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ABSTRACT
This paper presents our work on speech recognition of Vietnamese
spontaneous telephone conversations. It focuses on feature extrac-
tion by Stacked Bottle-Neck neural networks: several improvements
such as semi-supervised training on untranscribed data, increasing
of precision of state targets, and CMLLR adaptations were investi-
gated. We have also tested speaker adaptive training of this archi-
tecture and significant gain was found. The results are reported on
BABEL Vietnamese data.
Index Terms: speech recognition, discriminative training, bottle-
neck neural networks, adaptation of neural networks, region-
dependent transforms

1. INTRODUCTION

This paper presents our recent effort to build an automatic speech
recognition (ASR) system for Vietnamese spontaneous telephone
conversations. The work was mainly driven by our participation in
the BABEL project (“Babelon” consortium coordinated by BBN).
Unlike the common style of ASR development on generous lan-
guages with almost infinite time and enough resources, BABEL aims
at building keyword-spotting systems for languages with limited re-
sources in limited amount of time.

In general, the data is split into two main conditions:
1. Full Language Pack (FullLP or FLP) - all Language Pack data

(about 100h of clean speech)
2. Limited Language Pack (LimitedLP or LLP) - A subset of

FullLP data (about 10h of clean speech), remaining part can
be used for unsupervised training.

All BABEL teams had one year to build systems for four lan-
guages (Cantonese, Pashto, Tagalog and Turkish) and this effort cul-
minated by one-month evaluation. Immediately after, a “surprise”
language was released and all Participant teams had one month to
build a system. This paper presents our efforts on this “surprise lan-
guage” – Vietnamese (Language pack IARPA-babel107b-v0.7). It
contains the description of our system as it was submitted to the eval-
uations, as well as post-evaluation experiments on speaker adaptive
training.
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2. STACKED BOTTLE-NECK NN FEATURE EXTRACTION

The main contributions of our paper are the improvements of Neural
Network (NN) feature extraction used in our HMM-based system.
The architecture used was Stacked Bottle-Neck (SBN) NN which
were found to overcome standard Bottle-Neck features [1]. The
scheme is given in figure 1. It contains two NNs: the BN outputs
from the first one are stacked, down-sampled, and taken as an input
vector for the second NN. This second NN has again a BN layer, of
which the outputs are taken as input features for GMM/HMM recog-
nition system.

Classically, the NNs are trained on transcribed data, where the
training targets are obtained by forced alignment of the transcript.
For Babel Vietnamese, three main topics were investigated:

1. Concerning the NN training targets, we have experimented
with (1) Using less reliable data - the transcriptions contain
many segments with un-intelligible or foreign speech with-
out reliable phonetic conversion. (2) realigning the targets by
current best system to get more precise training targets.

2. On LimitedLP domain we experimented with unsupervised
training of NN and also with adaptation of multilingual NN
trained on different languages into target domain (sections 4.2
and 4.3.

3. Finally, Adaptation of Stacked Bottle Neck architecture
by Constrained Maximum Likelihood Linear Regression
(CMLLR) [2], was investigated (section 4.4).

2.1. Semisupervised training of NN

Here we focused on bootstrapping approach of Semisupervised
learning (SSL) for NNs used for feature extraction. The label-
ing was done using the “seeding” recognition system trained on
LimitedLP data only. The data was selected based on a confidence
measure of the most likely path through the segment (Cmax confi-
dence criterion was used). The dependence of NN on the quality of
1-best transcripts was examined. The classification error should be
less harmful in BN architecture than in the HMM system as we con-
sider BN more a feature extraction than the ultimate classification
process. This approach is described in details in [3]; a similar ap-
proach was used by our colleagues [4] for hybrid (Deep)NN-HMM
system.

2.2. Multilingual NN

An integral way of obtaining multilingual (or language independent)
NN-based features was presented in [5, 6]. Here, the NN last – out-
put – softmax layer is divided into language-specific parts which
makes the main body of the NN language-independent.

This leads to truly multilingually trained weights in NN (except
for language-specific parts of the output layer) which should be the
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Fig. 1. Stacked Bottle-Neck Neural Network feature extraction.

best starting point for NN training on a new language especially if
not enough training data is available.

The fine-tuning of NN trained on large amount of data from one
language into target domain with little data by final fine-tuning was
proposed in [7] and extended to multilingual NN in [8]. This ap-
proach eliminates the necessity of identification and approximation
of new phonemes. Our fine-tuning procedure was adopted from [7]
and extended to SBN structure. The approach should benefit from
large amount of data available for other languages that allows for
proper training of sufficiently big NN. This network serves as start-
ing point for training a NN for the target language. As the amount
of target data is small, the retraining is fast even for large NN which
is the second benefit of the fine-tuning approach. 1

2.3. CMLLR adaptation of SBN NN

The speaker adaptation of NN is a problem that has not been entirely
solved. A general adaptation technique used with NNs is vocal-tract
length normalization (VTLN) [9]. Hamid et al. [10] use a speaker-
dependent code as part of the NN; this is an interesting approach
but quite difficult to implement in unsupervised manner. A typi-
cal speaker adaptation uses standard cepstral coefficients (PLP or
MFCC) together with CMLLR as NN input [11]; on the other hand,
Mel-filter bank outputs (FBANK) are known to work better with
NN [12], but their direct adaptation is difficult. Our trick to adapt
the FBANKS is very simple: To estimate the adaptation matrix, it
is necessary to train a GMM system on the NN input features, how-
ever, FBANKs are difficult to model by diagonal covariance models
due to high correlations. This problem is solved by using Discrete
Cosine Transform (DCT) in the same way as in MFCC computa-
tion. Next, the speaker independent GMM HMM system is es-
timated by single-pass retraining with FBANK-DCT appended by
derivatives and acceleration coefficients. A block-diagonal CMLLR
transform is estimated for each speaker s and only the first, spec-
trum corresponding, part of the transform is taken for further pro-
cessing. New features for NN training are estimated simply by:
x̂(t) = x(t)ADCT ACMLLRADCT−1 .

Next, we focused on adaptation of the SBN inner product –
output of the first stage NN. The bottle-neck output is known not
to be highly correlated, therefore the CMLLR can be applied eas-
ily. Moreover, according to our analysis, the first-stage NN is doing
mainly acoustic feature extraction and only the second-stage NN is
processing acoustic clues in wider context. Therefore, it makes sense
to use speaker-specific layer in this part as it is common in classical
speech recognition scenarios (feature extraction, speaker adaptation,
acoustic modeling).

1The fine-tuning is often called “NN adaptation” although it is done by
standard cross-entropy training with small learning rate. Therefore, the term
fine-tuning is used in this paper as it better reflects the approach used and can
not be confused with adaptation of the HMM systems.

Table 1. Data analysis

FLP training hours 181
LLP training hours 21
LM training words 110980
dictionary size 3119
dev hours 19.7
OOV rate [%] 1.2

3. SYSTEM DESCRIPTION

3.1. Data, ASR system and baseline features

Table 1 summarizes the available data. The IARPA Babel Program
simulates a case of what one could collect in limited time from a
completely new language: the data consists of two parts: scripted
(speakers read text through telephone channel) and conversational
(spontaneous telephone conversations). The dev data contains con-
versational speech only.

Speech recognition system is HMM-based on cross-word tied-
states triphones, it is trained from scratch using standard maximum
likelihood training. Final word transcriptions are decoded using 3-
gram Language Model (LM) trained only on the transcriptions of
training data2.

Mel-PLP features are generated in classical way, the resulting
number of coefficients is 13. Deltas, double- and in HLDA sys-
tem [13] also triple-deltas are added, so that the feature vector has
39, respectively 52, dimensions. Cepstral mean and variance nor-
malization is applied with the means and variances estimated per
conversation side. HLDA is estimated with Gaussian components as
classes to reduce the dimensionality to 39.

3.2. SBN feature extraction

The NN input features are 15 critical band energies (squared FFT
magnitudes binned by Mel-scaled filter-bank and logarithmized)
concatenated with estimates of F0 and probability of voicing. It
makes 17 dimensional feature stream. The estimation of F0 (imple-
mented according to [14]) is based on normalized cross-correlation
function. Dynamic programming is used for smoothing the esti-
mates. This configuration was found useful and incorporation of
F0 into NN systems gave good improvement even for non-tonal
languages [15].

The conversation-side based mean subtraction is applied on the
speaker basis and 11 frames are stacked together. Hamming window
followed by DCT consisting of 0th to 5th base are applied on the

2This is coherent to BABEL rules, where the provided data only can be
used for system training in the primary condition
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time trajectory of each parameter (17x6) resulting in 102 coefficients
at the first stage NN input (see fig. 1).

The first-stage NN has four hidden layers with 1500 units each
except the BN layer. The BN layer is the third hidden layer and its
size is 80 neurons. Its outputs are stacked over 21 frames and down-
sampled before entering the second-stage NN. This NN has the same
structure and sizes of hidden layers as the first one. The size of BN
layer is 30 neurons and its outputs are the final outputs forming the
BN features for GMM-HMM recognition system.

Neurons in both BN layers have linear activation functions as
they were reported to provide better performance [16]. The NN tar-
gets are phoneme states obtained by forced alignment of training
data.

To train the system on Bottle-Neck features, the BN outputs are
transformed by Maximum Likelihood Linear Transform (MLLT),
which considers HMM states as classes. Then, new models are
trained by single-pass retraining from HLDA-PLP baseline system.
12 Gaussian components per state were found to be sufficient for
BN features trained from single-pass retraining. Most of the tests
run on SBN system directly. The best found configuration was fur-
ther trained with advanced techniques described in the following.

3.3. Final system

The final system is based on feature level fusion by Region Dependent
Transform (RDT) [17]. The 3 feature streams PLP-HLDA (39 di-
mensions), SBN features (30 dim.) and F0 with delta and accel-
eration coefficients (3 dim.) are concatenated and adapted using
speaker-based CMLLR.3 This feature stream was fed to RDT per-
forming dimensionality reduction to 69 dimension.

In RDT framework, an ensemble of linear transformations is
trained with the discriminative Minimum Phone Error (MPE) cri-
terion. Each transformation corresponds to one region in partitioned
feature space by a GMM. Each feature vector is then transformed
by a linear transformation corresponding to the region the vector be-
longs to. According to our previous experiments, GMM with 125
components was chosen. From our experience, incorporation of con-
textual information leads to significantly better results compared to
the RDT style proposed in [17], where feature vectors of multiple
frames were stacked at the RDT input. For detailed information of
used configuration, see [15].

In our setup, two sets of RDTs were trained, both performed
dimensionality reduction from 72 to 69 dimensions: RDTconcat on
top of the original 72-dimensional features (for 1st pass decoding)
and RDTSAT on top of CMLLR rotated features. The final GMM
system was trained using MPE [18] on top of SAT RDT features.

4. EXPERIMENTS

4.1. Realigning and un-intelligible speech segments

The NN training targets are obtained by forced alignment of tran-
scriptions by a simple PLP system. Since the system performance
significantly improves by employing the new NN features, it makes
sense to rebuild the alignments, and re-train the whole network.
Also, originally, we omitted sentences containing the un-intelligible
speech from the training. This was to make sure that we were
training on clean speech only. Instead of excluding the data, we
introduced a new word with “<unk>” phoneme transcription and
mapped the problematic data on it. Table 2 presents the effect of NN

3Note that our experiments showed a marginal effect of VTLN on the PLP
feature stream, therefore, VTLN was not applied for simplicity.

Table 2. Effect of realignment and sentences with “<unk>”.

System LLP WER[%] FLP WER [%]
PLP 81.3 72.5
InitSystem 72.9 55.8
+ Realignment 71.5 54.2
+ UNK 70.7 54.3
+ UNKDROP 70.5 53.5

target realignment and addition of more training data (containing
“<unk>”) on Vietnamese LimitedLP. It shows 1.4% absolute im-
provement on LLP and 1.6% on FLP by more precise timing of NN
targets (+ Realignment). In additions, we show 0.8% improvement
by adding more segments containing unintelligible speech and 0.1%
degradation on FLP probably due to noise coming from ”<unk>”
phoneme.

The NN training is a discriminative process, therefore “<unk>”
phoneme should be discarded as it introduces noise in the data. The
last line (+UNKDROP) of table 2 presents 0.2% absolute improve-
ment on LLP and 0.8% on FLP by removing this phoneme from the
training data.

4.2. Semisupervised training of NN

To obtain the baselines, the NNs were first trained on both, LLP and
FLP. Training on LLP will provide us with the lower bound - if the
evaluated technique does not exceed this threshold, it is not worth
the effort. The FLP result will serve as upper bound. The closer the
results will be to this value, the more the technique benefits from
other resources. All HMMs were trained on LLP clean data only.

The automatic transcription are naturally erroneous due to
many reasons such as imperfect acoustic model, OOVs or poor
language model. Thus it is important to select sentences with
reasonable transcription. We use utterance-level confidence de-
fined as a weighted average of non-silence words in the segment:
Cutt = 1

T

PW
w=1 twCw

max, where W is number of words, Cw
max is

word confidence measure [19], tw is length of the word in frames
and T is length of all non-silence words.

The untranscribed data were decoded twice: the ”final” MPE
SAT RDT with RDTconcat transforms and models was used to pro-
duce 1-best output for CMLLR adaptation and RDTSAT system
was used to generate lattices for confidence measure.

Table 3 shows results with different thresholds on the confidence
measure going from “reliable” data (Cmax > 0.6) (67% of all un-
transcribed data) to “dirty” data (Cmax > 0.1) (93% of all untran-
scribed data). Finally, we also made experiments with balancing of
the training data. The data with true transcripts were cloned to reach
the same amount as data with unsupervised transcripts. Afterwards,
the data were shuffled. This procedure gave a nice 0.4% improve-
ment. Note, number of hours counts NN training data where silence
was limited therefore the data sizes do not correspond to Table 1.

4.3. Multilingual fine-tuning into LLP domain

The multilingual NN was trained on on FullLP of all previous
BABEL languages (Cantonese, Pashto, Tagalog and Turkish). This
NN guarantees a good starting point for fine-tunning to the target
language.

Our approach to NN fine-tuning has two phases: First, only the
last layer is trained. Since our initial NN is multilingual, the out-
put layer has large number of units. We need to initialize the output
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Table 3. SBN system, semi-supervised training on <unk> sen-
tences.

data [Cmax] length [h] SSL WER [%] SSL+bal. WER [%]
FLP(upper bound) 63.0 - -
LLP only 9 71.5 71.5
LLP + 0.6 9+45.8 67.8 67.8
LLP + 0.3 9+61.2 67.4 67.0
LLP + 0.1 9+62.1 67.4 67.5

Table 4. Multilingual training and fine-tuning into Vietnamese do-
main.

NN System LLP WER [%] SSL WER [%]
LLP 71.5 67.0
Multiling - no fine-tuning 72.8 -
Multiling - fine-tuning 67.7 66.3

layer randomly with the proper number of outputs matching the tar-
get language phoneme set. If the whole NN was retrained now, the
error caused by the random weights in the last layer could be prop-
agated deeper in the NN and the training could drift apart from the
optimum. This is why the rest of NN is fixed and only the last layer
is trained.

In the second phase, the other layers are released and the whole
NN is retrained once more. Since this retraining starts from an al-
ready trained network, the learning rate for this phase is set to one
tenth of its original value4.

Only the second stage NN is tuned to keep the training process
simple and fast. Detail description of fine-tuning multilingual NN
can be found in [20].

The “Multiling - no fine-tuning” in table 4 shows that initial mul-
tilingual NN is giving slightly worse accuracy than NN trained on
LLP data only even if no Vietnamese data was used in training. The
First column presents 3.8% absolute improvements by using multi-
lingual NN with fine-tuning instead of plain LLP NN. It is obviously
caused by increasing of NN training data. Consequently, we were
interested in using multilingual NN together with semi-supervised
data from the previous section. The best configuration from the pre-
vious section (SSL Cmax > 0.3+data balancing) was used for this
experiments. The improvement is not so huge as without SSL but
0.7% absolute improvement is still good.

4.4. Adaptation of NN by CMLLR

The experiments with using CMLLR adaptation of NN were run-
ning on FullLP. First, 15-dimensional FBANK features were de-
correlated by DCT, and expanded by delta and acceleration coeffi-
cients. Block diagonal CMLLR transform was estimated in order to
keep a part of CMLLR corresponding to plain FBANKs independent
on feature derivatives. After the adaptation, the first 15 coefficient
were projected back into original by space and SBN was trained on
adapted features. Table 5 presents a 1.2% absolute improvement in
comparison to non-adapted NN.

The CMLLR adaptation of first stage NN from SBN structure
is more straightforward, as no de-correlation is necessary. Table 5
shows no-effect when the first stage BN output (80 dimension) was

4Learning rate of 0.004 is used for training from random weights, and
0.0004 for the fine-tuning.

Table 5. Effect of using a CMLLR adaptation in NN training.

System WER[%]
No NN adapt 52.3
CMLLR on FBANK 51.1
CMLLR on 1stageNN+MLLT 48.9
CMLLR on 1stageNN 48.9

Table 6. Final system results on FLP.

PLPHLDA+NN+F0 SAT RDT MPE System WER[%]
NN - (clear - nounk) 48.9
NN - realign unkdrop 47.2
NN - +CMLLRon1stageNN 45.8
DNN - sMBR 45.5

de-correlated by MLLT. 2.4% absolute improvement from CMLLR
adaptation of the first stage NN is very nice and could actually be due
to better speaker characterization from more informative BN features
(bigger dimensionality, wider contextual information).

Note, NNs and HMMs were both trained on all data (including
“<unk>” segments), therefore the baseline number do not corre-
spond to Table 2 where HMMs were trained on clean data only.

4.5. The ultimate system

Finally, all partial improvements coming from data handling (re-
alignment and “<unk>”) were put into a final discriminatively
trained system (MPE SAT RDT). Table 6 presents 1.6% absolute
improvement from retraining the NN on better treated data. Next,
1.4% absolute improvement was coming from NN adaptation.

Just for comparison, we also trained Deep NN (DNN) system
where HMM posteriors are estimated directly by NN. The NN was
trained on top of SAT PLP using Sequence Minimum Bayes Risk cri-
terion [21]. It was very successful single system in this evaluations.
Similar performance and structure different from the described SBN
system made both systems well complementary [22].

5. CONCLUSIONS

The paper deal with multiple facets of NN feature extraction training.
Not surprisingly, we found that data preparation is crucial for the
success of NN training. In case we dispose of data from other (well
represented) languages, we should go for it as we have shown that
multilingual fine-tuning outperforms unsupervised training.

The outcomes of our work were important for ”Babelon” sub-
mission to the BABEL evaluation as our advanced feature extraction
(1) allowed a simple Maximum-Likelihood system to have state-of-
the-art performance, so that the team could concentrate on issues
related to pronunciation dictionaries, keyword-spotting. etc, and
also (2) the feature-level fusion with BBN system was very success-
ful [22].
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[16] Karel Veselý, Martin Karafiát, and František Grézl,
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