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ABSTRACT

The neural network based features became an inseparable part of
state-of-the-art LVCSR systems. In order to perform well, the net-
work has to be trained on a large amount of in-domain data. With the
increasing emphasis on fast development of ASR system on limited
resources, there is an effort to alleviate the need of in-domain data.
To evaluate the effectiveness of other resources, we have trained the
Stacked Bottle-Neck neural networks structure on multilingual data
investigating several training strategies while treating the target lan-
guage as the unseen one. Further, the systems were adapted to the
target language by re-training. Finally, we evaluated the effect of
adaptation of individual NNs in the Stacked Bottle-Neck structure
to find out the optimal adaptation strategy. We have shown that the
adaptation can significantly improve system performance over both,
the multilingual network and network trained only on target data.
The experiments were performed on Babel Year 1 data.

Index Terms— feature extraction, Bottle-neck features, neural
network adaptation, multilingual neural networks, Stacked Bottle-
Neck structure

1. INTRODUCTION

Quick delivery of ASR system for a new language is one of the
challenges in the community. Hand in hand with the quick deliv-
ery comes limitation of available resources. Such scenario calls not
only for automated construction of systems, that have been carefully
designed and crafted “by hand” so far, but also for effective use of
available resources. This is particularly important for features ob-
tained from neural networks (NNs). In order to perform well, neural
networks need to be trained on large amount of data. Moreover,
this data needs to be transcribed to provide training targets. Unfor-
tunately, the data collection and annotation is the most time- and
money-consuming procedure.

This naturally raises the question whether features of sufficient
quality can be obtained from different sources. The first study of
portability of NN-based features was done in [1] where NNs trained
on English data were applied on Mandarin and Levantine Arabic to
produce probabilistic features. Consistent word error rate (WER)
reduction was observed for both languages. In both cases however,
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the amount of training data would be itself sufficient for training
good neural networks (100 and 70 hours respectively).

Our work [2] studied the possibility to train a multilingual neu-
ral network to be used to derive features for a new language. Several
approaches to create the target set for the multilingual training were
explored. We have shown that concatenation of phoneme sets is a
safe and simple approach (further denoted as one softmax). How-
ever, performing merging on phoneme sets of individual languages
can be beneficial depending on the language set and desired features.

The integral way of obtaining multilingual (or language inde-
pendent) NN based (bottle-neck) features is presented in [3, 4]. Here,
the NN last – output – softmax layer is divided into language-specific
parts which makes the main body of the NN language-independent.
Only one part of the output (N th) layer corresponding to the lan-
guage of a particular input-output training pair is active. Thus the
outputs of the (N − 1)th layer provide information which should be
equally useful for classification of any of the language-specific tar-
gets used in the training. This leads to truly multilingually trained
weights in NN except for the language-specific parts of the output
layer. This approach will be further denoted as block softmax. This
technique was modified by Heigold et al. in [5] and tested in multi-
lingual DNN hybrid system.

When comparing the two approaches, we should note that one
output layer (one softmax) for all language-specific targets performs,
together with classification of the input vectors, indirectly also lan-
guage identification as it has to distinguish between similar (or the
same) targets from different languages.

All the above techniques assume no data for the target language,
which is somewhat unrealistic scenario as there has to be some tran-
scribed data to train the acoustic model. And since there is the data,
forced alignment can be done on them and the input-output pairs can
be used to adapt the neural network for feature extraction.

It should be also noted, that none of the techniques above led
to significant improvement over the monolingual NN trained on the
target language data only. On the other hand, adding target language
data to multilingual training brought consistent improvement. This
shows how important it is to present the target acoustic space during
the NN training.

The adaptation on target language brings issues with language
specific phonemes. Vu et al. [6, 7] suggest to solve this problem
by approximation of such phonemes by several phonemes from the
source languages that, in combination, have the characteristic of the
target phoneme. Then, NN is retrained on target language using only
the outputs (phonemes) belonging to it.

The adaptation of NN trained on large amount of data from one
language to target domain with little data by final fine-tuning was
proposed in [8] and extended to multilingual NN in [9]. This ap-
proach eliminates the necessity of identification and approximation
of new phonemes.

Our work aims on adaptation of Stacked Bottle-Neck (SBN)
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Fig. 1. Block diagram of Bottle-Neck feature extraction. The blue parts of NNs are used only during the training. The green frames in context
gathering between the NNs are skipped. Only frames with shift -10, -5, 0, 5, 10 form the input to the second stage NN.

(originally called Universal Context) NN structure [10] with perfor-
mance superior to just one NN. The fine-tuning approach [8] was
applied. We investigated different methods of multilingual training
as well as the adaptation (fine-tuning) of the individual parts of the
SBN structure. Since the SBN is a structure of two NNs, the ques-
tion which naturally arises is which NN in the structure should be
adapted or if one of them can be trained on target data only.

The adaptation approach should benefit from large amount of
data available for other languages that allows for proper training of
sufficiently big NN. This network will serve as starting point for
training a NN for the target language. As the amount of target data
will be small, the retraining will be fast even for large NN which
is the second benefit of the adaptation approach. At the end, a NN
trained on large amount of diverse acoustic data but focused on target
scenario will be available.

2. EXPERIMENTAL SETUP

2.1. Data

The IARPA Babel Program data1 simulate a case of what one could
collect in limited time from a completely new language: it con-
sists of two parts: scripted (speakers read text through telephone
channel) and conversational (spontaneous telephone conversations).
The dev data contains conversational speech only. In this work we
have used 4 language collections released during the first year of the
project: Cantonese IARPA-babel101-v0.4c (CA), Pashto IARPA-
babel104b-v0.4aY (PA), Turkish IARPA-babel105-v0.6 (TU) and
Tagalog IARPA-babel106-v0.2g (TA). Two training scenarios are
defined for each language – Full Language Pack (FLP), where all
collected data are available for training; and Limited Language Pack
(LLP) which consist only of one tenth of FLP. For multilingual train-
ing, the data from three FLP sets are used. The role of the target lan-
guage is played by the LLP of the forth language. We have selected
Pashto and Turkish as target languages for our experiments.

Vocabulary and language model (LM) training data are also de-
fined with respect to the scenario. They basically consists of tran-
script of the given data pack. The overview of numbers of speakers
and amounts of data is given in Tab. 1. The Turkish language is ex-
tensively agglutinative which increases number of words and in turn
leads to high OOV rate.

Note, the amounts of raw audio are given, which in case of con-
versational speech, includes one recording for each side of the con-
versation. Thus the data contains huge portion of silence useless for
training. The amounts of data used for training are given in Tab. 2.

1Collected by Appen http://www.appenbutlerhill.com

Table 1. Data analysis
Language CA PA TU TA
FLP speakers 952 1189 980 1096
FLP hours 194.9 194.3 192.7 193.9
LLP speakers 120 126 121 123
LLP hours 22.3 21.0 22.1 21.7
LM sentences 12043 9536 12025 12503
LM words 98569 108025 67706 60001
dictionary 7305 7025 12124 6295
dev speakers 20 121 18 120
dev hours 3.1 20.0 2.8 19.7
num. of words 13512 101803 11366 64489
OOV rate [%] 5.2 4.2 12.2 8.0

2.2. NNs for feature extraction
The features obtained using Neural Networks are the Bottle-Neck
(BN) features. A structure of two 6-layer NNs is employed accord-
ing to [10]. It is depicted in Fig. 1.

The NN input features are based on critical band energies
(squared FFT magnitudes binned by Mel-scaled filter-bank and
logarithmized) concatenated with estimates of F0 and probability
of voicing. The estimation of F0 (implemented according to [11])
is based on normalized cross-correlation function. Dynamic pro-
gramming is used for smoothing the estimates. Although it might
seem not necessary to use the F0 and probability of voicing param-
eters for non-tonal languages, it turns out that these features are
useful and their incorporation brings nice improvement of the final
systems [12].

The conversation-side based mean subtraction is applied on the
whole feature vector. 11 frames are stacked together. Hamming
window followed by DCT consisting of 0th to 5th base are applied
on the time trajectory of each parameter resulting in 102 coefficients
on the first stage NN input.

The first stage NN has four hidden layers with 1500 units each
except the BN layer. The BN layer is the third hidden layer and
its size is 80 neurons. Its outputs are stacked over 21 frames and
downsampled before entering the second stage NN. This NN has the
same structure and sizes of hidden layers as the first one. The size of
BN layer is 30 neurons and its outputs are the final outputs forming
the BN features for GMM-HMM recognition system.

Neurons in both BN layers have linear activation functions as
they were reported to provide better performance [13]. Before the
features enter the NNs’ input layer, global mean and variance nor-
malization is performed.

The NN targets are phoneme states obtained by forced align-
ment of training data. The numbers of targets for individual lan-
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Table 2. Baseline results for target languages (LLP). Only the SBN
system is trained on FLP in one case and on LLP in the other.

Lang. # targets WER [%]
Pack (phn. states) hours HLDA-PLP BN

FLP 216 64.7 62.0PA LLP 126 7.1 76.9 71.4
FLP 126 56.6 61.9TU LLP 126 7.3 75.5 69.5

guage packs are given in Tab. 2. The forced alignments were gen-
erated with provided segmentations, however it was found that they
still contain large portion of silence (50%–60%). Therefore, the si-
lence on the ends of segments was stripped. Also segment was split-
ted when there was part of silence longer then 300 ms. This new
segmentation reduced the amount of silence in the training data to
15%-20%. The final amounts of data used for NN training are also
given in Tab. 2.

2.3. Recognition system

The training data for GMM-HMM system consists of LLP data of
given language only.

First, a system based on standard Mel-PLP features is cre-
ated. 13 PLP coefficients are generated together with first, second
and third order derivatives. HLDA is estimated with Gaussian
components as classes to reduce the dimensionality to 39. Then the
conversation-side based mean and variance normalization is applied.
Based on these features, baseline HLDA-PLP speech recognition
system is trained using LLP data only. It is HMM-based cross-word
tied-states triphone system, with approximately 4500 tied states and
18 Gaussian mixture components per state for all languages. It is
trained from scratch using mix-up maximum likelihood training.
The HLDA-PLP system is used for alignment of training data for
NN training.

To train the system on Bottle-Neck features, the BN outputs are
transformed by Maximum Likelihood Linear Transform (MLLT),
which considers HMM states as classes. Then, new models are
trained by single-pass retraining from HLDA-PLP baseline system.
12 Gaussian components per state were found to be sufficient for
BN features trained from single-pass retraining. Next, 12 maximum
likelihood iterations follow to better settle new HMMs in the new
feature space.

Final word transcriptions are decoded using 3gram LM trained
only on the transcriptions of LLP training data2.

The results obtained with baseline HLDA-PLP systems are
given in Tab. 2. The rather poor performance is given by the limited
amount of data for acoustic as well as language model. Also note,
that Turkish has quite high OOV rate.

3. EXPERIMENTS
3.1. Full and Limited language packs
To obtain the baselines, the NNs were first trained in monolingual
manner on both, LLP and FLP. Training on LLP will provide us
with the lower bound - if the evaluated technique does not exceed
this threshold, it is not worth the effort. The FLP result will serve as
upper bound. The closer the results will be to this value, the more the
technique benefits from other resources. The results obtained with
monolingual NNs are shown in Tab. 2.

2This is coherent to BABEL rules, where the provided data only can be
used for system training.

Fig. 2. Block diagram of Convolutive Bottle-Neck neural network.

We can see a dramatic drop in system performance when the
NNs are trained just on LLP data. Compared with HLDA-PLP, the
BN system achieves better performance even when NNs are trained
on small amount of data. Note, that HMM systems are trained on the
LLP data. The FLP data are used for training the SBN NNs only.

3.2. Multilingual NN

The next set of experiments is focused on the performance of BN
features obtained from multilingual NNs. This case provides the
starting point for the adaptation. The NNs were trained on FLPs of
three languages leaving the target one out. Two approaches to train
multilingual NNs are evaluated:

The first one – one softmax – discriminates between all targets
of all languages. No mapping or clustering of phonemes was done.
This simple approach turned out to perform the best in [2]. Thus the
resulting NN has quite a large output layer containing all phonemes
from all languages with one softmax activation function.

The second approach – block softmax – divides the output layer
into parts according to individual languages. During the training,
only the part of the output layer corresponding to the language the
given target belongs to, is activated. This approach was successfully
used in [4].

During our various experiments, we have observed that the block
softmax approach has sometimes problem with training convergence
and requires a learning rate reduction in order to get trained properly.
To prevent this behavior, the trained one softmax NN was used as
initialization for block softmax NN training. This initialization was
done only for the first stage NN.

As the goal was to adapt the feature extraction NNs, the Con-
volutive Bottleneck Network (CBN) [13] technique which would al-
low to retrain the whole structure in one step was considered. This
approach moves the context from the position between networks in
front of the first one and the global normalization before the second
stage NN is omitted. The first stage NN is present in the convolutive
structure five times, but all its instances share the same weights. The
block diagram of the CBN is shown in Fig. 2.

The Convolutive Bottleneck Network and block softmax ap-
proaches were used together to obtain multilingual NN. Since the
initialization done in block softmax NN training proved to be use-
ful, the training of CBN feature extractor is done in three phases:
first, the first stage NN is trained in standard way with one softmax.
Second, the NN is retrained with block softmax. Third, the whole
structure is created, the trained first stage NN is appended with
a random initialization of the second stage NN and trained. This
approach is denoted as Convolutive block softmax further.

The results of various multilingual approaches are given in
Tab. 3. It can be seen that all multilingual BN features slightly
outperformed the LLP monolingual ones. This observation suggests
that when the target domain becomes under-resourced, the use of
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Table 3. WER [%] of target languages LLP systems with BN fea-
tures obtained from multilingual SBN systems

BN WER
target language PA TU
monolingual SBN 71.4 69.5
one softmax 69.9 68.6
block softmax 69.1 69.0
init block softmax 69.2 68.8
Convolutive block softmax 69.2 68.1

Table 4. WER [%] of target languages LLP systems with BN fea-
tures obtained from adapted multilingual SBN system

BN WER [%]
target language PA TU
monolingual SBN 71.4 69.5
one softmax 67.9 67.2
block softmax 67.1 66.9
init block softmax 67.1 66.3
Convolutive block softmax 66.7 65.6

other data is more efficient and multilingual system can perform
well even on “unseen language” without the adaptation.

3.3. Adaptation of Multilingual NN
The adaptation of NN is done through retraining of already trained
NN on target language data. The trained multilingual NN guarantees
a good starting point which already produces good features as can be
seen from Tab. 3. Retraining allows to shift the weights towards the
acoustic space of target data.

Our approach to NN adaptation has two phases: First, only the
last layer is trained. Since our initial NN is multilingual, the out-
put layer has large number of units. We need to initialize the output
layer randomly with the proper number of outputs matching the tar-
get language phoneme set. If the whole NN was retrained now, the
error caused by the random weights in the last layer could be prop-
agated deeper in the NN and the training could drift apart from the
optimum. This is why the rest of NN is fixed and only the last layer
is trained. In the second phase, the other layers are released and the
whole NN is retrained once more. Since this retraining starts from
an already trained network, the learning rate for this phase is set to
one tenth of its original value3.

Having several methods to obtain multilingual NN and several
ways to apply the adaptation leads to two questions:
What to adapt? This set of experiments should tell us which system
is the best for the subsequent adaptation. Here, all multilingual SBN
feature extractors were adapted to target domain by fine-tuning of
the second stage NN.

The results obtained are shown in Tab. 4. It can be seen that
the WER decreases consistently with the increasing complexity of
multilingual training approach. Adapted Convolutive block softmax
NN reaches half of the interval given by the FLP and LLP monolin-
gual systems. This shows that the technique is very efficient and can
boost the system performance for domains with little data.
Where to adapt? This set of experiments should tell us which NN
in the SBN system should be kept multilingual or be adapted or be
trained only on target domain data. The most simple multilingual
system was selected for these experiments.

3Learning rate of 0.004 is used for training from random weights, and
0.0004 for the retraining.

Table 5. WER [%] of target languages LLP systems with BN fea-
tures obtained from various adaptation schemes of one softmax mul-
tilingual SBN system

SBN NN BN WER [%]
1st stage 2nd stage PA TU
LLP only LLP only 71.4 69.5

multilingual multilingual 69.9 68.6
multilingual adapted 67.9 67.2
multilingual LLP only 68.3 66.5

adapted adapted 67.7 66.9
adapted LLP only 68.0 65.0

Tab. 5 summarizes the possible combination of differently
trained NNs in SBN system. The conclusion here is not so straight
forward as in previous case. The different strategies to adapt a SBN
system for Pashto give more or less the same results but we obtain
considerable differences for Turkish. Moreover, the tendencies go
in opposite directions – if the first stage NN is kept multilingual
(or adapted) and the second stage NN is changed from adapted to
purely target domain (LLP only) the WER increases for Pashto and
decreases for Turkish. The only conclusion seems to be that it is
beneficial to adapt the first stage NN. The second stage NN should
be either adapted or trained on target data only. Note that for Turk-
ish, considerable improvement over the best multilingual system –
convolutive block softmax – was achieved.

Unfortunately, there are too many differences in the two systems
to analyze this behavior in detail with the given setup – it is not possi-
ble to tell whether the behavior origins from the multilingual systems
or is inherent in the target data set. A way to study this phenomenon
at least to some extent would be to select another language on which
both multilingual systems could be used and evaluated. If the trends
continue to be opposite, the behavior is caused by the multilingual
systems, if similar, then it is caused by the target data characteristics.

4. CONCLUSIONS

In our paper, we addressed multilingual training of Stacked Bottle-
Neck neural network structure for feature extraction. While for lan-
guages with plentiful resources, the optimal approach is to train the
BN-NN on the target data, limited resources call for re-using data
from other languages. We have evaluated several techniques for mul-
tilingual training of neural networks. Two of them seem to be im-
portant: the first, block softmax separates the phone sets of individual
languages in output layer and adds the phonemes of the target lan-
guage to the final layer only, the second, convolutive block softmax,
uses the same trick on a convolutive bottle-neck network defined
in [13]. Both multilingual systems perform comparably well. The
block softmax is easier to implement while the convolutive version
provides possibility of adapting the whole structure at once.

The experiments where different parts of SBN system were
trained/adapted differently revealed importance of proper adaptation
scheme. Adapting the simplest one softmax SBN system in differ-
ent ways results in better performance than adaptation of the most
complex convolutive block softmax one for Turkish data.

Our future experiments will focus on the “Where to adapt” ques-
tion with the goal of explanation of the opposite tendencies for dif-
ferent languages. We would also like to see if similar situation will
occur in case of adapting differently trained multilingual systems.
Our further interest lies in combination of several NNs approaches
into one more complex structure of NNs.
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[1] A. Stolcke, F. Grézl, M.Y. Hwang, X. Lei, N. Morgan, and
D. Vergyri, “Cross-domain and cross-language portability of
acoustic features estimated by multilayer perceptrons,” in Pro-
ceedings of ICASSP 2006, Toulouse, FR, 2006, pp. 321–324.
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