.12

Model adaptation
One challenge in biometric verification 
is accommodating factors that change 
someone’s appearance over time— 
either intentionally (makeup, for ex-
ample) or unintentionally (such as  
wrinkles)—as well as external influences 
in the environment (such as lighting 
or background noise) that affect per-
formance. Therefore, the user model 
created when the person first enrolled 
can’t remain fixed—it must adapt to 
current conditions and adjust its cri-
teria for accepting or rejecting a claim  
accordingly.

In experiments with face verification, 
we began by building a generic model 
of appearance from training data 
that included many individuals, let-
ting us model effects such as lighting  
and head pose that weren’t pres-
ent in every individual’s enrollment 
data. We then adapted this generic 
model to each specific user by adjust-
ing model para meters based on user-
specific training data. In our case, 
we used a GMM to represent facial 
appearance because of its tolerance  

to localization errors. We also adapted 
the model a second time to account 
for any expected variation in capture 
conditions.

To account for changes in the capture 
environment (the Banca dataset, for  
example, contains examples captured 
under controlled, adverse, and degraded  
conditions), we computed parameters 
of error distributions for each condi-
tion independently during training, and 

The user model can’t remain fixed; it must 

adapt to current conditions and adjust its criteria 

for accepting or rejecting a claim accordingly.
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used score normalizations such as the 
Z-norm,

 
 z y

y
( ) ,q

q

q

υ
σ

=
−

or Bayesian-based normalization (im-
plemented via logistic regression),

P q y
y

1

1 exp
,

q qα β( )( ) −
+ − −

to reduce the effect of capture con-
ditions (where uq, sq, aq, and bq are 

para meters estimated, by learning, for  
condition q). During testing, we com-
puted measures of signal quality that 
identified which of the known condi-
tions most closely matched the current 
environment and adapted the classifier 
score accordingly.

In our experiments,13 normalizing 
the score reduced the equal error rate 
in some tests by 20 to 30 percent (from 
19.59 to 15.31 percent for the face; 
from 4.80 to 3.38 percent for speech), 
whereas adapting the model to capture 
conditions had an even greater effect 
on performance, reducing equal error 
rates by more than 50 percent in some 
trials (from 19.37 to 9.69 percent for 
the face, and from 4.80 to 2.29 percent 
for speech).

data Fusion
At this point, every sample in a video 
sequence has a score that tells us how 
much the person looks like his or her 
claimed identity and another score for 
how much he or she sounds like the 
claimed identity. To create a system that 
performs better than either biometric 
on its own, we fuse these two modali-
ties either by classifying each modality 
independently and feeding the result-
ing pair of scores into a third classifier 
(score-level fusion), or by fusing the  

features and passing the result to a 
single classifier (feature-level fusion). 
Because we’re concerned with video 
sequences, it’s also beneficial to fuse 
scores (or features) over time.

A naïve approach to score-level fu-
sion pools data over time by averaging 
scores over the sequence; more princi-
pled methods model the distribution of 
scores over the observed sequence and 
compare this to distributions, learned 
from training data, that correspond to 

true and false matches. As a baseline, 
we computed nonparametric statistics 
(such as the mean, variance, and in-
terquartile range) of the score distri-
butions, and separated true and false 
matches using a classifier trained via 
logistic regression. Again, score nor-
malization can be used to ensure that 
the outputs from different sensing mo-
dalities are comparable, while also con-
sidering the signal’s quality.14

Although score-level fusion is popu-
lar when using proprietary software 
(where the internal classifier workings 
are hidden), feature-level fusion can 
capture relationships between the two 
modalities. Feature-level fusion can, 
however, result in a large joint feature 
space where the “curse of dimensional-
ity” becomes problematic, and we must 
also take care when fusing sources with 
different sampling rates (such as video 
and audio).

We therefore developed a novel  
feature-level fusion technique, dubbed 
the “boosted slice classifier,” that searched 
over the space of feature pairs (one face 
and one speech) to find the pair for 
which quadratic discriminant analysis 
minimized the misclassification rate, it-
eratively reweighting training samples 
in the process. Although this approach 
had only a small effect under controlled 

conditions, it outperformed the base-
line score-level fusion system when one 
modality was corrupted, confirming 
that fusion does indeed make the sys-
tem more robust.

In a different experiment, the benefit 
of fusing modalities was more pro-
nounced, as indicated by the detec-
tion error tradeoff curves shown in  
Figure 5a. This illustrates the tradeoff 
between false rejections and false ac-
ceptances for varying thresholds of  
the classifier score—accepting more 
claimants reduces false rejections but in-
creases false acceptances (and vice versa).

Mobile Platform 
implementation
To run the system on a mobile device, 
we must consider the limitations of the 
available hardware, such as low-power 
processing, a fixed-point architecture, 
and limited memory. We therefore car-
ried out experiments that looked at the 
effect on accuracy when making ap-
proximations that would make the sys-
tem more efficient.

One effective modification was to im-
plement as many methods as possible 
using fixed-point (rather than floating-
point) arithmetic. Although some mod-
ern devices are equipped with floating-
point units, they’re far from common 
and are less efficient. Other ways to 
reduce computation included applying  
an early stopping criterion for the face 
detection and reducing the number 
of iterations used in facial-feature lo-
calization. Because reducing memory 
consumption also has performance 
benefits, we made further gains by re-
ducing parameters such as the number 
of LBP scales, the dimensionality of fea-
ture vectors, and the number of Gauss-
ian mixture components for speech 
verification. As a quantitative evalua-
tion of these approximations, we rated 
1,296 scaled systems (all possible com-
binations of 48 face and 27 speech) by 
two criteria. First, we used an abstract 
cost reflecting both memory consump-
tion and speed. Second, we used the re-
sultant generalization performance as 

To run the system on a mobile device, we 

must consider the limitations of the available 

hardware, such as low-power processing.
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measured by the equal error rate (EER). 
As expected, increasing efficiency came 
at a cost in accuracy, whereas increas-
ing complexity resulted in much smaller 
gains (see Figure 5b).

To test the system under real condi-
tions, we developed a prototype appli-
cation (see Figure 6) for the Nokia N900 
that has a front-facing VGA camera  

for video capture, a Texas Instru-
ments third-generation Open Multi-
media Applications Platform (OMAP3)  
microprocessor with a 600 MHz ARM 
Cortex-A8 core, and 256 Mbytes RAM. 
Using GTK for the user interface and 
gstreamer to handle video capture, we 
achieved near frame-rate operation for 
the identity verification system.

MoBio database and Protocol
One major difference between the Mo-
Bio project and other related projects 
is that the MoBio system is a bimodal 
system that uses the face and the voice, 
and therefore needs a bimodal data-
set on which to evaluate performance. 
Many publicly available datasets, how-
ever, contain either face or voice data 

Figure 5. A detection error tradeoff (DET) curve plots false acceptance rate against false rejection rate for a range of decision 
thresholds on a logarithmic scale, rather than a linear scale as in the receiver operating characteristic (ROC) curve. This makes 
the DET almost linear and gives a more uniform distribution of points, making interpretation easier. The equal error rate (EER) 
for a given curve occurs at the point where the false acceptance rate and false rejection rate coincide; the lower-left point is 
optimal. (a) DET curves for unimodal and fused bimodal systems tested on the MoBio database. (b) EER versus efficiency for 
various scaled systems, confirming that better accuracy comes at a cost, defined as the lower of two proportions (memory 
consumption and time taken) with respect to a baseline system.

(a) (b)

Fa
ls

e 
re

je
ct

io
n 

ra
te

0.1

40

0.20.1 0.5 1 2 5 10 20 40
False acceptance rate

0.2

0.5

1

2

5

10

20

Fusion system (male scores)
Fusion system (female scores)
Face system (male scores)
Face system (female scores)
Speaker system (male scores)
Speaker system (female scores)

0 0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Cost
Eq

ua
l e

rr
or

 ra
te

 (%
)

Figure 6. Mobile Biometrics interface demonstrating (a) face detection, (b) facial feature localization (for shape normalization), 
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but not both. Even those few that do in-
clude both video and audio1,2 captured 
the data using high-quality cameras 
and microphones under controlled con-
ditions, and thus aren’t realistic for our 
application—we’re limited to a low-
quality handheld camera. The few that 
come close (such as the Banca dataset) 
use a static camera, and thus don’t have 
the image jitter—caused by small hand 
movements—that we must deal with.

Because we anticipate other mobile 
recognition and verification applica-
tions in the future, we used a handheld 
mobile device (the Nokia N93i) to col-
lect a new database that’s realistic and 
publicly available (www.idiap.ch/dataset/ 
mobio) for research purposes (see  
Figure 7). We collected this database 
over 18 months, from six sites across 
Europe. It contains 150 subjects and 
was collected in two phases for each 
subject: the first phase includes 21 vid-
eos per session for six sessions, and the 
second contains 11 videos per session 
for six sessions. A testing protocol is 
also supplied with the data, defining 
how the database should be split into 
training, development, and test sets, and 
how evaluation scores should be com-
puted. This protocol was subsequently 
applied in a competition entered by 14 
sites: nine for face verification and five 
for speaker verification.15

T he MoBio project aimed to 
develop a robust and secure 
verification system for mo-
bile applications (for full 

technical details and experimental 

results, see www.mobioproject.org). 
The mobile Internet is an obvious ex-
ample where biometric verification 
can complement (or replace) tradi-
tional access methods, such as pass-
words. Other potential applications 
include using biometrics to lock and 
unlock the phone, and mobile money  
transactions.
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the indoor environments and uncontrolled lighting conditions.
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