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ABSTRACT

The paper describes Brno University of Technology (BUT)
ASR system for 2014 BABEL Surprise language evaluation
(Tamil). While being largely based on our previous work,
two original contributions were brought: (1) speaker-adapted
bottle-neck neural network (BN) features were investigated
as an input to DNN recognizer and semi-supervised training
was found effective. (2) Adding of noise to training data out-
performed a classical de-noising technique while dealing with
noisy test data was found beneficial, and the performance of
this approach was verified on a relatively clean training/test
data setup from a different language. All results are reported
on BABEL 2014 Tamil data.

Index Terms— speech recognition, discriminative train-
ing, bottle-neck neural networks, deep neural networks, adap-
tation of neural networks, noisy speech

1. INTRODUCTION

This paper presents our recent effort to build an Automatic
Speech Recognition (ASR) system for Tamil OpenKWS 2014
Babel evaluations.

In the 2nd year of the BABEL project, teams had one
year to build systems for five languages (Assamese, Bengali,
Haitian Creole, Zulu and Lao) and this effort culminated
by one-month evaluation. Immediately after, a “surprise”
language was released and all participating teams had three
weeks to build a system. The surprise language was Tamil.

Three weeks are barely enough to run all the system train-
ing and produce the evaluation results. Therefore, our ASR is
our usual combination of Gaussian-Mixture Model (GMM)
and Deep Neural Network (DNN) ASR systems with features
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LLP training hours 23h + 157h untrans.
11.9h + 68.7h after VAD

FLP training hours 138h + 42h untrans.
69.3h + 20h after VAD

LLP LM training words 79688
FLP LM training words 474722
LLP dictionary size 16271
FLP dictionary size 58039
LLP LM - OOV rate [%] 16.8%
FLP LM - OOV rate [%] 9.6%
dev hours 20h (10h VAD)

Table 1. Tamil data statistics.

based on a hierarchy of NNs with bottle-neck (BN) layers.
Our previous papers [1, 2, 3, 4, 5, 6] provide full account of
this development. In this paper, section 2 summarizes the
baseline system, section 3 outlines our stacked-bottle-neck
(SBN) feature extraction and 4 describes the full GMM sys-
tem including its training.

The original contributions of our work towards Tamil
ASR were two: first, we improved our DNN system by work-
ing with adapted features (see section 5). Another important
piece of work targeted the noise present in the evaluation data
that was new for Tamil. We found that augmenting the train-
ing data by versions of this same data corrupted by artificially
generated noises led to a significant increase in robustness.
This approach was analyzed also on clean data from a differ-
ent language where an improvement of accuracy was shown
too (section 6).

2. DATA AND SYSTEM

2.1. Data

The IARPA Babel Program data1 simulates a case of what one
could collect in limited time from a completely new language.
For each language, two main conditions are defined:

1. Full Language Pack (FullLP or FLP) - about 70h of
transcribed speech plus 20h of un-transcribed speech.

1Collected by Appen http://www.appenbutlerhill.com
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2. Limited Language Pack (LimitedLP or LLP) - A subset
of FullLP data (about 10h of transcribed clean speech).
The remaining “unseen” part of the FLP data can be
used for unsupervised training.

LLP is Babel’s primary condition, therefore, all results in this
paper are reported with systems build on LLP data (extended
later by unsupervised data).

The data consists of three parts: scripted (speakers read
text through telephone channel) and spontaneous. The spon-
taneous part was recorded mainly from telephone conversa-
tions and partly from wide-band far-field microphones. The
dev data contains conversational speech from both channels.
Table 1 summarizes the statistics of available data. A pro-
nunciation dictionary and Language Model (LM) were also
defined with respect to the Language Pack.

2.2. Baseline ASR system and features

Our baseline speech recognition system is HMM-based on
cross-word tied-states triphones; it is trained from scratch
using standard maximum likelihood training. The final word
transcriptions are decoded using 3-gram Language Model
(LM) trained only on the transcriptions of the training data.2

Our features are Mel-PLPs augmented with deltas, double-
and triple-deltas, so that the feature vector has a dimension-
ality of 52. Cepstral mean and variance normalization is
applied with the means and variances estimated per conversa-
tion side. HLDA is estimated with Gaussian components as
classes to reduce the dimensionality to 39.

3. STACKED BOTTLE-NECK NN FEATURE
EXTRACTION

The architecture used to generate our advanced features was
Stacked Bottle-Neck (SBN) NN, which was found to outper-
form standard Bottle-Neck features [1]. The scheme of SBN
feature extraction is given in figure 1. It contains two NNs:
the BN outputs from the first one are adapted [6], stacked
over 21 frames, down-sampled and taken as an input vector
for the second NN. This second NN has again a BN layer,
of which the outputs are taken as input features for a GMM-
HMM recognition system.

The NN input features are 24 log Mel Filter band ener-
gies concatenated with fundamental frequency (F0) features
produced by three different estimators: BUT F0 detector pro-
duces 2 coefficients (F0 and probability of voicing), Snack F0
gives just a single F0 and Kaldi F0 estimator outputs 3 coef-
ficients (Normalized F0 across sliding window, probability of
voicing and delta). Fundamental frequency variation (FFV)
estimator [7] produces a 7-dimensional vector. Therefore, the
whole feature vector has 24+2+1+3+7=37 coefficients. The

2This is coherent to BABEL rules, where the provided data only can be
used for system training in the primary condition.
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Fig. 1. Stacked Bottle-Neck Neural Network feature extrac-
tion.

positive effect of using more F0 estimators is described in our
previous work [6].

Conversation-side based mean subtraction is applied on
the speaker basis and 11 frames are stacked together. Ham-
ming window followed by DCT consisting of 0th to 5th base
are applied on the time trajectory of each parameter result-
ing in 37×6=222 coefficients at the first-stage NN input (see
fig. 1).

The first-stage NN has four hidden layers with 1500 units
each except the BN layer. The BN layer is the third hidden
layer and its size is 80 neurons. Its outputs are stacked over 21
frames (+/-10) and down-sampled (every 5th is taken) before
entering the second-stage NN. The second-stage NN has the
same structure and sizes of hidden layers as the first one. The
size of BN layer is 30 neurons and its outputs are the final
BN features for the recognition system. Neurons in both BN
layers have linear activation functions as they were reported to
provide better performance [8] than classical sigmoids. The
NN targets are triphone states obtained by forced alignment of
training data. To train the system on Bottle-Neck features, the
BN outputs are transformed by Maximum Likelihood Linear
Transform (MLLT), which considers HMM states as classes.

4. FULL GMM SYSTEM

The final system is based on feature-level fusion by Region
Dependent Transform (RDT) [9]. Three feature streams —
PLP-HLDA (39 dimensions), SBN features (30 dim.) and
BUT F0 with delta and acceleration coefficients (3 dim.)
— are concatenated which results in 72-dimensional fea-
ture stream (called PLP-NN-F0 in the following text). Then,
new models are trained by single-pass retraining from the
basic PLP system. 12 Gaussian components per state were
found to be sufficient for these features. The resulting models
and PLP-NN-F0 features serve as a starting point for RDT
training.

In RDT framework, an ensemble of linear transforma-
tions is trained with the discriminative Minimum Phone Er-
ror (MPE) criterion. Each transformation corresponds to one
region in feature space partitioned by a GMM.

Our RDT settings performs dimensionality reduction
from 72 to 69 which gives us better convergence than RDT
without dimensionality reduction. The final GMM system
was trained using MPE [10] on top of RDT features. This
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system is denoted later in text as MPE-RDT or MPE-SAT-
RDT, depending on used adaptation technique.

The whole SBN system training can be described as fol-
lows:

1. Initial ML PLP models are used to estimate PLP-
HLDA transform and to generate triphone state targets
for NN training.

2. SBN Neural Net and the whole MPE-RDT system is
trained and used as a First-Pass system for speaker
adaptation purposes.

3. The SBN NN is cut after the First Stage NN and this
80-dimensional feature stream is adapted by speaker-
based Constrained Maximum Likelihood Regression
CMLLR (further denoted as BN1-CMLLR features).
Consequently, the Second Stage NN is re-trained in
SAT fashion [5].

4. The new adapted SBN features generate new PLP-
SATNN-F0 feature stream which is further speaker-
adapted by CMLLR. Further, RDT system is also
trained in SAT fashion.3

This system is used to generate unsupervised transcripts
of un-transcribed data (the rest of FLP set) and also to rebuild
triphone state NN targets on training data. This procedure
was found effective especially for tonal languages because the
initial targets are generated with plain PLP only [5]. There-
fore, further system building runs with additional data and
also with more accurate NN targets.

4.1. Semi-supervised training (SST)

SST is performed on LLP’s un-transcribed data. Transcrip-
tions are generated automatically. This again simulates a real
scenario of a user that managed to collect data but transcribe
only its small portion.

The automatic transcriptions are naturally erroneous due
to many reasons (imperfect acoustic model, OOVs or poor
language model). Thus, it is important to select sentences
with reasonable transcription. We use utterance-level confi-
dence defined as a weighted average of non-silence word con-
fidences in the segment: Cutt = 1

T

∑W
w=1 twCw

max, where W
is number of words, Cw

max is word confidence measure [11],
tw is length of the word in frames and T is length of all non-
silence words.

The (Cmax > 0.5) rule was used in our experiments as it
was found [4] to be a safe value for the NN training. With 0.5
threshold, about 70% of un-transcribed data is retained for the
training.

3Note, that our previous experiments showed a marginal effect of VTLN
on the PLP feature stream if CMLLR was used, therefore, VTLN was not
applied for simplicity.

Then, the SBN architecture was trained on concatenated
(transcribed + automatically transcribed and retained) data. It
was further “fine-tuned” into transcribed data only. Learning
rate for the “fine-tuning” was set to one tenth of its original
value. Only the second stage NN is tuned to keep the training
process simple and fast [6].

5. DNN SYSTEM

Besides the GMM-HMM system described in the previous
sections, we have also built a hybrid DNN-HMM baseline
system. The DNN training followed recipe described in [12]
including semi-supervised training (SST). Baseline DNN in-
put features were based on PLPs augmented with KaldiF0.
These features were mean/variance normalized, spliced by
+/- 4 frames next to the central frame and projected down
to 40 dimensions using linear discriminant analysis (LDA)
and MLLT. Moreover, speaker adaptive training (SAT) was
done using a single feature-space MLLR transform estimated
per speaker. These features are noted later in the text as a
PLP-CMLLR. These PLP-CMLLR features were spliced us-
ing context of 11 (+/- 5) frames and globally mean and vari-
ance normalized.

For all the experiments, we used the same DNN topology:
440 inputs (11x40) and 6 hidden layers where each hidden
layer has 2048 neurons with sigmoids. The hidden layers of
DNN were initialized with stacked Restricted Boltzmann Ma-
chines (RBMs) that were pre-trained in a greedy layer-wise
fashion [13]. After pre-training, we added the output layer
with random weights and we performed frame-classification
training (we classify frames into triphone tied-states). We
used mini-batch Stochastic Gradient Descent (SGD) to min-
imize per-frame cross-entropy between the labels and net-
work outputs. Finally, the seed network was re-trained by
sequence-discriminative training by optimizing sMBR objec-
tive. This aimed to maximize expected frame accuracy of
being in the correct state. The expectation was calculated
over possible state sequences represented by lattices. The ref-
erence sequences were obtained by force-alignment to tran-
scription.

This DNN was used as a seed system for further semi-
supervised training. Unlabeled training data were automati-
cally transcribed and per-frame confidences were produced.
The confidences were based on re-scaled lattice posteriors
that were selected by the best-paths’ state-sequence from the
lattice [12].

The semi-supervised training is applied to per-frame
Cross-Entropy training only, for the sMBR training, the tran-
scribed LLP data-set was used. Large part of the improvement
from the per-frame Cross-Entropy semi-supervised training
was preserved also after the sMBR training.
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Fig. 2. DNN system architecture.

DNN training
DNN features: 10h SST

Xent sMBR Xent sMBR
PLP-CMLLR 74.9 72.1 - -
BN1-CMLLR 73.8 71.9 72.1 70.4
BN1-CMLLR,SST 71.7 69.9 69.9 68.3

Table 2. Semi-supervised training of DNN.

5.1. BN-CMLLR features in DNN system

Finally, we extended DNN system by proposed first stage
BN features with speaker adaptation (BN1-CMLLR). These
features were stacked in context of 21 (+/-10) frames, down-
sampled by factor 5 (like in SBN) and fed into DNN system.
Figure 2 presents this architecture.

Our previous work [6] presented excellent gains by using
this architecture. Table 2 shows that baseline PLP-CMLLR
features are giving close performance to BN1-CMLLR fea-
tures if these are not SST trained. When the SST training
is applied to input features, the gains are about 2% absolute
regardless whether SST training is applied to the final DNN
classifier or not — gains from SST training of DNN are addi-
tive to SST training of input features, which is a very positive
finding.

6. DEALING WITH NOISE

The Tamil data were found to contain lots of noise mainly in
wide-band channels which led to significantly worse perfor-
mance than on clean data. Two main approaches were inves-
tigated: noise suppression and adding noise into the training
data.

Many noise suppression techniques have been described,
such as Spectral Subtraction (SS) [14], Wiener filtering [15],
subspace techniques [16] and others. Wiener filtering was
chosen for our experiments as it is the most popular in speech
enhancement. The basic principle is to obtain a clean signal
back from that corrupted by additive noise. It is required to
estimate an optimal filter for the noisy input speech by mini-
mizing Mean Square Error between desired signal s and esti-
mated signal ŝ (see [15, 17] for details).

The performance of noise suppression methods under real
conditions with highly non-stationary or unpredictable noises
may be limited especially in cases of limited amounts of train-
ing. Therefore, we experimented with cloning of training data

and corrupting its versions by noise. Using one exact type of
noise known from a few samples of data can lead to decrease
of robustness on unknown distortions. Therefore, we artifi-
cially generated more types of noises (mostly by passing a
white noise through various kinds of filters), hoping that it
will lead to more general solution. Eight filters (see figure 3
for frequency characteristics) were defined:

• v1 - v4: low pass filters; v1 is close to the noise charac-
teristics found in the dev data.

• v5, v6: one band-pass filter.

• v7, v8: several narrow band-pass filters.

Noises v9 and v10 are 100Hz and 50Hz sinusoidal hums. The
noise was added to the original clean data on 3 amplitude lev-
els:

• L1 0.35 of Root Mean Square (RMS) of the original
signal (SNR 9 dB).

• L2 1.00 of RMS of the original signal (SNR 0 dB).

• L3 3.5 of RMS of the original signal (SNR -11 dB).

The amount of training data was multiplied by factor 4
(original data + 3 levels of noise). The noise type was selected
randomly for each particular pair of utterance and noise level.

Fig. 3. Frequency characteristics of noise filters.

6.1. Analysis on simple SBN system

All features (PLP, FBANK, F0) were re-generated on noised
waveforms but the NN training targets were cloned from
clean-data alignments. The baseline system for these experi-
ments was a simple ML-trained Stacked Bottle-Neck tandem
system built on clean data only to see solely the effect of SBN
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System %WER
Baseline 76.0
Wiener filter on train/test 76.1
Additive noise in training data 75.4

Table 3. Noise suppression vs. noising of training data.

Fig. 4. Noise suppression vs. noising – details.

training. Table 3 presents slight degradation when Wiener fil-
ter was used. It could be caused by dominance of clean data
in the test — the noise suppression techniques are know to
degrade the performance on clean data due to adding distor-
tion and artifacts. On contrary, adding noises into the data for
SBN training is giving 0.6% absolute improvement against
baseline clean condition.

For more detailed analysis, the test set was split into four
categories:

• Clean - Signal to Noise Ratio (SNR) higher than 30
(1147 minutes of audio).

• Noisy - SNR bellow 30 (10 minutes of audio). Most
of the recordings contain telephone speech with back-
ground noise like another speaker, television/radio, etc.

• Stationary - most corrupted data coming from “Far-
field” microphones (49 minutes of audio).

Figure 4 shows that Wiener filter is effective on noise data
only whereas adding noise to the training data is effective on
both clean/noise data.

Adding the noise is an ad-hoc technique, therefore we
were interested in analyzing the importance of each particular
noise type. Ten noise-specific NNs were trained on clean plus
three levels of single type of noise. Figure 5 shows that v1
and v2 are performing the best, probably due to noise charac-
teristics close to the actual data, but none of the NNs shows an
erratic behavior. Even hums, v9, v10, which are quite improb-
able to be in the data, are performing better than the baseline.
It seems that the main effect of cloning and noising the data
is increasing system robustness to various distortions.

Fig. 5. Noise-specific NNs.

6.2. Final results

Table 4 presents the final ASR results obtained from the SST
GMM system. It is obvious that the gain coming from noises
can be doubled by re-training not only the feature extractor
but also the whole system on noised data.

System %WER
Baseline 72.1
Added noises to NN only 71.7
Added noises also to RDT-GMM 71.2

Table 4. Final GMM system results.

Similar outcome can be also seen on the final DNN-HMM
system (table 5). It was semi-supervised trained on adapted
PLP + BN1-CMLLR features with sMBR criterion. The
main effect is coming from retraining DNN feature extractor
on noised data (1.3% absolute gain); retraining of the whole
DNN system also on noise data had 0.4% additive gain only.

System %WER
BN1-CMLLR on clean data, DNN on clean only 69.4
BN1-CMLLR on noised data, DNN on clean only 68.1
BN1-CMLLR on noised data, DNN on noised data 67.7

Table 5. Final DNN system results.

6.3. Re-visiting 1st year languages - Cantonese

Adding noises to the training seems to increase the robustness
of ASR against various distortions. We believed it should be
also helpful on standard telephone speech recorded in clean
conditions. The first BABEL language, Cantonese, was re-
visited for this purpose. The details about the data can be
found in [2], the system was rebuilt on LLP data according to
our current recipe (this paper) with and without noise. Table 6
shows a small 0.2% absolute gain obtained by training simple
ML GMM on top of SST SBN NN on noised features (similar
experiment as in Table 3). Next, we SST trained full MPE-
RDT GMM system where 0.6% absolute gain was observed
by adding a noised data (similar experiment as in Table 4).
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System ML SBN %WER MPE-RDT system %WER
Baseline 54.5 48.2
+ noise 54.3 47.6

Table 6. Cantonese ML SBN and complete GMM system
trained on noised data.

7. CONCLUSION

This paper presented a summary of heroic three weeks’ work
of our team on Tamil OpenKWS Surprise evaluation. We in-
vestigated speaker-adapted BN features as an input to DNN
recognizer where semi-supervised training was found effec-
tive. Adding noise into training data was found superior to
de-noising the data in NN-based feature extraction. It does
not degrade performance for clean speech and it performs bet-
ter on noisy speech. Moreover, further retraining of the whole
ASR system on noised data led to significant increase of final
system performance. All these partial improvements led to a
very successful system in this evaluation.

The effect of adding noise to training data was verified on
relatively clean training/test data setup from a different lan-
guage. Data noising had positive effect also in this condition.
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