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Abstract
Multilingual training of neural networks for ASR is widely
studied these days. It has been shown that languages with little
training data can benefit largely from the multilingual resources
for training. The use of unlabeled data for the neural network
training in semi-supervised manner has also improved the ASR
system performance. Here, the combination of both methods
is presented. First, multilingual training is performed to obtain
an ASR system to automatically transcribe the unlabeled data.
Then, the automatically transcribed data are added. Two neural
networks are trained - one from random initialization and one
adapted from multilingual network - to evaluate the effect of
multilingual training under presence of larger amount of train-
ing data. Further, the CMLLR transform is applied in the mid-
dle of the stacked Bottle-Neck neural network structure. As the
CMLLR rotates the features to better fit given model, we evalu-
ated whether it is better to adapt the existing NN on the CMLLR
features or if it is better to train it from random initialization.
The last step in our training procedure is the fine-tuning on the
original data.
Index Terms: feature extraction, neural networks, stacked
bottle-neck, multilingual training, semi-supervised training

1. Introduction
One of today’s interests in speech recognition community is the
development of ASR system with only limited resources from
the target domain. An example of such focus is the IARPA
BABEL project with the goal of developing methods to build
speech recognition technology for any spoken language with
little training data that is also much noisier and more heteroge-
neous than the one used for training current state-of-the-art ASR
systems. This requires innovations and techniques to rapidly
model a novel language.

One of the key components in today’s state-of-the-art sys-
tems are neural networks (NNs) in the role of either feature
extractor [1] or acoustic model [2]. As the time passed, the
computation power increased tremendously and allowed to train
large neural networks on huge speech databases. The challenge
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of these days was to train networks on this huge data [3]. Today,
the opposite problem is faced: how to make neural networks
work well with little in-domain training data.

The clue to the solution is actually hidden in the problem
definition: “little in-domain training data”. Thus the focus
turned to leveraging the out-of-domain and non-training data.

The out-of-domain data are mostly speech collections from
other languages. The recent research in this area has gener-
ated several methods of multilingual training for neural net-
works. The performance of multilingual NN feature extractor
is evaluated in [4]. The ways of compacting the multilingual
phoneme set were also studied here. Using language-specific
output layer, while keeping the main body of NN multilingual,
was proposed in [5]. In both cases, no data from target language
is used for NN training. The adaptation of multilingual network
by fine-tuning on the target domain data can boost system per-
formance [6]. On the other hand, the issue of language-specific
phonemes arises. Vu et al. [7, 8] approximated such phoneme
by several ones from the training languages so that, in combina-
tion, they had the characteristic of the target phoneme. Differ-
ent architectures of NNs and reuse of trained monolingual NNs
were also examined: [9] shows the performance of NN with the
final part being language-specific (the last 2 layers). A modular
multilingual system is studied in [10]. Our latest work [11] eval-
uated multilingual training and adaptation strategies of Stacked
Bottle-Neck NN architecture.

The non-training data is untranscribed data not prepared for
training. But this data can be transcribed automatically and used
together with the training one – this leads to semi-supervised
training techniques. These techniques are well studied in the
GMM training framework. The untranscribed data can be la-
beled either on segment level by the full ASR system [12, 13]
or on data-point level by assigning it the label of the closest la-
beled one internally during the training process [14]. In these
cases, selecting reliable segments/data-points is necessary. It
is also possible to assign them soft weights by some kind of
confidence measure. Other semi-supervised training methods
incorporate the uncertainty of unlabeled data into the objective
functions and minimize its entropy [15, 16, 17], or are based on
feature-space manifold assumption using a graph-based frame-
work [18, 19], where the nearest supervised data-point suggests
the label.

In the neural network training framework, these techniques
have been studied only recently. In the work of Huang [20], au-
tomatic transcriptions are obtained by a ROVER fusion of three
systems and confidences are re-calibrated by per-word degree
of agreement. Thomas et al. [6] use combination of per-word
Cmax confidence and MLP posteriorgram phoneme occurrence
confidence, which is used for sentence-level data selection. In
our work [21], we rely on a single DNN system, and use per-
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frame confidences for frame-weighted training. In [22], the data
segments for training a neural network feature extractor were
selected based on their Cmax measures.

The goal of this work is to show a way to quickly build
a recognition system on little transcribed data while having
resources from other languages as well as in-domain untran-
scribed data. It directly extends our past work in multilingual
training [11] where we found the optimal approach to multilin-
gually train the Stacked Bottle-Neck (SBN) (originally called
“Universal Context”) NN hierarchy [23] and to adapt it to the
target language. Here, we describe semi-supervised training on
top of the multilingual one. New forced alignment is obtained
with recognition system based on adapted multilingual SBN
NNs. Also, untranscribed portion of language-specific data is
automatically transcribed and Cmax confidence measures are
obtained. The approach used in [22] is evaluated in two sce-
narios: Training of NNs from random initialization and adapt-
ing the multilingual SBN with manually and automatically tran-
scribed data.

2. Experimental setup
2.1. Data
The IARPA Babel Program data1 simulate a case of what one
could collect in limited time from a completely new language.
Two training scenarios are defined for each language – Full Lan-
guage Pack (FLP), where all collected data are available for
training; and Limited Language Pack (LLP) consisting only of
one tenth of FLP. Vocabulary and language model (LM) training
data are also defined with respect to the Language Pack. They
basically consists of transcripts of the given data pack.

For multilingual training, the FLP data from the first year
of the program are used. Those are Cantonese language col-
lection release IARPA-babel101-v0.4c (CA), Pashto IARPA-
babel104b-v0.4aY (PA), Turkish IARPA-babel105-v0.6 (TU),
Tagalog IARPA-babel106-v0.2g (TA) and Vietnamese IARPA-
babel107b-v0.7 (VI). These languages will be further referred
as source languages.

The evaluation (target) languages are the ones delivered
in the second year: Assamese IARPA-babel102b-v0.5a (AS),
Bengali IARPA-babel103b-v0.4b (BE), Haitian Creole IARPA-
babel201b-v0.2b (HA), Lao IARPA-babel203b-v3.1a (LA) and
Zulu IARPA-babel206b-v0.1e (ZU). The LLP is used as adap-
tation data. The remaining data in FLP are regarded as untran-
scribed and will be used in semi-supervised manner.

The characteristics of the languages can be found in [24].
More detailed statistics for evaluation languages are given in
Tab. 1. The reported amounts of data for FLP and LLP refer to
the speech segments after dropping the long portions of silence.

2.2. NNs for feature extraction
The features obtained using Neural Networks are the Bottle-
Neck (BN) features. A structure of two 6-layer NNs is em-
ployed according to [23]. It is depicted in Fig. 1.

The NN input features are composed of critical band en-
ergy (CRBE) features and fundamental frequency ones. As
critical band energy features, we use logarithmized outputs of
24 Mel-scaled filters applied on squared FFT magnitudes. The
fundamental frequency features consist of F0 and probability of
voicing estimated according to [25] and smoothed by dynamic
programming, F0 estimates obtained by Snack tool2 function

1Collected by Appen http://www.appenbutlerhill.com
2www.speech.kth.se/snack/

Table 1: Statistics of the data. The LM and dictionary statistics
are taken from LLP which is used to train the HMM system. The
OOV rate is reported with respect to LLP.

Language AS BE HA LA ZU
FLP speakers 726 793 752 789 743
FLP hours 69.5 74.1 72.3 71.6 57.4
LLP speakers 120 120 120 120 120
LLP hours 7.8 8.9 7.9 8.1 8.4
LM sentences 11814 11763 9861 11577 10644
LM words 75610 84334 93131 93328 60832
dictionary 8729 9497 5333 3856 14962
# tied states 1179 1310 1257 1453 1379
dev speakers 120 121 120 119 119
dev hours 6.4 6.9 7.4 6.6 7.4
# words 51931 56221 81087 81661 50053
OOV rate [%] 8.3 8.5 4.1 1.8 22.4

getf0 and seven coefficients of Fundamental Frequency Varia-
tions spectrum [26, 27]. Together, there are 10 F0 related co-
efficients. The resulting feature vector will be referred to as
CRBE+F0s. It provides consistent improvement over previ-
ously used set of features (15 critical bands augmented with F0
and probability of voicing) for all languages.

The conversation-side based mean subtraction is applied on
the whole feature vector. 11 frames of CRBE+F0s are stacked
together. Hamming window followed by DCT consisting of 0th
to 5th base are applied on the time trajectory of each parameter
resulting in 34 × 6 = 204 coefficients on the first stage NN
input. The whole data set is mean and variance normalized.

The first stage NN in stacked bottle-neck hierarchy has four
hidden layers. The 1

st, 2nd and 4
th layers have 1500 units with

sigmoid activation function. The 3
rd is the BN layer having

80 units with linear activation function, which improves recog-
nition performance over the sigmoid activations [28]. The BN
layer outputs are stacked (hence Stacked Bottle-Neck) over 21
frames and downsampled by factor of five before entering the
second stage NN. The second stage NN is the same as the first
one with exception of BN layer size. In this NN, it has 30 units.
Outputs of the second stage NN BN layer are the final outputs
forming the BN features for GMM-HMM recognition system.

Tied triphone states are used as NN targets. Features ob-
tained from NNs trained towards these targets provide con-
sistently slightly better performance than context-independent
phone-state targets.

The forced alignments were generated with provided seg-
mentations, however, it was found that they still contain large
portion of silence (50%–60%). Therefore, new segmentation,
which reduced the amount of silence to 15%-20%, was gen-
erated by removing the long silences at the ends of the seg-
ments and splitting one segment into two when silence longer
than 300ms was detected. We also cut out the parts of seg-
ments which were labeled as “unknown” (generally unintelligi-
ble speech).

2.3. Recognition system
The evaluation system is based on BN features only and thus
directly reflects the changes in neural networks we made. The
BN features are BN outputs transformed by Maximum Likeli-
hood Linear Transform (MLLT), which considers HMM states
as classes. The models are trained by single-pass retraining
from HLDA-PLP initial system. 12 Gaussian components per
state were found to be sufficient for MLLT-BN features. 12
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Figure 1: Block diagram of Stacked Bottle-Neck feature extraction. The blue parts of NNs are used only during the training. The green
frames in context stacking between the NNs are skipped. Only frames with shift -10, -5, 0, 5, 10 form the input to the second stage NN.
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Figure 2: Percentage of untranscribed with Cmax bigger than
the given threshold. Average over five evaluation languages.

maximum likelihood iterations are done to settle HMMs in the
BN feature space.

The final word transcriptions are decoded using 3gram LM
trained only on the transcriptions of LLP training data3.

2.4. Multilingual SBN training and adaptation
The NN in SBN system are trained with the last layer – softmax
– split into several blocks. Each block accommodates training
targets from one language. This was found superior to having
NNs with one softmax accommodating either full or compacted
target set [4]. The context-independent phoneme states were
used as training targets in multilingual NN training. The adap-
tation of trained NN to target language is done in two steps:

1. Training of the last layer. The multilingual layer is
dropped and a new one is initialized randomly with num-
ber of outputs given by the target language. Only this
layer is trained keeping the rest of the NN fixed.

2. Retraining of the whole NN. The remaining layers are re-
leased and the whole NN is retrained. The starting learn-
ing rate for this phase is set to one tenth of the usual
value.

This process is the same for both NNs in SBN hierarchy and
provided the best results in our former work although adapting
the first NN basically changes the inputs to the second one so
it could have problems with adaptation. But it appears that NN
can adapt also to slight changes in input features.

The context-dependent phoneme states were used as train-
ing targets in the adaptation phase.

GMM-HMM system is trained on the MLLT-BN features
from adapted multilingual SBN hierarchy. The automatic tran-
scriptions and new forced alignments are obtained with this sys-
tem.

3This is coherent to BABEL rules, where the provided data only can
be used for system training.
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Figure 3: Percentage of untranscribed with Cmax bigger than
the given threshold. Average over five evaluation languages.

3. Experiments
3.1. Semi-supervised training
In this step, we evaluate the effect of adding automatically tran-
scribed data to the training set. The data are selected in the
same way as in [22]. Fig. 2 shows the percentage of added data
with respect to chosen Cmax threshold. The total amount of un-
transcribed data is FLP size minus LLP size – see Tab. 1. The
selected data are added to the LLP part and two systems are
trained: One from random initialization and another adapted
from multilingual NNs as described in Sec. 2.4. We would like
to compare how efficiently the new data is used in both cases
and at which level both systems would perform about the same –
i.e. when the adaptation of multilingual NNs will not bring any
advantage over training from random initialization. However,
note that training from random initialization takes advantage of
multilingual system in the form of better forced alignment.

The average relative improvements over the LLP baseline
are shown in Fig. 3. It can be seen that adaptation of mul-
tilingual NNs achieves higher improvements for higher Cmax

values over the training from random initialization. The perfor-
mances of both systems become equal for Cmax = 0.5. This is
also the optimal threshold and decreasing it (adding more, but
less reliable, data) does not further improve the performance.

We can also evaluate the effect of new forced alignment on
just LLP set. This alignment is generated after adaptation of
multilingual NNs to a new language. The effect can be seen
on the differences in bars “multiling adapt” and “LLP only” in
Fig. 4. The “LLP only” bar is the same as bar for Cmax = 1 in
Fig. 3. Note that there is no multilingual adaptation for “training
from random weights” track.

3.2. Speaker-adaptive neural network training
The optimal semi-supervised training scenario was taken to per-
form the next step in the system building – speaker adaptive
training of neural networks.

In our recent work [29], we discussed several strategies
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Figure 4: Overview of the WER reduction in individual steps.
Average over five evaluation languages.

for NN adaptation and compared two CMLLR adaptation ap-
proaches in combination with neural network training:

1. Adaptation of SBN input features: CRBEs were decorre-
lated using DCT, adapted by CMLLR and projected back
into original space by inverse DCT.

2. Adaptation of the SBN inner product – output of the
1

ststage NN. BN outputs are known to be far less cor-
related, so the transform could be applied directly.

The second approach was found more effective. Moreover, ac-
cording to our analysis, the first-stage NN is doing mainly the
acoustic feature extraction and only the second-stage NN is pro-
cessing acoustic clues in wider context. Therefore, it is more
convenient to place speaker-specific block between the two NNs
and thus follow the classical speech recognition scenario – fea-
ture extraction, speaker adaptation, acoustic modeling.

The 1
ststage BN-CMLLR features are used in the follow-

ing ways:
• New 2

nd stage NN is trained from random initialization.
• The existing 2

nd stage NN is retrained. We considered
not only the fully trained NN for retraining, but also the
NNs several iterations before the training ended to allow
the retraining to find a possibly better optimum.

Two sets of 1
ststage BN-CMLLR features were generated -

one originated from semi-supervised training from random ini-
tialization and another from multilingual SBN adaptation.

We have found that training new 2
nd stage NN from ran-

dom initialization gives slightly lower word error rate (∼ 0.2%)
for all languages than the adaptation of existing NN. There is no
difference when adaptation of NN starts from different epochs
of the original training. The relative improvement over the LLP
baseline after adding the speaker adaptive training is shown in
Fig. 4, see the “+ CMLLR” bars.

3.3. Fine tuning
We proceed with the speaker-dependent SBN system where the
2

nd stage NN is trained from random initialization. The goal of
this step is to fine tune the system with reliable data only.

At the beginning, we have done (on one language – As-
samese) a thorough evaluation looking for the optimal starting
point – the initial neural network for the tuning – and portion
of data to use for the fine tuning. For this step, only the LLP
data were considered and the oracle error rate measured as the
probability of transcription in the recognition lattice was used
to filter out less reliable segments.

Our analysis shows only marginal differences in the results.
Thus we proceed with using the whole LLP data and final NN
from previous step. The results are shown in Fig. 4, the “+ fine
tune” bars.

Table 2: WER [%] obtained on Bengali – multilingual track
LLP multiling +semi- +CMLLR +fine shortened

baseline adapt -sup 0.5 tune
69.7 65.9 64.9 62.7 62.2 62.5

3.4. Shortening the pipeline
As you can see, our optimal pipeline ended up with several
trainings – we train the SBN system in semi-supervised man-
ner and then the 2

nd stage NN is trained in speaker adaptive
training on the 1

ststage BN-CMLLR features. For quick build-
up of a system, it would be good to eliminate some of these
trainings. It is obvious that training the 2

nd stage NN in the
semi-supervised training step is not necessary as the CMLLR
transforms are trained on the outputs of 1

st stage NN.
But there is one more training which may be skipped – the

1
st stage NN need not be trained in the semi-supervised step.

As mentioned above, it performs the acoustic feature extraction.
When it stays the same (i.e. adapted from multilingual NN), the
second stage NN should compensate this slight difference.

In our shortened pipeline, the CMLLR transforms are com-
puted on the 1

st stage NN from the multilingual system adapted
to the target language. Then, the new 2

nd stage NN is trained on
1

ststage BN-CMLLR features of LLP plus automatically tran-
scribed data. This NN is fine-tuned with the LLP data. In this
way, not only the time needed for neural network training is
saved, but also the CMLLR training and generation of auto-
matic transcription can be done at the same time.

The results are shown in Fig 4, bars “shortened”. As can
be seen, the degradation of performance compare to the full
pipeline is very small. Note, that the pipeline cannot be short-
ened without having the multilingual NNs.

4. Conclusions
We show further improvements on top of the multilingual SBN
systems adapted to target language. These systems reduce
the WER by 4-8% relative to the LLP baseline. The semi-
supervised training reduces the WER by additional 1-3% rela-
tive. The semi-supervised training was performed in two ways:
starting from random initialization and by adapting the multilin-
gual NNs. In this phase, the training from random initialization
performs slightly better.

In the next step, the speaker-adaptive neural network train-
ing was done by the means of CMLLR transform applied on
the BN outputs from the first stage NN in SBN hierarchy. The
additional improvement is between 2.5 and 5% relative. Fine
tuning on LLP data adds up to 1.5%. Overall, the improve-
ment was almost doubled by our effort. The averaged re-
sults from individual steps are shown in Fig. 4, all results with
per-languages figures can be found at www.fit.vutbr.cz/
˜grezl/IS2014. The largest WER reduction was achieved
for Haitian (5.9 by multilingual system; 14.2 with full pipeline),
the smallest for Zulu (4.0; 7.4). The results for the multilingual
track of Bengali (chosen as “average” language) are given in
Tab. 2.

Significantly simplified pipeline was also evaluated. It con-
sists of only one NN training on top of the 1

ststage BN-CMLLR
features (computed directly from the initial adapted multilin-
gual SBN) and fine tuning. The drop in relative WER reduction
is between 0.1 and 1.3%. This is only small price for simplifi-
cation and speed-up we gain.
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[22] F. Grézl and M. Karafiát, “Semi-supervised bootstrapping ap-
proach for neural network feature extractor training,” in Proceed-
ings of ASRU 2013, 2013, pp. 470–475.
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