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Abstract
Features based on a hierarchy of neural networks with com-
pressive layers – Stacked Bottle-Neck (SBN) features – were
recently shown to provide excellent performance in LVCSR
systems. This paper summarizes several techniques investi-
gated in our work towards Babel 2014 evaluations: (1) using
several versions of fundamental frequency (F0) estimates, (2)
semi-supervised training on un-transcribed data and mainly (3)
adapting the NN structure at different levels. They are tested on
three 2014 Babel languages with full GMM- and DNN-based
systems. Separately and in combination, they are shown to out-
perform the baselines and confirm the usefulness of bottle-neck
features in current ASR systems.
Index Terms: speech recognition, discriminative training,
bottle-neck neural networks, deep neural networks, adaptation
of neural networks, fundamental frequency

1. Introduction
This paper presents our recent effort to build an automatic Key-
word Spotting (KWS) system for Spring 2014 Babel evalua-
tions based on Automatic Speech Recognition (ASR) front-end.
We focus on Stacked Bottle-Neck (SBN) features [1], which
was recently shown to be a superior architecture for Neural
Network (NN) based feature extraction. SBN feature extrac-
tion involves two NNs (see figure 1): the bottle-neck (BN) out-
puts from the first one are stacked, down-sampled, optionally
adapted, and taken as an input vector for the second NN. This
second NN has again a BN layer, of which the outputs are taken
as input features for a conventional Gaussian Mixture Model -
Hidden Markov Model (GMM-HMM) speech recognition sys-
tem. More detailed description of SBN can be found in sec-
tion 2.1. In this paper, we describe and analyze our recent de-
velopment centered around the SBN features:

Fundamental frequency (F0) related features were found to
be important features in speech recognition systems for both
tonal languages non-tonal languages [2]. We experiment with
different F0 features as additional inputs to SBN. In section 2.2,
we compare F0 features obtained from several different pitch
estimators and we experiment with their combinations.
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Figure 1: Stacked Bottle-Neck Neural Network feature extrac-
tion.

In our recent work [3], we have experimented with a Semi-
supervised training (SST) allowing us to train on data with no
available manual transcriptions. Transcriptions automatically
generated with a “seed” ASR system were used for this purpose.
We have applied such SST to train both the SBN NN parame-
ters and the GMM-HMM system parameters. Much larger gains
were obtained in the former case. In section 3.1, we show that
further gains can be obtained with “fine-tuning”, where the SST
trained SBN NN is further re-trained on the supervised (manu-
ally transcribed) data only in a few iterations with a small learn-
ing rate.

We have also recently experimented with speaker adapta-
tion applied in the context of SBN features. In [4], we have
found that a very promising approach is to apply CMLLR adap-
tation to the bottle-neck output in the first stage of the SBN
architecture (see figure 1). In section 3.2, we further analyze
this approach and we compare it to the more conventional NN
adaption strategy, where CMLLR transformation is applied to
the original features (PLP in our case) at the NN input.

Finally, in section 4, we show that the improvement ob-
tained with the SBN architecture can be very successfully trans-
ferred to Deep Neural Network (DNN) based speech recogni-
tion systems [5]. Specifically, the output from the first stage of
the speaker adapted and SST trained SBN is used as the input
to DNN. Significant gains were obtained with this architectures
compared to our previous best SST DNN-HMM system [6].
Note that bottle-neck was already successfully used as the input
to DNN in [7]. In this work, however, we are more interested in
the improvements obtained from the SBN adaptation and SST.

2. Data and baseline experiments
The IARPA Babel Program data1 simulate a case of what data
one could collect in a limited time for a completely new lan-
guage: it consists of two parts: scripted (speakers read text
through telephone channel) and conversational (spontaneous
telephone conversations). The dev data contains conversational
speech only. Two training scenarios are defined for each lan-
guage – Full Language Pack (FLP), where all collected data are
available for training; and Limited Language Pack (LLP) which

1Collected by Appen http://www.appenbutlerhill.com
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Table 1: Evaluation data statistics. The LM and dictionary
statistics are taken from LLP which is used to train HMM sys-
tem. The OOV rate is reported with respect to LLP.

Language Bengali Haiti Lao
FLP hours 74.1 72.3 71.6
LLP hours 8.9 7.9 8.1
LM words 84334 93131 93328
dictionary 9497 5333 3856
# tied states 1310 1257 1453
dev hours 6.9 7.4 6.6
OOV rate [%] 8.5 4.1 1.8

consists only of one tenth of FLP, but the remaining part can be
used for unsupervised training. Vocabulary and language model
(LM) training data are also defined with respect to the Language
Pack. They consists of transcripts of the given data pack.

In this work, all experiments are done for 3 different
languages: Bengali IARPA-babel103b-v0.4b, Haitian Cre-
ole IARPA-babel201b-v0.2b and Lao IARPA-babel203b-v3.1a.
The systems are trained on LLP only or LLP + untranscribed
data. The statistics for the evaluation languages are given in Ta-
ble 1. Further information can be found in [8]. The reported
amounts of data for FLP and LLP refer to the speech segments
after dropping the silence.

Our speech recognition system is HMM-based on cross-
word tied-states triphones, it is trained from scratch using stan-
dard maximum likelihood training. Final word transcriptions
are decoded using 3-gram Language Model (LM) trained only
on the transcriptions of training data.

Mel-PLP features are generated in classical way, the result-
ing number of coefficients is 13. Deltas, double- and in the
HLDA system [9] also triple-deltas are added, so that the fea-
ture vector has 39 and 52 dimensions, respectively. Cepstral
mean and variance normalization is applied with the means and
variances estimated per conversation side. HLDA is estimated
with Gaussian components as classes to reduce the dimension-
ality to 39.

2.1. SBN feature extraction

The NN input features are 24 critical band energies (squared
FFT magnitudes binned by Mel-scaled filter-bank and logarith-
mized) concatenated with estimates of F0. BUT F0 has 2 coef-
ficients (F0 and probability of voicing), snack F0 is just single
F0 and Kaldi F0 are 3 coefficients (Normalized F0 across slid-
ing window, probability of voicing and delta). The FFV is a 7
dimensional vector. Therefore, the whole feature vector has 37
coefficients.

Conversation-side based mean subtraction is applied on the
speaker basis and 11 frames are stacked together. Hamming
window followed by DCT consisting of 0th to 5th base are ap-
plied on the time trajectory of each parameter (37x6) resulting
in 222 coefficients at the first stage NN input (see fig. 1).

The first-stage NN has four hidden layers with 1500 units
each except the BN layer. The BN layer is the third hidden layer
and its size is 80 neurons. Its outputs are stacked over 21 frames
(+/-10) and down-sampled (every 5 is taken) before entering the
second-stage NN. This NN has the same structure and sizes of
hidden layers as the first one. The size of BN layer is 30 neurons
and its outputs are the final outputs forming the BN features for
the recognition system. Neurons in both BN layers have lin-
ear activation functions as they were reported to provide better

Table 2: Analysis of F0 feature extractors as additional input to
NN (%WER).

System Bengali Haiti Lao
No F0 70.6 67.0 65.5
BUT F0 70.9 66.8 64.3
(B) BUT F0+pVocing 70.6 66.7 64.2
GetF0 70.5 66.9 64.4
KaldiF0 70.1 66.5 63.3
KaldiF0+pVoicing 69.7 65.7 62.8
(K) KaldiF0+pVoicing+Delta 69.5 65.6 62.6
FFV 70.0 66.6 64.2
(B)+(K) 69.7 65.5 62.3
(B)+(K)+FFV 69.2 65.4 62.3
(B)+(K)+FFV+GetF0 69.3 65.4 62.2

performance [10]. The NN targets are triphone states obtained
by forced alignment of training data. To train the system on
Bottle-Neck features, the BN outputs are transformed by Max-
imum Likelihood Linear Transform (MLLT), which considers
HMM states as classes. Finaly, the GMM models are trained by
Single Pass Retraining from initial PLP system.

2.2. Analysis of F0 features

Fundamental frequency (F0) related features are important in
speech recognition systems for tonal languages. Recently, F0
was found useful also for non-tonal languages [2]. In this work,
we experiment with different F0 features as an additional input
to SBN. Since the pitch estimators can suffer from robustness
issues [11], we decided to examine four different pitch estima-
tors. The first three estimators are based on normalized cross-
correlation function: (1) BUT F0 was implemented according
to [12]. (2) GetF0 is a tool using snack library2 and (3) Kaldi
F0 was recently implemented in Kaldi toolkit3 [13]. Beside
the F0 value, BUT F0 and Kaldi F0 also provide probability
of voicing (pVoicing) as an additional features. The last esti-
mators provides (4) Fundamental Frequency Variations (FFV),
which continuous vector-valued representation of F0 variation.
It is obtained by comparing the harmonic structure of the fre-
quency magnitude spectra of the left and right half of an analy-
sis frame [14].

Table 2 presents the results for SBN with no F0 features
(i.e. only the filter bank energies form the SBN input) and with
various combinations of F0 features used as the additional SBN
input. The systems were based on simple Maximum Likelihood
(ML) trained GMM-HMMs. As can be seen, Kaldi F0 provides
the largest improvement as a stand-alone F0 estimator. Even
thought SBN sees a context of +/- 15 frames, the delta F0 fea-
tures providing an extra contextual information are still helpful
in the case of Kaldi F0 estimator. This can be caused by the
different postprocessing of the straight and delta F0 features as
explained in [13].

The best performance was obtained when fusing F0 features
form all the estimators, which corresponds to the SBN features
used in the following sections. Interestingly, we clearly see that
the F0 features are not only effective for the tonal languages
(Lao), but also for non-tonal languages (Bengali and Haiti).

2http://www.speech.kth.se/snack
3http://kaldi.sourceforge.net
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3. GMM-HMM SBN System
The final system is based on feature level fusion by Region De-
pendent Transform (RDT) [15]. Three feature streams PLP-
HLDA (39 dimensions), SBN features (30 dim.) and BUT F0
with delta and acceleration coefficients (3 dim.) are concate-
nated, which results in 72 dimensional feature stream (called
PLP-NN-F0 in the following text). Then, new models are
trained by single-pass retraining from PLP basic system. 12
Gaussian components per state were found to be sufficient for
these features. The models and features serve as a starting point
for RDT training.

In RDT framework, an ensemble of linear transformations
is trained with the discriminative Minimum Phone Error (MPE)
criterion. Each transformation corresponds to one region in fea-
ture space partitioned by a GMM. According to our previous
experiments [16], GMM with 125 components was chosen.

Our RDT settings performs dimensionality reduction from
72 to 69 which gives us better convergence than full feature vec-
tor. The final GMM-HMM system was trained using MPE [17]
on top of RDT features. This system is denoted later in text
as MPE-RDT or MPE-SAT-RDT, depending on the adaptation
technique. The whole SBN system training can be described as
follows:

1. Training of the initial ML PLP models, which is used to
estimate PLP-HLDA transform and to generate triphone
state targets for NN training

2. Training of SBN Neural Net and the whole MPE-RDT
system. This system is used as a First-Pass system for
speaker adaptation purposes.

3. The SBN NN is cut after First Stage NN and this 80-
dimensional feature stream is adapted by speaker-based
CMLLR (BN CMLLR). Consequently, the Second Stage
NN is re-trained in SAT fashion [4] (SATNN).

4. The new adapted SBN features generate new PLP-
SATNN-F0 feature stream which is further speaker-
adapted by CMLLR. Further, RDT system is also trained
in SAT fashion. 4

Note, the NN features are adapted twice. On 1st stage NN
level and on whole concatenated feature stream, too. We also
experimented with system based on two separately adapted fea-
tures streams, PLPCMLLR and SATNN, with no further adap-
tation in RDT level. Table 4 shows 0.5% improvement against
the two separately adapted features stream. Therefore, we stick
with original architecture.

This system is used to generate unsupervised transcripts on
untranscribed data (the rest of FLP set) and also to rebuild tri-
phone state NN targets on training data. This procedure was
found effective especially on tonal languages because the initial
targets are generated with plain PLP only [4].

3.1. Semi-supervised training

SST allowing us to train on data with no available manual
transcriptions. Transcriptions automatically generated with a
“seed” ASR system are used for this purpose. Such auto-
matic transcriptions are naturally erroneous due to many rea-
sons such as imperfect acoustic model, OOVs or poor language
model. Thus it is important to select sentences with reason-
able transcriptions. We use utterance-level confidence defined

4Note, that our previous experiments showed a marginal effect of
VTLN on the PLP feature stream if CMLLR was used, therefore, VTLN
was not applied for simplicity.

Table 3: Effect of adding unsupervised data.

System Bengali Haiti Lao
%WER %WER %WER

LLP 69.5 65.4 61.7
SST (1) 66.2 61.1 56.9
SST (2) 65.6 59.5 55.6
SST (2)

→ LLP 65.1 59.1 55.0

Table 4: Various adaptation composition on final system.

System Bengali %WER
MPE-SAT-RDT(2) PLP-SATNN-F0 60.5
MPE-RDT(2) PLPCMLLR-SATNN-F0 61.0

as a weighted average of non-silence word confidences in the
segment: Cutt = 1

T

P
W

w=1 twCw

max, where W is number of
words, Cw

max is word confidence measure [18], tw is the length
of the word in frames and T is the length of all the non-silence
words.

The (Cutt > 0.5) rule was used in our experiments as it
was found in [3] as a safe value for the NN training (it covers
about 70% of untranscribed data).

Table 3 presents 3.3-4.6% absolute improvement coming
from SBN trained on SST data (SST (1)). For simplicity, we use
GMM-HMM ML trained on SBN features extracted only from
LLP data (i.e. SST is applied only for SBN training; not for
GMM-HMM training). The improvements were encouraging.
Therefore, we experimented with regeneration of unsupervised
data by system based on SST (1) NN. The new NN SST (2) was
trained, which gave further ∼ 0.5% absolute improvement.

Next, we experimented with “fine-tuning” of SST SBN by
re-training it further only on the transcribed data with the learn-
ing rate set to one tenth of its original value. Only the second
stage NN is tuned to keep the training process simple and fast.
Table shows 3 additional ∼ 0.5% absolute improvement ob-
tained with this procedure.

3.2. PLP vs. FBANK in CMLLR adaptation of NN

Common approach to train NN based system is to build sys-
tem on top of PLP or MFCC features due to the straightforward
speaker adaptation although FBANK are known to work bet-
ter [19]. Table 5 presents direct comparison of SBN architecture
with (SATNN) and without (NN) the proposed adaptation tech-
nique on FBANK, PLP or PLP with speaker adaptation as the
input features. Note that all features were concatenated with F0
features to have fair comparison. NNs were trained on SST (2)

transcriptions but evaluated GMM-HMM systems were trained
for simplicity on SBN features only (no MPE-RDT).

Table 5 shows that SATNN approach is complementary to
the common approach based on PLP-CMLLR, about 1% ab-
solute improvement was reached with second NN based adap-
tation. When we compare our proposed technique (FBANK
in SATNN column) with common approach (PLP-CMLLR in
NN), about 1% absolute improvement is observed. This results
guided us to try this first stage BN CMLLR features also as an
input for our HMM-DNN system.
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Table 5: PLP vs FBANK in SAT NN system (%WER).

System Bengali Haiti Lao
NN SATNN NN SATNN NN SATNN

FBANK 65.2 63.7 59.5 57.1 55.6 53.1
PLP 65.7 64.3 59.5 57.5 55.2 53.0
PLPCMLLR 64.8 63.9 58.4 57.2 54.2 52.9

4. DNN system
The DNN training followed the recipe described in [20] includ-
ing SST. Baseline input DNN features were based on PLPs
augmented with KaldiF0. These features were mean/variance
normalized, spliced by +/- 4 frames next to the central frame
and projected down to 40 dimensions using linear discriminant
analysis (LDA) and MLLT. Moreover, speaker adaptive training
(SAT) was done using a single feature-space CMLLR transform
estimated per speaker. These CMLLR features were spliced us-
ing context of +/- 5 frames, and shifted / rescaled in order to
have zero mean and unit variance on the DNN input. For all the
experiments, we used the same DNN topology: 6 hidden lay-
ers, where each hidden layer has 2048 neurons with sigmoids,
440 inputs (11x40). The hidden layers of DNN were initial-
ized with stacked Restricted Boltzmann Machines (RBMs) that
were pre-trained in a greedy layer-wise fashion [21]. After pre-
training, we added the output layer with random weights and
we performed frame-classification training (we classify frames
into triphone tied-states). We used mini-batch Stochastic Gra-
dient Descent (SGD) to minimize per-frame cross-entropy be-
tween the labels and network output. Finally, the seed network
was re-trained by sequence-discriminative training by optimiz-
ing Sequence Minimum Bayes Risk (sMBR) objective [22].
This aimed to maximize expected frame accuracy of being in
a correct state. The expectation was calculated over the possi-
ble state sequences represented by lattices. The reference se-
quences were obtained by force-alignment to transcription.

This DNN was used as a seed system for further semi-
supervised training. Unlabeled training data were automatically
transcribed and per-frame confidences were produced. The con-
fidences were based on re-scaled frame-by-frame state posteri-
ors (extracted from lattices using forward-backward algorithm)
that were selected by the best-paths’ state-sequence from the
lattice.

The semi-supervised training is applied to the per-frame
Cross-Entropy training. For the sMBR training, we used the
transcribed LLP dataset. Large part of the improvement from
the per-frame Cross-Entropy semi-supervised training was pre-
served also after the sMBR training. Table 6 presents very close
performance of GMM-HMM and baseline PLP CMLLR based
DNN system.

4.1. CMLLR NN features in DNN system

Finally, we extended DNN system by the proposed first stage
BN features with speaker adaptation. These features were
stacked in context +/-10, downsampled by factor 5 (like SBN)
and fed into DNN system. Table 6 presents excellent gains of
3.3-4.5% over the baseline PLP CMLLR features caused prob-
ably by SST of input features, effective speaker adaptation, and
also general structure of these features (NN learning vs. ba-
sic feature extraction). Moreover, SST training on top of SST
trained features gains 1.4-2.1% (compared to 2.2-3.0% gains
obtained with PLP features). Therefore, these techniques are

Table 6: Final ASR systems (%WER).

System Bengali Haiti Lao
GMM MPE-SAT-RDT - SST

PLP-SATNN-F0 60.5 53.8 50.7
DNN sMBR

PLP CMLLR 62.0 57.4 53.2
BN CMLLR 58.2 52.9 49.9

DNN sMBR - SST
PLP CMLLR 59.8 54.4 50.8
BN CMLLR 56.8 50.8 48.3

quite complementary.

5. KWS systems
The SST systems were also evaluated on final KWS task to
show consistency in improvement. It is the standard word based
lattice search approach [23], where the raw score of each puta-
tive hit is posterior probability of a sequence of words (links) in
the lattice representing the particular term. These raw scores are
then normalized and additionaly fused accroding to [24]. The
KWS results are in table 7, where the numbers represent Maxi-
mum Term Weighted Value (MTWV) [25] of development and
evaluation terms (approx. 5000 terms) on dev data. The consis-
tent improvement over 3% from using the novel features in the
DNN systems can be seen. Moreover, different architectures of
GMM-HMM and DNN-HMM system provided complementary
systems for fusion.

Table 7: Final KWS systems

System Bengali Haiti Lao
%MTWV %MTWV %MTWV

GMM MPE-SAT-RDT 32.02 45.38 45.94
DNN-SST PLP CMLLR 33.89 42.54 47.24
DNN-SST BN CMLLR 37.08 45.47 50.20
GMM+(DNN BN CMLLR) 38.03 48.84 51.42

6. Conclusions
The paper deals with multiple partial improvements in NN
based systems. We presented gain with using multiple F0 es-
timators for tonal and also non-tonal languages. Next, we
showed additional improvement by fine-tuning during the semi-
supervised training.

The main part of the paper deals with CMLLR adaptation of
NN. We showed impressive gain by using adapted Bottle-Neck
features in GMM-HMM and also DNN-HMM based systems.
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