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On the use of i–vector posterior distributions in
Probabilistic Linear Discriminant Analysis

Sandro Cumani, Oldřich Plchot, and Pietro Laface

Abstract—The i-vector extraction process is affected by several
factors such as the noise level, the acoustic content of the observed
features, the channel mismatch between the training conditions
and the test data, and the duration of the analyzed speech seg-
ment. These factors influence both the i–vector estimate and its
uncertainty, represented by the i–vector posterior covariance. This
paper presents a new PLDA model that, unlike the standard one,
exploits the intrinsic i–vector uncertainty. Since the recognition ac-
curacy is known to decrease for short speech segments, and their
length is one of the main factors affecting the i–vector covariance,
we designed a set of experiments aiming at comparing the stan-
dard and the new PLDA models on short speech cuts of variable
duration, randomly extracted from the conversations included in
the NIST SRE 2010 extended dataset, both from interviews and
telephone conversations. Our results on NIST SRE 2010 evalua-
tion data show that in different conditions the new model outper-
forms the standard PLDA by more than 10% relative when tested
on short segments with duration mismatches, and is able to keep
the accuracy of the standard model for long enough speaker seg-
ments. This technique has also been successfully tested in the NIST
SRE 2012 evaluation.

Index Terms—I-vector extraction, I-vectors, probabilistic linear
discriminant analysis, speaker recognition.

I. INTRODUCTION

R ECENT developments in speaker recognition technology
have seen the success of systems based on a low–dimen-

sional representation of a speech segment, the so–called “iden-
tity vector” or i–vector [2]. I–vector based techniques represent
the state–of–the–art in speaker detection [3], [4], [5], [6], [7],
[8], [9], [10], [11]. An i–vector is a compact representation of a
Gaussian Mixture Model (GMM) supervector [12], which cap-
tures most of the GMM supervectors variability. It is obtained
by a MAP point estimate of a posterior distribution [13].
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Probabilistic Linear Discriminant Analysis (PLDA) [14]
classifiers based on i–vectors are among the best models for
speaker recognition. Some PLDA systems for the last NIST
2012 Speaker Recognition Evaluation and for the DARPA
RATS project have been described in [15], [16], [17], [18],
[19], [20]. The covariance of the distribution, which accounts
for the “uncertainty” of the i–vector extraction process is,
however, not exploited by the classifiers based on i–vectors,
such as the ones based on cosine distance scoring [2], Proba-
bilistic Linear Discriminant Analysis (PLDA) [14], or SVMs
[7]. The i–vector covariance mainly depends on the zero–order
statistics estimated on the Gaussian components of a Universal
Background Model (UBM) for the set of observed features (see
equation 3 in Section II), i.e., by the duration of the speech
segments that are used for characterizing a speaker. Shorter
segments tend to produce larger covariances, so that i–vector
estimates become less reliable.
In [1] we presented a new PLDA model that incorporates

the intrinsic uncertainty of the i–vector extraction process. This
work revises and completes the theory, extends the set of exper-
iments that have been performed to validate the new model, and
analyzes the typical speaker detection scenario that allows the
computational complexity of speaker recognition scoring to be
reduced.
Our approach shows that the simple and effective PLDA

framework can still be used even if a speech segment is no more
mapped to a single i–vector but to its posterior distribution.
In particular, we derive the formulation of the likelihood for a
Gaussian PLDA model based on the i–vector posterior distribu-
tion, and propose a new PLDA model where the inter–speaker
variability is assumed to have an utterance–dependent distribu-
tion. We show that it is possible to rely on the standard PLDA
framework simply replacing the Gaussian PLDA likelihood
definition.
Since segment duration is the main factor affecting the

i–vector covariance, and short segments are known to produce
less reliable i–vectors, our approach has been assessed using
cuts of variable duration, collected from different channels,
extracted from the NIST SRE 2010 extended core tests [21].
Our results show that the newmodel outperforms the standard

PLDA when tested on short segments, particularly for training
and test conditions with duration mismatch, without losing ac-
curacy for long enough speaker segments.
An independent development of the same topic has been pre-

sented in [22]. Although the Gaussian PLDA models proposed
are equivalent, we developed a more general framework, from
which the Gaussian PLDA model has been derived, which also
allows a more compact and effective scoring formulation. Since
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the models are equivalent, the scoring functions compute the
same scores. However, the derivations of the scoring function
are different. Our formulation leads to a minimal change in
the standard PLDA scoring function, allowing a simple and
straightforward implementation. In particular, it clearly shows
the interaction between the PLDA parameters and the i–vector
covariance, so that the standard PLDA scoring can be used,
provided that the i–vector covariance is added to the PLDA
noise covariance. Moreover, the work of [22] is more focused
on training the PLDA models with short segments, whereas ef-
ficiency in testing is our main concern.
In [23], [24], a formulation for the comparison of supervec-

tors has been presented, which does not require the two–step
approach, consisting in the extraction of i–vectors followed by
their PLDA based classification. We comment on the similari-
ties and differences of this approach with respect to [1], [22] in
Section VI.
The paper is organized as follows: Section II recalls the

i-vector extraction process. Section III presents the generative
PLDA model using the i–vector distributions, and the gives
the expression for the computation of the likelihood that a set
of speech segments belong to the same speaker. Section IV
focuses on the computation of the likelihood for a PLDA model
based on the i–vector posterior distribution, with Gaussian
priors. The new PLDA model, where the distribution of the
inter–speaker variability is assumed to be utterance–dependent,
is introduced in Section V. Section VI is devoted to the estima-
tion of the parameters of this PLDAmodel. The important issue
of i–vector length normalization is discussed in Section VII.
A detailed analysis of the complexity of the PLDA and of
the proposed approach is given in Section VIII, exploiting the
optimizations allowed by some practical applications. The ex-
perimental results are given in Section IX, and our conclusions
are drawn in Section X.

II. I–VECTOR MODEL

The i–vector model constrains the GMM supervector , rep-
resenting both the speaker and inter–session characteristics of a
given speech segment, to live in a single sub–space according
to:

(1)

where is the Universal Background Model (UBM), a GMM
mean supervector, composed of GMM components of
dimension . is a low-rank rectangular matrix spanning
the sub–space including important inter and intra–speaker
variability in the supervector space, and is a realization of a
latent variable , of size , having a standard normal prior
distribution.
A Maximum-Likelihood estimate of matrix is usually ob-

tained by minor modifications of the Joint Factor Analysis ap-
proach [13]. Given , and the set of feature vectors

extracted from a speech segment, it is possible
to compute the likelihood of given the model (1), and a value
for the latent variable . The i-vector , which represents the
segment, is computed as theMaximum a Posteriori (MAP) point
estimate of the variable , i.e., the mode of the posterior

distribution . It has been shown in [13] that assuming
a standard normal prior for , the posterior probability of
given the acoustic feature vectors is Gaussian:

(2)

with mean vector and precision matrix:

(3)

respectively. In these equations, are the zero–order statis-
tics estimated on the -th Gaussian component of the UBM for
the set of feature vectors in , is the sub-matrix
of corresponding to the –th mixture component such that

, and is the supervector stacking
the first–order statistics , centered around the corresponding
UBM means:

(4)

is the UBM –th covariance matrix, is a block diag-
onal matrix with matrices as its entries, and is the oc-
cupation probability of feature vector for the -th Gaussian
component.

III. PLDA WITH I–VECTOR POSTERIORS

Excellent performance has been reported on the last NIST
Speaker Recognition Evaluation campaigns [21], [25] for
systems using i–vectors with generative models based on
PLDA. A PLDA system models the underlying distribution
of the speaker and channel components of the i–vectors in a
generative framework. From these distributions it is possible
to evaluate the likelihood ratio between the same “speaker”
hypothesis ( ) and “different speakers” hypothesis ( )
for sets of i–vectors. In particular, in the PLDA framework,
Factor Analysis is applied to describe the i–vector generation
process. An i–vector is considered a random variable whose
generation process can be described in terms of a set of latent
variables. Different PLDA models exist [26], [14], which use
different numbers of hidden variables as well as different priors.
All PLDA models for speaker recognition [14], [4], however,
represent the speaker identity in terms of a latent variable
which is assumed to be tied across all segments of the same
speaker. Usually, inter–speaker variability for a speech segment
is represented by hidden variable . The hidden variables
are assumed to be i.i.d. with respect to the speech segments.
In the most common PLDA model, an i–vector is the sum

of multiple terms [14]:

(5)

where is the i–vector mean, is a realization of the speaker
identity variable , is the realization of channel variable
and is the realization of the residual noise . The role of ma-
trices and is to constrain the dimension of the sub–spaces
for and , respectively.
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Since i–vectors are assumed independent given the hidden
variables, the likelihood that a set of speech segments

belongs to the same speaker (hypothesis ) can be
computed as:

(6)

where is the i–vector extracted from segment ,
is the pdf of the joint distribution

of the i–vectors given the same speaker hypothesis ,
and are the prior distributions for and , respectively.

is the conditional distribution of an i–vector
given the hidden variables. It is related to the distribution
of the noise term by .
Since speaker factors are assumed independent, given a set

of enrollment segments for a target speaker, and a
set of test segments of a single unknown speaker ,
the speaker verification log–likelihood ratio can be computed
as:

(7)

The standard i–vector, which is extracted by MAP point es-
timate of the posterior distribution of given , and classi-
fied by PLDA, does not embed the intrinsic uncertainty of its
estimate. However, it is well known that i–vectors extracted
from short segments do not capture the speaker characteristic
as well as i–vectors extracted from long segments. Since the un-
certainty associated with the extraction process of the i-vector,
which is represented by its posterior covariance, is not taken
into account by the usual PLDA models, in this work we ex-
tend the model to exploit this additional information. We refer
to this new model as the PLDA based on the “Full Posterior
Distribution” (FPD–PLDA) of given . In this model we
assume that every segment is no more mapped to a single
i–vector but to the i–vector extractor distribution . Thus,
is mapped to i–vector according to the probability distri-

bution .
The PLDA model allows computing the likelihood of a

speech segment given a realization of the random variable
. The likelihood of a set of segments , thus, can

be evaluated by integrating the classical PLDA likelihood over
all the i–vectors that these segments can generate as:

(8)

where the first factor is the likelihood of the segments according
to the classical PLDA model given the realizations
of the i–vector posterior random variables, computed by (6), and
the second factor is the likelihood that the i–vectors
are mapped to segments , respectively, according to
the i–vector extractor model.
Replacing (6) in (8), the likelihood can be rewritten as:

(9)

It is worth noting that, if the posterior for is replaced
by a delta distribution centered in the posterior mean , the
likelihood of the original PLDA model using MAP–estimated
i–vectors, given by (6), is obtained.

IV. GAUSSIAN PLDA MODEL

In this work we consider only PLDA with Gaussian priors,
because this model has shown to be as accurate and more
effective than other more expensive models, such as the
Heavy–Tailed PLDA [14], provided that the i–vectors are
properly length–normalized [27]. Moreover, we will assume
that the noise term has full covariance matrix, so that the
terms and in (5) can be merged. Thus, in our approach an
i–vector is defined as:

(10)

The Gaussian PLDA approach assumes that the speaker fac-
tors and the residual noise priors are Gaussian, i.e.:

(11)

where is the precision matrix of noise . According to (10)
and (11), the conditional distribution of an i–vector random vari-
able given a value for the speaker identity is:

(12)

Ignoring the channel factors, which in our model are em-
bedded in the noise term, the likelihood that the speech seg-
ments belong to the same speaker can be computed
by means of a simplified expression of (6) as:

(13)
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Introducing the full i–vector posterior we get:

According to the Gaussian assumptions given in (2) and (11),
the inner integral can be computed as:

(14)

where and are the mean and precision matrix of
computed as in (3). Integral (14) can be interpreted as the con-
volution of two Gaussian distributions, leading to:

(15)

The result in (15) can be interpreted as the likelihood of a
standard PLDA model where a segment is mapped to the mean
of the i–vector posterior , but the PLDA conditional

likelihood is segment–dependent, i.e., the residual noise in
the PLDA model (11), is replaced by the segment–dependent
noise distributed as . Indeed, the
right side of equation (15) is a Gaussian pdf for . Considering
every as a realization of a random variable , the condi-
tional likelihood of a set of speech segments can be written
as:

(16)

where is distributed as . The
likelihood that the segments belong to the same speaker is then
given by:

(17)

Comparing (17) and (13) it can be observed that the two
models differ only for the parameters of their conditional likeli-
hoods. Due to the similarity of these two models, simple expres-
sions can be derived for estimating the parameters of the Full
Posterior Distribution model, and for computing the speaker

verification log–likelihood scores according to this model. In
particular, PLDA can be trained by adapting the EM algorithm
which estimates the standard PLDA model parameters [14].

V. SCORING WITH GAUSSIAN PLDA POSTERIORS

The log–likelihood that a set of segments belongs to the same
speaker can be obtained by means of the same steps followed
for the standard Gaussian PLDA model, just using the modified
likelihood in (15). The new PLDA model can be described as:

(18)

as in (10), but with an segment–dependent distribution of the
residual noise . The i–vector associated to speech segment
is again the mean of the i–vector posterior , but the
priors of the PLDA parameters are given by:

(19)

where

(20)

In the following, to simplify the notation, we will refer to dis-
tributions without explicitly naming the corresponding hidden
variable, e.g., we will write rather than .
In order to compute the likelihood of a set of i–vectors

(i.e., of the set of speech segments ), we
observe that the joint log–likelihood of the i–vectors and the
hidden variables is:

(21)

where is a constant collecting terms that do not depend on .
Equation (21) shows that the posterior distribution of given a
set of i–vectors is Gaussian:

(22)

with parameters:

(23)

The likelihood that a set of segments belongs to the same
speaker can be written as:

(24)
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where can be freely chosen provided that the denominator is
non–zero. Setting for convenience , so that ,
from (22), and (23) we finally get:

(25)

where is the i–vector dimension, and is the speaker factor
dimension.

VI. PLDA PARAMETER ESTIMATION

The model presented in (18) allows obtaining a simple ex-
pression for computing the log–likelihood ratio of a speaker
recognition trial. However, it does not allow the update formulas
to be easily derived. An equivalent expression of (18), where
the contributions of the i–vector posterior covariance and of the
residual noise are decoupled, is more effective for the estima-
tion of model parameters [22]. To this extent, the segment–de-
pendent residual term can be written as:

(26)

where is the Cholesky decomposition , is a
standard Gaussian distributed random variable, ,
and is the PLDA residual term introduced in (11). The corre-
sponding PLDA model is then given by:

(27)

where is a realization of . It is worth noting that (27) for-
mally corresponds to the PLDA model in (5) with the channel
sub–space matrix replaced by a segment–dependent matrix
. The same steps followed to derive the EM algorithm for the

PLDA model (5) can be easily modified to estimate the param-
eters of the FPD–PLDA model. The details of the derivation of
the EM algorithm can be found in [22].
The SV–PLDA approach in [24] and the FPD–PLDA ap-

proach [1], [22], essentially differ because the former obtains
the precision matrix by means of a Maximum Likelihood Es-
timation process, whereas the latter relies on Maximum A Pos-
teriori estimation. MAP estimation simply leads to the presence
of the identity matrix in the formulation of the precision matrix
in (23), which is missing in the so called –vector definition

(see equations (8) and (14) in Section 2.6 of [24], where the
–vector and i–vector definitions are compared). SV–PLDA is
in principle an elegant and attractive single step MLE approach,
compared with the standard two–step approach consisting in
i–vector extraction followed by PLDA classification. Unfortu-
nately SV–PLDA too has to rely on length normalization [27]
in order to obtain good results. Casting length normalization in
the middle of the generative framework makes SV–PLDA less
coherent. In our opinion, a two–step approach is preferable be-
cause it gives the freedom of using different assumptions about
the distribution of the i–vectors, which could be obtained by

different extractors, and then used as features for the PLDA
classifier. Moreover, in our experience no better accuracy was
obtained by the elimination of the term from the precision
matrix .

VII. I–VECTOR PRE–PROCESSING

A pre–processing step, which involves i–vector whitening
followed by length normalization [27], is required to achieve
state-of-the-art results using i–vectors with Gaussian PLDA
models. While it is easy to understand length normalization
applied to i–vectors, different interpretations of length nor-
malization lead to different normalizations of the posterior
covariance matrices. This section presents three different inter-
pretations of length normalization, and shows their effect on
the normalization of the full i–vector posterior.
A straightforward approach consists in replacing the i–vector

distribution by , which forces all realiza-

tions of to lie on the unit sphere. However, since the resulting
random variable would not be Gaussian distributed, it would
not be possible to rely on the simple derivations of Section IV,
and to avoid the higher complexity introduced by the use of a
non Gaussian distribution.
We implemented a second approach, where length normal-

ization is considered a non–linear transformation of the
observed i–vector , which can be approximated by its first
order Taylor expansion around the i–vector itself:

(28)

where is the Jacobian of computed in and is
the function . Developing the Jacobian, the linear
transformation which best approximates the length normaliza-
tion function around the i–vector is given by:

(29)

where and is the identity matrix.
The extension to the full i–vector posterior consists in com-

puting the first order Taylor expansion of centered at the pos-
terior distribution mean , and applying the resulting linear
transformation to the i–vector posterior .
The expansion of is:

(30)

where and . Thus, the transformed
distribution is given by:

(31)

Expression (31) can be further approximated as:

(32)
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In the experimental section we show that these linearizations
of the length normalization are effective. In particular, the ap-
proximation (32) allows a simplification of (31) without in-
curring in any performance degradation. We will refer to (31)
as “Projected Length Normalization” (FPD1), and to (32) as
“Length Normalization” (FPD2).

VIII. COMPLEXITY ANALYSIS

The straightforward implementations of classical PLDA and
FPD–PLDA have similar computational complexity. However,
in practical scenarios some of the terms required for the eval-
uation of the PLDA log–likelihood ratio (7) can be pre–com-
puted. These pre-computations allow fast test scoring, at the cost
of a slight increase of the memory requirements for the PLDA
model and for the target models. Unfortunately, some of these
optimizations cannot be done for FPD–PLDA, which is thus a
more accurate but slower approach. In the following we analyze
the computational complexity of PLDA and FPD–PLDA imple-
mentations optimized for the most common scenario. This sce-
nario consists of a speaker detection task where the system has
to score several test sets, whose number of segments is known
in advance, against a fixed set of target speakers. In particular,
each set of segments of a single test speaker has to be verified
against the segments of a known, fixed, set of target speakers.
Since all targets are known in advance, target–dependent opti-
mizations can be performed offline. The NIST 2012 SRE evalu-
ation [25] follows this protocol. However, even for the previous
evaluations, where each trial has to be scored independently it
is possible to speed–up the scoring for the complete evaluation,
without violating its rules, because all target segments are in-
deed known in advance.
In this scenario, as will be shown in sub–section VIII-B and

VIII-C, a smart implementation of PLDA allows some of the
terms required for the evaluation of the speaker verification
log–likelihood ratio to be pre–computed, thus the per–trial
scoring complexity is greatly reduced. Different optimizations
are possible for FPD–PLDA depending on the duration of the
trial segments. For short segments, FPD–PLDA does not allow
the pre–computation of most of the terms of the scoring func-
tion, thus its complexity cannot be reduced. However, if the
target segments are long enough, their i–vector posteriors can
be safely approximated by their MAP point estimates, and the
per–trial complexity of the proposed technique can be reduced.

A. Log–likelihood Computation

The complexity of the log–likelihood computation accounts
for two separate contributions. The first contribution is the com-
plexity of operations which can be independently performed
on target or test sets, which will be referred to as per–target
and per–test terms, respectively. The second contribution is the
per–trial complexity, i.e. the complexity of the terms which
jointly involve the target and the test sets. This distinction is not
relevant for the naïve scoring implementations, but is relevant,
instead, in the “fixed set of target speakers scenarios” because
the per–target terms can be pre–computed, and per–test terms
need to be computed only once regardless of the number of
target speakers.

We will analyze both per–test and per–trial complexity of
the PLDA and FPD–PLDA models. It is worth noting that the
complexity of a complete system should account also for the
complexity of the extraction of the acoustic features and of the
i–vectors. The computation of the i–vector covariance matrix,
for each segment, has complexity [28], which, as we
will see, dominates the other costs.
Since we compute the speaker variable posteriors on dif-

ferent sets, we explicitly condition the parameters of the poste-
rior distributions of (23) to a generic set as:

(33)

The indexes of the sum in this equation, and in the following
equations, are to be interpreted as running over all the seg-
ments of the set. Replacing (25) in (7), the speaker verification
log–likelihood ratio for a target set and a test set can be
written as:

(34)

where the scoring function is defined as:

(35)

Since the computation of and cannot be more ex-
pensive than the computation of , we restrict our anal-
ysis to this term of the log–likelihood ratio.

B. Complexity of the Standard Gaussian PLDA

As shown in Section V, standard PLDA corresponds to a
FPD–PLDA with for all i–vectors. Thus,
for all i–vectors, and the speaker variable posterior parameters
become:

(36)

where and are the number of target and test segments
respectively, and are the projected first order statistics
defined as:

(37)
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and is a matrix. Using these definitions, the
scoring function can be rewritten as:

(38)

Computing the projected statistics (37) has complexity
, where is the number of speech segments

in the set. It is worth noting that the and statistics are
per–speaker computations because they can be computed for
the target and test sets independently.
1) Naïve Scoring Implementation: The computation of the

score function , given the statistics, requires com-
puting and its log–determinant. These computations
have complexity because, for standard PLDA, the term

can be precomputed. Given , scoring
has complexity . The same considerations apply to the
less expensive computation of and . Thus, the overall
per–trial complexity is .
2) Speaker Detection with Known, Fixed, Target Sets: In

the naïve implementation, the computation and inversion of
dominates the scoring costs. However, in standard

PLDA this factor depends on the number ( ) of the
target and test segments only (36). Since each set of target
segments , and the number of test segments , are known,
it is possible to pre–compute the corresponding ,
and its log–determinant. Moreover, since the statistics
are also known in advance, the terms of the scoring function

can be pre–computed. It is worth noting that
these terms are small –sized vectors. Since the term depending
only on the test statistics must be evaluated just once for
the whole set of targets, its computation has a per–test,
rather than a per–trial, cost. Every function can be
computed in , each term can be easily pre–com-
puted. Given the statistics, the term has a per–speaker
complexity of . The overall per–speaker cost, including
statistics computations, is then , whereas the
per–trial cost is .

C. Full Posterior Distribution PLDA

The main difference between the standard PLDA and the
FPD–PLDA approach is that in PLDA depends just on
the number of i–vectors in the set (36), whereas in FPD–PLDA
it also depends on the covariance of each i–vector in the test set
(see (33)). This does not allow applying to FPD–PLDA the

optimizations illustrated in the previous section.
The speaker variable posterior parameters can still be written

as:

(39)

TABLE I
COMPARISON OF THE LOG–LIKELIHOOD COMPUTATION COMPLEXITY FOR
THREE IMPLEMENTATIONS OF PLDA. PER–SEGMENT COSTS SHOULD BE
MULTIPLIED BY THE NUMBER OF SEGMENTS OF A GIVEN SPEAKER.
PER–SPEAKER COSTS DO NOT DEPEND ON THE NUMBER OF SPEAKER

SEGMENTS. THESE COSTS REFER TO PLDA ONLY, WITHOUT CONSIDERING
THE CONTRIBUTION OF I–VECTOR EXTRACTION

where

and the scoring function can be rewritten as:

(40)

Computing the posterior parameters (39) has a complexity
, mainly due to the computation of ,

and is much higher than the complexity of
standard PLDA approach. However, these computations are re-
quired only for a new target or test speaker. These costs are com-
parable to the costs of the i–vector extraction [28].
Given the statistics, can be computed with complexity

and its inversion complexity is . The computa-
tion of the remaining terms requires , thus the overall
per–trial complexity is . Since the posterior parameter

cannot be pre–computed as in standard PLDA, the
per–trial complexity is the same also for the fixed set of target
speakers scenarios.

D. Asymmetric Full Posterior Distribution PLDA

In some applications the target speaker segments have long
enough duration, so that replacing the corresponding i–vector
posterior distribution by a MAP point estimate has a negligible
impact on the term . In this case, it is possible to narrow
the complexity gap between standard PLDA and FPD–PLDA,
because the i–vector covariance is taken into account only for
the test segments. Thus, we refer to this approach as Asym-
metric Full Posterior Distribution PLDA. Since MAP–approx-
imated i–vectors are used for the target speakers, the compu-
tational complexity of becomes equivalent to the one of
the standard PLDA. The per–trial complexity with respect to
the standard FPD–PLDA approach can be reduced because the
same test set is scored against a fixed set of target speakers. In
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TABLE II
TRAINING AND TEST CONDITIONS OF THE NIST 2010 EVALUATION

TABLE III
RESULTS FOR THE CORE EXTENDED NIST SRE2010 FEMALE TESTS IN TERMS OF % EER, AND

USING TRAINING LISTS AND PLDA MODELS. LABEL “TEL” AND “TEL+MIC” REFER TO THE DATASETS USED FOR TRAINING THE PLDA,
INCLUDING OR NOT MICROPHONE DATA. “STD” AND “FPD” LABELS REFER TO STANDARD PLDA AND FPD–PLDA, RESPECTIVELY.

I–VECTOR POSTERIOR LENGTH–NORMALIZATION IS PERFORMED BY MEANS OF (32)

TABLE IV
RESULTS FOR CUTS OF 3–60 SECOND TEST DATA, USING DIFFERENT LENGTH–NORMALIZATION APPROACHES. THE PLDA PARAMETERS ARE TRAINED
USING BOTH MICROPHONE AND TELEPHONE DATA. LABELS “STD” AND “FPD” REFER TO STANDARD PLDA AND FPD–PLDA, RESPECTIVELY,

AND THE NUMERIC SUFFIX OF FPD CORRESPONDS TO THE I–VECTOR POSTERIOR LENGTH–NORMALIZATION METHOD

particular, the covariance of the posterior of the speaker identity
variable:

(41)

depends only on the test i–vector covariance, and on the number
of target segments. If the number of target segments per speaker
is fixed, computing the term for each target speaker
becomes a per–test cost because it can be computed only once.
Computing the score function, given , has thus com-
plexity .
Table I summarizes the results presented in this Section. The

costs have been divided into per–segment costs, depending on
the number of segments in the set, per–speaker fixed costs,
and the per–trial costs.
The FP-PLDA approach has a notably higher complexity that

standard PLDA. The Asymmetric FPLDA reduces the per–trial
cost by a factor , speeding–up the scoring computation when
the number of target speakers is high. However, the duration
of the target segments affects the accuracy of the approxima-
tion, and possibly the performance gain with respect to standard
PLDA.

IX. EXPERIMENTAL RESULTS

The proposed PLDA model aims at compensating duration
mismatches in i–vector estimates. Thus, a dataset was defined

that consists of speech segments, from NIST SRE10 extended
core condition, which were cut, after Voice Activity Detection,
to obtain segments of variable duration in the range 3–30,
10–30, 3-60, and 10–60 seconds, respectively. These sets of
segments have been scored according to the official NIST SRE
2010 conditions 1–5 [21], which are summarized in Table II.
In these experiments, we used cepstral features, extracted

using a 25 ms Hamming window. 19 Mel frequency cepstral
coefficients together with log-energy were calculated every
10 ms. These 20-dimensional feature vectors were subjected
to short time mean and variance normalization using a 3s
sliding window. Delta and double delta coefficients were then
computed using a 5-frame window giving 60-dimensional fea-
ture vectors. Segmentation was based on the BUT Hungarian
phoneme recognizer and relative average energy thresholding.
Also, short segments were pruned out, after which the speech
segments were merged together.
The i–vector extractor was based on a 2048–component

full covariance gender–independent UBM, trained using NIST
SRE 2004–2006 data. Gender–dependent i–vector extractors
for the reference system were trained using the data of NIST
SRE 2004–2006, Switchboard II Phases 2 and 3, Switchboard
Cellular Parts 1 and 2, Fisher English Parts 1 and 2.
All these experiments were performed using i–vector poste-

riors with dimension . The PLDA was trained with
a speaker variability sub–space of dimension , and
full channel variability sub–space. Although both female and
male speaker tests were performed, we report more detailed re-
sults on the female datasets only, because the NIST SRE 2010
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Fig. 1. Results for test cuts of variable duration, randomly chosen from the extended NIST SRE2010 female tests. On the left side, comparison of the minDCF08
obtained using PLDA and FPD–PLDA trained with different duration segments. On the right side, comparison of the minDCF08 obtained in the “tel+mic” condi-
tion, and % improvement shown as a black dot.

core test on female speakers is known to be more difficult, thus
more often compared in the literature. The results on the male
speakers confirm the ones reported for female speakers, as will
be shown in Table VI.
Table III summarizes the results of the tests performed on the

NIST SRE 2010 female extended conditions, including the core
condition (cond5), in terms of percent Equal Error Rate and nor-
malized minimumDetection Cost Function (DCF) as defined by
NIST for SRE08 and SRE10 evaluations [21]. In this table, the
PLDA and FPD–PLDA systems are compared using the original
interview data, or telephone conversations, without any cut. La-
bels “tel” and “tel+mic” refer to the datasets used for training the
PLDA parameters, including telephone data only, or additional
microphone data. Labels “Std” and “FPD” refer to the stan-

dard and the Full Posterior Distribution PLDA, respectively.
The first two rows give the baseline results, obtained using stan-
dard i–vectors trained on telephone data only, for the five NIST
2010 conditions. It can be observed that the matched conditions
cond5 and cond1, tel–tel and int–int, respectively, achieve the
best results, whereas the difficulty of the task decreases from
cond2 to cond4. The same behavior is confirmed for the other
experimental conditions, shown in the remaining lines, and for
the other tests using variable duration segments. The newmodel
not only keeps the accuracy of the standard model, as expected
for long segments, but also shows an approximately 7% rela-
tive improvement in three conditions. The third row describes
the effect of using the i–vector covariance also in training. As
expected, since the training segments have long durations, the
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TABLE V
RESULTS FOR CUTS OF VARIABLE DURATION TEST DATA, RANDOMLY CHOSEN FROM THE EXTENDED NIST SRE2010 FEMALE TESTS, IN TERMS OF % EER,

AND USING DIFFERENT PLDA MODELS. THE PLDA PARAMETERS ARE TRAINED USING BOTH
MICROPHONE AND TELEPHONE DATA, LABELS “STD”, “FPD”, AND “SV” REFER TO STANDARD PLDA, FPD–PLDA, AND SV–PLDA, RESPECTIVELY.

I–VECTOR POSTERIOR LENGTH–NORMALIZATION IS PERFORMED BY MEANS OF (32)

TABLE VI
RESULTS FOR CUTS OF VARIABLE DURATION TEST DATA, RANDOMLY CHOSEN FROM THE EXTENDED NIST SRE2010 MALE TESTS. SEE TABLE V CAPTIONS

results are similar to the ones reported in the second row. The
last three rows show the effect of adding microphone data in
training the PLDA parameters: sensible performance improve-
ment is obtained, excluding, as expected, the matched tel–tel
condition 5.
Since the system trained with the “tel” list performs worse

than the one trained with the “tel+mic” list, all the remaining
experiment on the NIST 2010 data, whenever not mentioned,
have been performed with the latter. Table IV compares, in its
first three rows, the performance of the PLDA and FPD–PLDA
classifiers using the two length–normalization methods illus-
trated in Section VII on the 3–60 seconds cuts. The results of
the last row show that there is no advantage in using the full
i–vector posterior in training the PLDA models. The effect of
the two length–normalization approaches is comparable, thus
in the following we will present only the results obtained with
the Projected Length Normalization (FPD2) (32).
The tests on variable duration cuts, randomly chosen from

the extended NIST SRE2010 female set, are shown in Fig. 1
and Table V. Fig. 1 compares on its left side column the
minDCF08 obtained using PLDA and FPD–PLDA trained
with different data, either telephone data only or telephone
and additional microphone data. The set of minDCF08 results
are shown as a function of the training conditions and of the

duration of the cuts. On the right side column, the minDCF08
results obtained using the parameters trained in the “tel+mic”
condition for PLDA and FP–PLDA are compared. The figure
also shows as black dots the percent improvement obtained
by FPD–PLDA with respect to standard PLDA. Excluding the
matched tel–tel condition 5, the PLDA models trained adding
microphone data, indicated as “Std_tel+mic” on the legend,
are always better than the corresponding models trained with
telephone data only, and FPD–PLDA shows always a relative
improvement, quite small for long enough segments, but up to
20% depending on the average duration of the small cuts.
Table V also reports the results for the SV–PLDA ap-

proach. Since the training segments are long, as we did with
FPD–PLDA, the SV–PLDAmodel was trained using –vectors
without considering the –vector covariances. For the same
reason, the matrix was not retrained. It seems that the ML
estimation of the –vectors is not as effective as the MAP
estimation of i–vectors, making the FPD–PLDA approach
more attractive.
The results given in Table VI confirm the quality of the our

approach for male speakers.
Pooled results for female and male speakers are reported

in Table VII for the NIST 2012 SRE evaluation experiments
described below. In these experiments, the acoustic features
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TABLE VII
NIST SRE 2012 EXTENDED SET: MINIMUM COMPARISON OF FPD–PLDA AND ASYMMETRIC FPD–PLDA. THE NUMBERS ASSOCIATED TO THE
CONDITIONS REFER TO THE MEAN DURATION OF THE SEGMENTS, AFTER VOICE ACTIVITY DETECTION, AND TO THE CORRESPONDING STANDARD DEVIATION

were again 60–dimensional MFCCs, modeled with a 2048
components full–covariance UBM. The i–vector dimension
was increased to . Moreover, Linear Discriminant
Analysis was performed to reduce the i–vector dimension-
ality to 200, before applying i–vector whitening and length
normalization. Since the resulting i–vectors are already small,
no dimensionality reduction was applied for the speaker
sub–space, i.e. the speaker sub–space was set to 200. The UBM
was trained on speech segments taken from previous the NIST
2004, 2005, 2006, 2008 and 2010 evaluation corpora, and from
the enrollment set of NIST 2012 evaluation. Additionally, the
Fisher, Switchboard Phase 2 and Switchboard Cellular datasets
were used to train the i–vector extractor and the PLDA param-
eters. Due to the enormous amount of trials involved in the
evaluation (some tens of millions), we did not test the complete
FPD–PLDA approach. Since NIST 2012 enrollment segments
are on average quite long, we were able to test FPD–PLDA
according to the Asymmetric FPD–PLDA approach illustrated
in Section VIII-D. Moreover, we had empirical evidence that
representing a target speaker by means of a single i–vector,
computed as the average of all its i–vectors, provides higher
accuracy with respect to the standard multi–session PLDA
scoring. The same approach was, thus, followed for obtaining
the FPD–PLDA scores.
The results comparing standard PDLA and Asymmetric

FPD–PLDA are given in Table VII in terms of minimum
, the primary cost measure defined by NIST [25]

for this evaluation. These results clearly show that although
the Asymmetric FP–PLDA introduces some approximations,
it is still able to outperform standard PLDA in most of the
conditions. In particular, it gains for conditions 2 and 5, which
include short and variable duration segments, whereas it obtains
almost the same performance for the long duration segments of
conditions 3 and 4. Condition 1 is an exception, we speculate
that errors in voice activity and interviewee detection may lead
to the estimation of an incorrect i–vector covariance posterior.
This effect might not manifest itself on condition 3 because the
average segment duration is higher.
The real–time contribution of the PLDA techniques evalu-

ated in this work, with i–vector dimension , is com-
pared in Table VIII. It reports the scoring time per trial required
by standard PLDA, by Full Posterior PLDA, by Asymmetric
FPD-PLDA, and by an optimized implementation of PLDA, re-
spectively, as a function of the number of enrollment and test
pairs which must be scored. All times are given in millisec-
onds. It is worth noting that the optimized PLDA fully exploits
both the “fixed set of target speakers scenario” and the per-
formance of optimized matrix–to-matrix operations for scoring
multiple test segments, whereas the Asymmetric FPD-PLDA is
optimized for scoring a single test against a fixed set of target
speakers. The number of enrollment and test segments shown
in Table VIII have been selected so that the contribution of each

TABLE VIII
REAL–TIME SCORING (IN MILLISECONDS PER TRIALS) FOR THE STANDARD
PLDA, FULL POSTERIOR DISTRIBUTION PLDA, ASYMMETRIC FPD-PLDA,

AND FOR AN OPTIMIZED IMPLEMENTATION OF PLDA

PLDA technique in a different application scenario could be ap-
preciated. The first row presents the single trial scenario, where,
excluding the pre–computation of for standard PLDA, one
cannot obviously perform any pre–computation or optimization
that can be used for speeding–up the scoring of other pairs. This
is the worst case for FPD–PLDA and Asymmetric FPD–PLDA,
which are approximately 200 and 100 times slower than PLDA,
respectively. It is also the worst case for our highly optimized
PLDA implementation, which does not have any advantage in
this scenario. A dramatic speedup with respect to single pair
scoring is obtained, instead, by the optimized PLDA when the
number of enrollment and test segments (i.e., of trial pairs) in-
creases, as shown in the second row for 10000 trials. This is also
true for FPD–PLDA and Asymmetric FPD–PLDA. Comparing
the scoring times for the and scenarios,
shown in the second and third row, respectively, one can appre-
ciate the importance of Asymmetric FPD-PLDA, which does
not suffer the FPD–PLDA overhead for a 10 times larger enroll-
ment set. Finally, these results, and the ones reported in the last
row, show that whenever a large set of tests has to be performed
against a large, but fixed, set of target speakers, FPD–PLDA is
approximately 20 times slower than standard PLDA, whereas
Asymmetric FPD-PLDA is four times faster. However, in this
scenario, the optimized PLDA is more than two order of mag-
nitude faster than any other technique.
It is worth noting that these are pure classification times that

do not include i-vector extraction time, which depends on the
length of the speech segment because the UBM statistics are
collected frame by frame. Taking also into account the i-vector
extraction time, the ratio of the single pair scoring time be-
tween FPD–PLDA and standard PLDA reduces from 200 to 4
approximately.

X. CONCLUSIONS

A PLDAmodel which exploits the uncertainty of the i-vector
extraction process has been presented. We derived the formu-
lation of the likelihood for a Gaussian PLDA model based on
the i–vector posterior distribution, and illustrated a new PLDA
model, where the inter–speaker variability is assumed to have
an segment–dependent distribution, showing that we can rely
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on the standard PLDA framework simply replacing the likeli-
hood definition.
We have proposed two i–vector pre–processing techniques,

and compared their effects on the system accuracy, showing that
an approximate version of a linearized length normalization is
effective.
The complexity of the PLDA and FPD–PLDA implementa-

tions have been analyzed, and an Asymmetric FPD–PLDA ap-
proach has been proposed, which allows obtaining a substantial
complexity reduction in a practical detection scenario. The re-
sults obtained both on the extended core tests and on short cuts
of different duration of the NIST 2010, and on the extended tests
of NIST 2012 evaluations, confirm that the FPD–PLDA outper-
forms PLDA mostly for short variable duration test segments.
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