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ABSTRACT

The neural network based features became an inseparable part of

state-of-the-art LVCSR systems. With the increasing accent on fast

development of ASR system on limited resources, there is an ef-

fort to alleviate the need of large amount of transcribed in-domain

data. One successful way is to use data from other languages. We

present extensive evaluation of several strategies to adapt hierarchi-

cal neural network in search for the most effective one. To avoid

the bias towards one target language, our strategies were evaluated

on five languages. Also, several multilingual neural network hierar-

chies were trained on two sets of languages. Thus the results provide

solid insight into the problem of adapting hierarchical system.

Index Terms— feature extraction, Bottle-Neck features, neural

network adaptation, multilingual neural networks, Stacked Bottle-

Neck structure

1. INTRODUCTION

Quick delivery of ASR system for a new language is one of the

challenges in the community. Hand in hand with the quick deliv-

ery comes limitation of available resources. Such scenario calls not

only for automated construction of systems, that have been carefully

designed and crafted “by hand” so far, but also for effective use of

available resources. This is particularly important for features ob-

tained from neural networks (NNs). The pressure on this part comes

from two sides: First, the neural networks are sensitive to amount

of training data. In order to perform well, they need to be trained

on large amount transcribed data. Unfortunately, the data collection

and annotation is the most time- and money-consuming procedure.

Second, since feature extraction is the first step in the whole speech

to text (STT) system, the time one can spend on training the feature

extractor is limited. On the other hand, feature extraction is the cru-

cial step and quality of the features determines the performance of

whole STT system.

This naturally raises the question whether features of sufficient

quality can by obtained from different sources. The first study of

portability of NN-based features was done in [1] where NNs trained

on English data were applied to Mandarin and Levantine Arabic to

produce probabilistic features. Consistent word error rate (WER)

reduction was observed for both languages. In both cases however,
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the amount of training data would be itself sufficient for training

good neural networks (100 and 70 hours respectively).

Our work [2] studied the possibility to train a multilingual NN

to be used to derive features for a new language. Several approaches

to create the target phoneme set for the multilingual training were

explored. We have shown that concatenation of phoneme sets is a

safe and simple approach (further denoted as one softmax). How-

ever, performing merging on phoneme sets of individual languages

can be beneficial depending on the language set and desired features.

The integral way of obtaining multilingual (or lang.-independent)

NN based (bottle-neck) features is presented in [3, 4]. Here, the NN

is trained on several languages which makes the main body of the

NN language-independent while the last – output – layer is divided

into language-dependent parts. Only one part of the output (N th)

layer corresponding to the language of a particular input-output

training pair is active. Thus the outputs of the (N − 1)th layer pro-

vide information which should be equally useful for classification

of any of the language-specific targets used in the training. This

leads to truly multilingually trained weights in NN except for the

language-specific parts of the output layer. This approach will be

further denoted as block softmax. This technique was modified by

Heigold et al. in [5] and tested in multilingual DNN hybrid system.

When comparing the two approaches, we should note that one

output layer (one softmax) for all language-specific targets performs,

together with classification of the input vectors, indirectly also lan-

guage identification as it has to distinguish between similar (or the

same) targets from different languages.

All the above techniques assume no data for the target language,

which is somewhat unrealistic scenario as there has to be some tran-

scribed data to train the acoustic model on. And since there is the

data, forced alignment can be done on them and the input-output

pairs can be used to adapt the neural network for feature extraction.

It should be also noted, that none of the techniques above led

to significant improvement over the monolingual NN trained on the

target language data only. On the other hand, adding target language

data to multilingual training brought consistent improvement. This

shows how important it is to present the target acoustic space during

the NN training.

The adaptation to target language brings issues with language-

specific phonemes. Vu et al. [6, 7] suggest to solve this problem

by approximation of such phonemes by several phonemes from the

source languages that, in combination, have the characteristic of the

target phoneme. Then, NN is retrained on target language using only

the outputs (phonemes) belonging to it.

The adaptation of NN trained on large amount of data from one

language to target domain with little data by final fine-tuning was

proposed in [8] and extended to multilingual NN in [9]. This ap-

proach eliminates the necessity of identification and approximation

of new phonemes.

Our latest work [10] presents several strategies of adaptation of

Stacked Bottle-Neck (SBN) (originally called “Universal Context”)
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Table 1. Characteristics of used languages

Language # dialects tonal? Phonology Morphology

Cantonese 5 yes (7) 19 consonants, 8 vowels, 11 diphthongs analytic, very limited affixation

Pashto 4 no 30 consonants, 7 vowels affixes on nouns, verbs, and adjectives; some

stem allomorphy

Tagalog 3 no 19 consonants, 15 vowels, 11 diphthongs verbs take prefixes, suffixes, infixes, reduplica-

tion for focus, aspect, mode, voice

Turkish 7 no 25 consonants, 1 semivowel, 16 vowels agglutinating, vowel harmony, inflectional

Vietnamese 4 yes (6) 25 consonants and 45 vowels, 12 monoph-

thongs, 25 diphthongs, 8 triphthongs

analytic, very limited affixation

Bengali (BE) 3 no 33 consonants, 2 semivowels, 10 vowels (8

monophthongs and 2 diphthongs) and 9 nasal

vowels (7 monophthongs and 2 diphthongs)

Fusional, 4 noun cases, some noun classifiers;

3 politeness levels in 2nd person: intimate,

neutral, formal

Assamese

(AS)

3 no 30 consonants, 9 vowels (7 monophthongs and

2 diphthongs), 9 nasal vowels (7 monoph-

thongs and 2 diphthongs)

Fusional, fairly extensive noun classifier sys-

tem, 6 noun cases; three politeness levels as in

Bengali

Haitian Cre-

ole (HA)

3 no 20 consonants, and 12 vowels (11 monoph-

thongs and 1 diphthong)

analytic, minimal derivational morphology, no

inflectional morphology

Lao (LA) 1 yes (6) 19 consonants, 2 semivowels, 22 vowels (18

monophthongs, 9 long, 4 diphthongs)

analytic, no inflectional morphology, 4 levels

of politeness

Zulu (ZU) 1 yes (3) 28 consonants, 9 clicks, 2 semi-vowels, 7 vow-

els

agglutinative, with extensive inflection

NN hierarchy [11]. The SBN structure achieves significantly better

performance than single NN and it is widely used these days.The

question which naturally raised in case of NN hierarchy is which

NN should be adapted, or if one of them can be trained on target

data only. We have observed that different adaptation strategies can

lead to 2% absolute WER difference. Unfortunately, the obtained

results were not consistent which might be assigned to the property

of jackknifing experiments - different training set and different test

set.

To obtain stronger evidence, we have designed a new set of ex-

periments. We have defined two sets of training languages and we

evaluate the techniques on five languages. Thus the drawn concus-

sions stay on solid ground.

2. EXPERIMENTAL SETUP

2.1. Data

The IARPA Babel Program data1 simulate a case of what one could

collect in limited time from a completely new language: it consists

of two parts: scripted (speakers read text through telephone channel)

and conversational (spontaneous telephone conversations). The dev

data contains conversational speech only. Two training scenarios are

defined for each language – Full Language Pack (FLP), where all

collected data are available for training; and Limited Language Pack

(LLP) which consist only of one tenth of FLP. Vocabulary and lan-

guage model (LM) training data are also defined with respect to the

Language Pack. They basically consists of transcripts of the given

data pack.

For multilingual training, the FLP data from the first year of

the program are used. Those are Cantonese language collection

release IARPA-babel101-v0.4c (CA), Pashto IARPA-babel104b-

v0.4aY (PA), Turkish IARPA-babel105-v0.6 (TU), Tagalog IARPA-

babel106-v0.2g (TA) and Vietnamese IARPA-babel107b-v0.7 (VI).

These languages will be further referred as source languages.

1Collected by Appen http://www.appenbutlerhill.com

Table 2. Evaluation data statistics. The LM and dictionary statistics

are taken from LLP which is used to train HMM system. The OOV

rate is reported with respect to LLP.

Language AS BE HA LA ZU

FLP speakers 726 793 752 789 743

FLP hours 69.5 74.1 72.3 71.6 57.4

LLP speakers 120 120 120 120 120

LLP hours 7.8 8.9 7.9 8.1 8.4

LM sentences 11814 11763 9861 11577 10644

LM words 75610 84334 93131 93328 60832

dictionary 8729 9497 5333 3856 14962

# tied states 1179 1310 1257 1453 1379

dev speakers 120 121 120 119 119

dev hours 6.4 6.9 7.4 6.6 7.4

# words 51931 56221 81087 81661 50053

OOV rate [%] 8.3 8.5 4.1 1.8 22.4

The evaluation (target) languages are the ones delivered in the

second year: Assamese IARPA-babel102b-v0.5a (AS), Bengali

IARPA-babel103b-v0.4b (BE), Haitian Creole IARPA-babel201b-

v0.2b (HA), Lao IARPA-babel203b-v3.1a (LA) and Zulu IARPA-

babel206b-v0.1e (ZU). The LLP is used as adaptation data.

The characteristics of the languages are given in Tab 1 [12].

More detailed statistics for evaluation languages are given in Tab. 2.

The reported amounts of data for FLP and LLP refer to the speech

segments after dropping the silence.

2.2. NNs for feature extraction

The features obtained using Neural Networks are the Bottle-Neck

(BN) features. A structure of two 6-layer NNs is employed accord-

ing to [11]. It is depicted in Fig. 1.

The NN input features are composed of critical band energy

features and fundamental frequency features. As critical band en-
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Fig. 1. Block diagram of Bottle-Neck feature extraction. The blue parts of NNs are used only during the training. The green frames in context

gathering between the NNs are skipped. Only frames with shift -10, -5, 0, 5, 10 form the input to the second stage NN.

ergy features are used logarithmized outputs of 24 Mel-scaled filters

applied on squared FFT magnitudes. The fundamental frequency

features consists of F0 and probability of voicing estimates com-

puted according to [13] and smoothed by dynamic programming,

F0 estimates obtained by Snack tool 2 function getf0 and seven co-

efficients of Fundamental Frequency Variations spectrum according

to [14, 15]. This feature set provided consistent improvement over

previously used set of features (15 critical bands augmented with F0

and probability of voicing) for all languages.

The conversation-side based mean subtraction is applied on the

whole feature vector. 11 frames are stacked together. Hamming

window followed by DCT consisting of 0th to 5th base are applied

on the time trajectory of each parameter resulting in 204 coefficients

on the first stage NN input.

The first stage NN has four hidden layers with 1500 units each

except the BN layer. The BN layer is the third hidden layer and its

size is 80 neurons. Its outputs are stacked over 21 frames and down-

sampled before entering the second stage NN; every fifth frame is

taken. This NN has the same structure and sizes of hidden layers as

the first one. The size of BN layer is 30 neurons and its outputs are

the final outputs forming the BN features for GMM-HMM recogni-

tion system.

Neurons in both BN layers have linear activation functions as

they were reported to provide better performance [16]. Before the

features enter each NNs’ input layer, global mean and variance nor-

malization is performed.

Tied triphone states are used as NN targets. Features obtained

from NNs trained towards these targets provide consistently slightly

better performance then context-independent phone states targets.

The forced alignments were generated with provided segmenta-

tions, however it was found that they still contain large portion of

silence (50%–60%). Therefore, new segmentation, which reduced

the amount of silence to 15%-20%, was generated. We also cut out

the parts of segments which were labeled as “unknown” (generally

unintelligible speech).

2.3. Simplified recognition system

This system is used to evaluate all approaches. It is based on MLLT-

BN features only and thus directly reflects the changes in neural net-

works we made.

First, for each language, PLP-based system was trained. This

system was used for forced alignment of the data and as a initializa-

tion for system based on Bottle-Neck features. It is trained on FLP

for source languages and on LLP for evaluation languages.

2www.speech.kth.se/snack/

PLP coefficients consist of 13 parameters and their first, sec-

ond and third order derivatives. HLDA is estimated with Gaussian

components as classes to reduce the dimensionality to 39. Then the

conversation-side based mean and variance normalization is applied.

Based on these HLDA-PLP features, baseline recognition system

system is trained. It is an HMM-based cross-word tied-states tri-

phone system. The number of tied states is around 1300 for LLP

training (evaluation languages - see Tab. 2 for precise numbers) and

4000-8000 for FLP training (source languages, see Tab 3 for precise

numbers). Each state consists of 18 Gaussian mixture components.

It is trained from scratch using mix-up maximum likelihood training.

Performance of this system is poor and we do not report results for

it.

To train the system on Bottle-Neck features, the BN outputs are

transformed by Maximum Likelihood Linear Transform (MLLT),

which considers HMM states as classes. Then, new models are

trained by single-pass retraining from HLDA-PLP baseline system.

12 Gaussian components per state were found to be sufficient for

MLLT-BN features. Next, 12 maximum likelihood iterations follow

to better settle new HMMs in the new feature space.

Final word transcriptions are decoded using 3gram LM trained

only on the transcriptions of LLP training data3.

2.4. Full recognition system

The best performing SBN systems are evaluated with the full recog-

nition system. This system is based on feature level fusion by Re-

gion Dependent Transform (RDT) [17]. Three feature streams: PLP-

HLDA (39 dimensions), MLLT-BN features (30 dim.) and F0 with

delta and acceleration coefficients (3 dim.), are concatenated and

adapted using speaker-based CMLLR. This feature stream is fed to

Region Dependent transform (RDT) performing dimensionality re-

duction to 69 dimension.

In RDT framework, an ensemble of linear transformations is

trained with the discriminative Minimum Phone Error (MPE) crite-

rion. The feature space is partitioned by global GMM and one trans-

form is assigned to a each multidimensional Gaussian. Resulting

vector is computed as weighted sum of input vector transformed by

all transforms. Weights are given by Gaussian probabilities. Thresh-

olding is applied to reduce the computation.

the RDT GMM consists of 125 components, which was found

optimal in our previous experiments. The contextual information

was incorporated to improve performance of the system. For detailed

information on RDT configuration, see [18].

3This is coherent to BABEL rules, where the provided data only can be
used for system training.
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Table 3. Data for multilingual training

Language CA PA TU TA VI

FLP speakers 952 1189 980 1096 1096

FLP hours 65.0 64.7 56.6 44.1 73.9

monophone states 471 216 126 252 303

triphone states 4718 5541 3805 3475 7731

In our setup, two sets of RDTs were trained, both performed

dimensionality reduction from 72 to 69 dimensions: RDTnonSAT

on top of the original 72-dimensional features for 1st pass decoding

and RDTSAT on top of CMLLR-rotated features. The final GMM

system was trained using MPE [19] on top of SAT RDT features.

3. EXPERIMENTS

3.1. Full and Limited language packs

To obtain the baselines, the NNs were first trained in monolingual

manner on both, LLP and FLP. Training on LLP is our starting point

and it serves as the lower bound. Training on FLP shows what per-

formance it is possible to achieve with more training data and pro-

vides us with upper bound. The closer the results will be to this

value, the more the technique benefits from other resources. The re-

sults obtained with monolingual NNs are given on the firsts lines in

Tab. 4.

We can see a dramatic drop in recognition performance when

the NNs are trained just on LLP data. Note, that HMM systems are

always trained on the LLP data. The FLP data are used for training

the SBN NNs only.

3.2. Multilingual NN

The next set of experiments is focused on the performance of BN

features obtained from multilingual NNs. This case provides the

starting point for the adaptation. The NNs were trained on FLPs of

the source languages. The amounts of data available for NN training

together with number of classes are specified in Tab 3.

To be able to evaluate the effect of the number of source lan-

guages, we decided to generate two sets of them:

• Source language set 1 (SLs1) contains three language: CA,

PA and TU

• Source language set 2 (SLs2) contains all five source lan-

guages.

Two approaches to train multilingual NNs are evaluated:

The first one – one softmax – discriminates between all targets

of all languages. No mapping or clustering of phonemes was done.

This simple approach turned out to perform the best in [2]. Thus the

resulting NN has quite a large output layer containing all phonemes

from all languages with one softmax activation function.

The second approach – block softmax – divides the output layer

into parts according to individual languages. During the training,

only the part of the output layer corresponding to the language the

given target belongs to, is activated. This approach was successfully

used in [4].

In our former work [10], we have also experimented with the

Convolutive Bottleneck Network [16] technique which would allow

to retrain the whole structure in one step. But the computation ex-

penses to train the multilingual NN and also to adapt this network

were unacceptable for our scenario where fast adaptation is desired.

Table 4. WER [%] of simplified recognition system on target lan-

guages LLP based on MLLT-BN features obtained from monolin-

gual and multilingual SBN systems

WER

target language AS BE HA LA ZU

FLP monolingual SBN 61.5 62.9 57.2 55.1 68.9

LLP monolingual SBN 68.5 69.7 65.9 63.6 74.2

one softmax 70.0 70.4 69.2 65.8 74.6
SLs1 block softmax 69.0 69.6 66.8 64.7 74.1

one softmax 68.7 69.6 66.4 62.9 73.7
SLs2 block softmax 66.8 68.2 64.9 60.7 72.6

Context-independent phoneme states were used as targets for

multilingual NNs. We intended to use the states of tied context-

dependent phonemes, but so far it turned out to be unfeasible. We

were only able to train the first stage NN for SLs1.

The WER obtained with BN features from multilingual SBN

systems trained on two defined source languages sets by the two

multilingual approaches are given in Tab. 4.

The first and most striking difference is in the performance of

SBN CMLLR-BN features obtained from the two source languages

sets. Whereas the features from SLs1 systems reach about the perfor-

mance of a single language system, the features from SLs2 systems

have much lower WER. This observation suggests that the multi-

lingual system is trained trained on many languages, it can perform

well on “unseen language” even without any adaptation.

The second observation is that the block softmax version of SBN

system performs better than the one softmax one. This is consistent

over both SLs’s and can be assigned to the way the NNs are trained.

3.3. Adaptation of Multilingual NN

The adaptation of NN is done through retraining of already trained

NN on target language data. The trained multilingual NN guarantees

a good starting point which already produces good features as can

be seen in Tab. 4. Retraining allows to shift the weights towards the

acoustic space of target data.

Our approach to NN adaptation has two phases:

1. Training of the last layer. Since our initial NN is multilin-

gual, the output layer has large number of units. We need to

initialize the output layer randomly with the proper number

of outputs matching the target language phoneme set. If the

whole NN was retrained now, the error caused by the random

weights in the last layer could be propagated deeper in the NN

and the training could drift apart from the optimum. This is

why the rest of NN is fixed and only the last layer is trained.

2. Retraining of the whole NN. Here, the other layers are re-

leased and the whole NN is retrained once more. Since this

retraining starts from an already trained network, the learning

rate for this phase is set to one tenth of its original value4.

Even though the adaptation consists of two phases, the total number

of NN training epochs is about the same as when the monolingual

NN is trained. In case of monolingual training, the number of train-

ing epochs is set to 12. The first phase of the adaptation takes usually

5 to 7 epochs (we did not observe any training shorter or longer) and

4Learning rate of 0.004 is used for training from random weights, and
0.0004 for the retraining.
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Fig. 2. Average relative WER [%] reduction depending on Source

Language set for all evaluation languages

the second phase is set to take 6 epochs. This means that the adapta-

tion does not cost any extra time.

The SBN system is a hierarchy of two NNs, so the adaptation

can take several forms. We can for example keep the first NN mul-

tilingual and train the second one on the LLP data only. Thus we

consider the following four scenarios for adaptation of multilingual

system:

1. Keep the first NN multilingual, train the second one on LLP

data only - multi-LLP scenario.

2. Adapt the first NN, train the second one on the LLP data -

adapt-LLP scenario.

3. Keep the first NN multilingual, adapt the second one - multi-

adapt scenario.

4. Adapt the first and also the second NN - adapt-adapt sce-

nario.

The last adapt-adapt scenario might be regarded as not very good

idea since the inputs to the second NN are changed but, surprisingly,

out initial experiments discovered that this scenario is not useless.

Since every multilingual SBN system was adapted according to

all four scenarios for each of the evaluation languages, showing all

results would not provide an easy survey. Rather, we will focus on

one aspect at a time5. To be able to present the results together, each

one is converted to relative WER reduction with respect to the its

LLP baseline.

Number of languages for multilingual training

In Sec. 3.2, it was shown, that the number of training languages plays

an important role when the features are generated directly from the

multilingual system. Here we show the role it plays when the system

is adapted. The results from all scenarios originated from the same

SLs were averaged for each evaluation language. The relative im-

provements over the LLP monolingual system are shown in Fig. 2.

It can be seen that even for the adaptation the number of source lan-

guages is important - the average WER reduction is more than 1%

relative for all languages.

One softmax vs. block softmax

The block softmax performed slightly better in case of multilingual

SBN systems. To see this effect in the adaptation, we again average

results from all scenarios originating from multilingual SBN sys-

tem with given softmax within each language. As can be seen from

Fig. 3, the relative improvements achieved by adapting multilingual

NNs with block softmax are higher than the ones from one softmax.

5The full set of results can be found at
www.fit.vutbr.cz/∼grezl/SLTU recognition results/
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Fig. 3. Average relative WER [%] reduction depending softmax type

in multilingual SBN.

Adaptation scenario performance

Fig. 4 breaks the results to the level of individual adaptation sce-

narios. The results are averaged over the evaluation languages. For

better readability, the results are split into two plots based on the

Source Language set used to train the multilingual SBN systems.

First, note that the performance of multi-LLP scenario leads to

the same performance regardless the softmax type in multilingual

SBN. This suggests that this scenario cannot take advantage from

the differently trained SBN. When the first NN is adapted before the

training of the second one on LLP in adapt-LLP scenario, the WER

can be further reduced. Note the increased difference between dif-

ferent types of softmax in multilingual SBN - the adaptation process

can benefit more from the SBNs trained with block softmax.

In case of training on SLs1, the WER is reduced the least when

only the second NN is adapted in multi-adapt scenario. The last sce-

nario – adapt-adapt – when both NNs in SBN are adapted actually

performs about the same as multi-LLP scenario. This shows that also

the second NNs in the hierarchy can be adapted despite its changed

inputs by former adaptation of the first NN.

When the multilingual NNs are trained on SLs2, the picture

changes. The adaptation of the second NN only inmulti-adapt

scenario outperforms the adapt-LLP one and adapting both NNs

- adapt-adapt - leads to systems with the best performance. It

also seems that in case of adapting from SLs2 NNs, the difference

between block softmax and one softmax NNs decreases.

4. FULL SYSTEM

Systems which provided the best performance - SLs2 adapt-LLP

(this scenario provides slightly better performance for all languages

except LA than multi-adapt scenario. LA is 2% absolute better in

case of multi-adapt, which affected the overall results) and adapt-

adapt scenario - were taken and the full system was trained. We also

compared the multilingual approach with the semi-supervised train-

ing presented previously in [20]. The overview of these approaches

from the point of view of required data (taking LLP as a unit) and

time is the following:

SLTU-2014, St. Petersburg, Russia, 14-16 May 2014

43



0

2

4

6
re

la
ti
v
e

 W
E

R
 r

e
d

u
c
ti
o

n
 [

%
] multilingual SBN trained on SLs1

m
ulti−LLP

adapt−LLP

m
ulti−adapt

adapt−adapt

one softmax

block softmax

0

2

4

6

8

re
la

ti
v
e

 W
E

R
 r

e
d

u
c
ti
o

n
 [

%
] multilingual SBN trained on SLs2

m
ulti−LLP

adapt−LLP

m
ulti−adapt

adapt−adapt

one softmax

block softmax

Fig. 4. Average relative WER [%] reduction depending on the adaptation scheme and softmax type in multilingual SBN.

Table 5. WER [%] of selected adaptation scenarios and semi-

supervised technique with full system

WER

target language AS BE HA LA ZU

monolingual LLP 63.0 64.4 59.1 56.4 71.0

semi-supervised 61.2 64.2 57.0 53.4 71.0

adapt-LLP 60.6 62.4 56.7 54.3 69.6

adapt-adapt 59.9 62.0 56.4 53.0 69.1

Multilingual semi-supervised

Data 5 × 9 × LLP data - the

amount of LLP data is

about nine times smaller

then the FLP one and

the multilingual NNs were

trained on five languages;

data are from other lan-

guages

9 × LLP data - System

trained on LLP data is used

to automatically transcribe

the FLP data; data from the

same source

Time One training of SBN sys-

tem on LLP data - adap-

tation time is the same as

training time, multilingual

NNs can be trained before-

hand

Training of full LLP sys-

tem, decoding of FLP data,

training of NNs on about

9 times more data (9 times

longer)

From the above it can be seen that the multilingual approach is more

suitable for fast adaptation. The comparison of performance of the

full systems for both techniques is given in Tab. 5. It can be seen

that both techniques - multilingual and semi-supervised training -

improve nicely (with exception of Zulu) over the LLP baseline. It is

surprising to see that multilingual technique leads to better perfor-

mance than semi-supervised training.

In case of Zulu, where the system suffers from high OOV rate,

the semi-supervised technique was not able to improve the system

performance. This suggests that the multilingual system would be

specially beneficial in cases where the performance of purely mono-

lingual system is too poor to allow for semi-supervised training.

5. CONCLUSIONS

This work addresses a thorough evaluation of multilingual tech-

niques for adapting feature extraction neural network hierarchy -

Stack Bottle-Neck system. We defined two sets of source languages

used for training of multilingual Stacked Bottle-Neck system. Two

SBNs have been trained on each source language set. The networks

in them differ by the type of the last layer - the softmax nonlinearity.

One type is the normal one softmax, which computes probabilities

for all outputs. The other type is block softmax which splits the

output targets into groups (one group is created by targets from

one language) and computes the probability for each group. Such

type of softmax does not force the NN to make the decision about

the language together with the classification of given target and its

weights are language independent.

Thus we have trained four multilingual systems. We have eval-

uated their performance on five evaluation languages prior to any

adaptation. It was observed that SBN systems trained on more

source languages performs much better than the ones trained on less

data.

Each SBN system was adapted according four different scenar-

ios: Keep the first NN multilingual, train the second one on LLP

data; adapt the first NN, train the second one on the LLP data; keep

the first NN multilingual, adapt the second one; adapt both NNs.

From the results, we made the following observations:

1. The use of more languages for multilingual training is defi-

nitely beneficial.

2. Training multilingual NNs with block softmax brings im-

provement over the one softmax systems.

3. Using the first NN without adaptation and training the sec-

ond one on evaluation language is safe and leads to a good

performance of adapted system.

4. When the multilingual system is “good enough”, the adapta-

tion of both its NNs leads to the best performance.

Two best performing systems were evaluated further with the

full recognition system and compared to the semi-supervised ap-

proach. The multilingual approach outperforms the semi-supervised

one on all languages. The improvement is specially noticeable on

Zulu, where the semi-supervised technique failed as Zulu has a poor

monolingual system performance and suffers from large number of

OOVs.

These observations suggest that adaptation of multilingual sys-

tem is beneficial especially for cases with close-to-zero acoustic

data. The time needed to obtain the final system is the same as

training the monolingual one, leaving enough of it to work on top of

the resulting MLLT-BN features.

The comparison of multilingual and semi-supervised approach

also gives direction to our further development - the multilingual sys-

tem can provide better automatic transcription for semi-supervised

training. Cascading these systems can lead to further improvement

with no additional cost over the current semi-supervised training.

It would be also interesting to observe, if the performance will

further increase with adding more languages. Another goal, is to
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train multilingual neural networks with context-dependent tied states

as targets. Having such network might be useful since these units are

used as the training targets for evaluation languages.
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