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ABSTRACT

This work studies the use of deep neural networks (DNNs)
to address automatic language identification (LID). Motivated
by their recent success in acoustic modelling, we adapt DNNs
to the problem of identifying the language of a given spoken
utterance from short-term acoustic features. The proposed ap-
proach is compared to state-of-the-art i-vector based acoustic
systems on two different datasets: Google 5M LID corpus and
NIST LRE 2009. Results show how LID can largely benefit
from using DNNs, especially when a large amount of training
data is available. We found relative improvements up to 70%,
in Cavg , over the baseline system.

Index Terms— Automatic Language Identification, i-
vectors, DNNs

1. INTRODUCTION

The problem of automatic language identification (LID) can
be defined as the process of automatically identifying the lan-
guage of a given spoken utterance [1]. LID is daily used in
several applications such as multilingual translation systems
or emergency call routing, where the response time of a fluent
native operator might be critical [1] [2].

Even though several high level approaches based on
phonotactic and prosody are used as meaningful comple-
mentary sources of information [3][4][5], nowadays, many
state-of-the-art LID systems still include or rely on acous-
tic modelling [6][7]. In particular, guided by the advances
on speaker verification, the use of i-vector extractors as a
front-end followed by diverse classification mechanisms has
become the state-of-the-art in acoustic LID systems [8][9].

While previous works on neural networks applied to LID
report results using shallow architectures [10][11] or convolu-
tional neural networks [12], in this study, we propose the use
of deep neural networks (DNNs) as a new method to perform
LID at the acoustic level. Deep neural networks have recently
proved to be successful in diverse and challenging machine

learning applications, such as acoustic modelling [13] [14],
visual object recognition [15] and many others [16]; espe-
cially when a large amount of training data is available.

Motivated by those results and also by the discriminative
nature of DNNs, which could complement the i-vector gener-
ative approach, we adapt DNNs to work at the acoustic frame
level to perform LID. Particularly, in this work, we build, ex-
plore and experiment with several DNNs configurations and
compare the obtained results with several state-of-the-art i-
vector based systems trained from exactly the same acoustic
features.

To assess the proposed method’s performance we exper-
iment on two different and challenging LID datasets: 1. A
dataset built from Google data, hereafter, Google 5M LID
corpus and 2. The NIST Language Recognition Evaluation
(LRE’09). Thus, first, we test the proposed approach in a real
application; and second, we check if the same behaviour is
observed in a familiar and standard evaluation framework for
the LID community. In both cases, we focus on short test
utterances (up to 3s).

The rest of this paper is organized as follows. Section
2 presents the i-vector based baseline systems, the proposed
DNN architecture as well as the score calibration proce-
dure. The experimental protocol and datasets used are then
described in section 3. Results are discussed in section 4. Fi-
nally, section 5 is devoted to present conclusions and evaluate
proposals for future work.

2. DEVELOPED SYSTEMS

2.1. i-vector Based LID Systems

To establish a baseline framework, we built different state-
of-the-art LID acoustic systems based on i-vectors [9]. All
those systems, while sharing i-vectors as the same starting
point, differ in the type of back-end used to perform the final
language classification.

From 39 PLP (13 + ∆ + ∆∆) feature vectors extracted
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with a 10ms frame rate over 25ms long windows, we followed
the standard recipe described in [17] to obtain i-vectors. We
trained a Universal Background Model (UBM) with 1024
components and a 400-dimensional total variability subspace
initialized by PCA and refined by 10 iterations of EM. Also,
we filtered-out silence frames by using energy-based voice
activity detector.

Once the i-vectors for every language were extracted, we
used different strategies to perform classification. On the one
hand, as a discriminative approach, we performed linear Lo-
gistic Regression (LR). On the other hand, two generative
approaches were tested, LDA followed by cosine distance
(LDA CD), and a Gaussian modelling to fit the i-vectors of
each language, with one (1G) or two components - with and
without tied covariances - (2G TC, 2G). We also explored the
effect of using a single shared covariance across the languages
(1G SC) vs. per-language covariances. For further details
about this approach, see [9].

2.2. DNN-based LID System

The DNN architecture used in this work is a fully connected
feed-forward neural network [18]. The hidden layers contain
units with rectified linear activation functions. The output is
configured as a softmax layer with a cross-entropy cost func-
tion. Each hidden layer contains h (2560) units while the out-
put layer dimension (s) corresponds to the number of target
languages (NL) plus one extra output for the out-of-set (oos)
languages.

The DNN works at frame level, using the same features as
the baseline systems described above (39 PLP). Specifically,
the input layer is fed with 21 frames formed by stacking the
current processed frame and its±10 left-right context. There-
fore, there are 819 (21 × 39) visible units, v. The number of
total weights w, considering Nhl hidden layers, can be then
easily computed asw = (v×h)+((Nhl−1)×h×h)+h×s.
Figure 1 represents the complete topology of the network.

We trained all the DNN architectures presented in this
work using asynchronous stochastic gradient descent within
the DistBelief framework [19]. We also fixed the learning
rate and minibatch size to 0.001 and 200 samples. Finally, we
computed the output scores at utterance level by respectively
averaging the log of the softmax output of all its frames (i.e.:
log of the predicted posterior probabilities).

2.3. Logistic Regression Calibration

Our scores were calibrated using discriminatively trained,
regularized multiclass logistic regression [20]. The calibra-
tion was trained in the ”cheating” way, that is, using the
evaluation scores themselves. The reason, why we performed
the cheating calibration, was to concentrate on the ability
of the underlying models to discriminate between the given
classes. We did not want to introduce other errors coming

Fig. 1. DNN network topology

from over-training the systems on the training data-set and
therefore producing miscalibrated scores for our evaluation
set.

The L2 regularization penalty weight was chosen prior to
training to be proportional to the mean magnitude of the con-
ditioned input vectors (scores) [21].

The calibration uses an affine transform to convert the
NL-dimensional vector of input scores, st, for trial t, into a
NL-dimensional calibrated score-vector, rt

rt = Cst + d, (1)

The logistic regression parameters are given by C, a full
NL-by-NL matrix, and d, a NL-dimensional vector and they
are trained by minimizing the multiclass cross-entropy with
equalizing the amount of data for individual classes

F = λ tr(CTC)−
NL∑
i=1

1

NLNi

∑
t∈Ri

log
exp(rit)∑N

j=1 L exp(rjt)
,

(2)

where rit is the ith component of rt and Ri is the set of Ni

training examples of language i.

3. EXPERIMENTAL PROTOCOL

3.1. Databases

Google 5M LID Corpus

We generated The Google 5M LID Corpus dataset by ran-
domly picking queries from several Google speech recogni-
tion services such as Voice Search or the Speech API.
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The Google ASR lattice posteriors were used to discard
non-speech queries. Selected queries range from 1s up to 8s
nominal duration, with average speech content of 2.1s.

Following the user’s phone Voice Search language set-
tings, we labelled a total of∼5 million utterances, 150k per 34
different locales (25 languages + 9 dialects) yielding ∼87,5h
of speech per language and a total of ∼2975h. A held-out
test set of 1.5k utterances per language was created while the
remainder was used for training and development.

Google queries are not linked to user identity information
due to privacy concerns, and therefore, determining the exact
number of speakers involved in this corpus is not possible.
However, given the selection procedure, it is a reasonable
assumption that the number of speakers is very large.

Language Recognition Evaluation 2009 Dataset.

The LRE evaluation in 2009 included, for the first time,
data coming from two different audio sources. Besides Con-
versational Telephone Speech (CTS), used in the previous
evaluations, telephone speech from broadcast news was used
for both training and test purposes. Broadcast data were ob-
tained via an automatic acquisition system from “Voice of
America” news (VOA) where telephone and non-telephone
speech is mixed. Up to 2TB of 8KHz raw data containing
radio broadcast speech, with the corresponding language and
audio source labels were distributed to participants; and a to-
tal of 40 languages (23 target and 17 out of set) were included.

Due to the large disparity on training material for every
language (from ∼10 to ∼950 hours) and also, for the sake of
clarity, we selected 8 representative languages for which at
least 200 hours of audio are available: en (US English), es
(Spanish), fa (Dari), fr (French), ps (Pashto), ru (Russian), ur
(Urdu), zh (Chinese Mandarin). Further, to avoid misleading
result interpretation due to the unbalanced mix of CTS and
VOA, all the data considered in this dataset belong to VOA.

For evaluation, we used a subset of the official NIST LRE
2009 3s condition evaluation set (as for training, we also dis-
carded CTS test segments), yielding a total of 2916 test seg-
ments of the 8 selected languages. That makes a total of
23328 trials.

3.2. Performance Metrics

In order to assess the performance, two different metrics were
used. As the main error measure to evaluate the capabilities
of one-vs.-all language detection, we use Cavg (average cost)
as defined in the LRE 2009 [22][23] evaluation plan. Cavg is
a measure of the cost of taking bad decisions, and therefore
it considers not only discrimination, but also the ability of
setting optimal thresholds (i. e., calibration). Further, well-
known metric Equal Error Rate (EER) is used to show the
performance, when considering only scores of each individual
language. Detailed information can be found in the LRE’09
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Fig. 2. Cavg results on Google 5M LID corpus. 8-hidden
layer DNN vs. reference systems based on i-vectors.

evaluation plan [22].

4. RESULTS

4.1. Results on Google 5M LID Corpus

As a starting point for this study we compare the performance
of the proposed DNN architecture and the reference systems
on the large Google 5M LID dataset. Figure 2 shows this
comparison. Considering i-vector systems, we found a simi-
lar performance for the discriminative back-end, Logistic Re-
gression (LR) and the generative ones, Linear Discriminant
Analysis (LDA CD) and the one based on a single Gaus-
sian with a shared covariance matrix across the languages
(1G SC). Interestingly, increasing to 2 Gaussians and allow-
ing individual covariances matrices (systems 1G, 2G TC, 2G)
a relative improvement of ∼19% is obtained. respect to LR,
LDA CD and 1G systems. This fact suggests that within-class
distribution can be different for the individual languages.

Nonetheless, the best performance is achieved by the
DNN systems, where the 8-hidden layer DNN proposed ar-
chitecture yields up to a ∼70% of relative improvement in
Cavg terms with respect to the best reference system (2G TC).
This result demonstrates the ability of the DNN to exploit dis-
criminative information in large datasets.

4.2. Results on LRE’09

Guided by the results presented above we moved to a more
extensive analysis on LRE’09 evaluation data. Per-language
results summarized in Table 1, show similar improvements on
the LRE’09 dataset. A relative improvement of∼43% in EER
is obtained with the 8-hidden layer DNN, trained with 200h,
with respect to the classical i-vector LDA CD system.

The effect of using different numbers of layers is also
highlighted in Table 1, where in addition to the 8-hidden
layer DNN and the i-vector LDA CD system, results with a
2-hidden layer DNN (DNN 2 200h) are also reported. Simi-
larly, although the improvements are more modest than those
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Equal Error Rate (EER in %)

en es fa fr ps ru ur zh Average
Iv 200h 17.22 10.92 20.03 15.30 19.98 14.87 18.74 10.09 15.89
DNN 2 200h 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61
DNN 8 200h 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58

Table 1. Systems performance (ERR %) per language on LRE’09 (3s test segments)
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Fig. 3. DNNs vs i-vector performance in function of the
per-language number of hours available. Results on LRE’09
dataset.

obtained with the 8-hidden layer network, the DNN 2 200h
still outperforms the i-vector based system.

We then explore the effect of having different amounts of
training data. Figure 3 shows the i-vector LDA CD, DNN 2
and DNN 8 systems performance (Cavg) as a function of the
number of hours per language used for training. With lim-
ited amount of data per language (<10h), the i-vector system
yields the best performance. However, the more hours for
training, the higher the improvement of DNN with respect to
the i-vector systems. With the greatest amount of data, 200h,
the relative improvement of the 8-hidden layer DNN with re-
spect to the i-vector systems is ∼15% in Cavg .

This behaviour may be for several reasons. With<10h per
language, the i-vector approach might be favoured by its sub-
space intrinsic nature. The UBM and the total variability ma-
trix drive modelling to a constrained low-dimensional space.
This fact facilitates i-vector approach to quickly retain most
important language variations. Also, the number of free pa-
rameters to train in each system could play an important role
(∼16M, ∼9M, ∼50M parameters for LDA CD, DNN 2 and
DNN 8 respectively). On the contrary, with abundant data
(>20h) the i-vector based approach seems to saturate, while
DNNs show a high ability to avoid local minima and overfit-
ting even when containing a large number of free parameters
(see performance differences between DNN 2 and DNN 8 in
Figure 3).

5. DISCUSSION

In this work, we experimented with the use of deep neural
networks (DNNs) to automatic language identification (LID).
Guided by the success of DNNs for acoustic modelling, we
explored their capability to learn discriminative language in-
formation from speech signals.

We compared the proposed DNNs architectures to several
state-of-the-art acoustic systems based on i-vectors. Results
on NIST LRE 2009 (8 languages selected) and Google 5M
LID datasets (25 languages + 9 dialects), demonstrate that
DNNs outperform, in most of the cases, current state-of-art
approaches. This is especially true when large amount of
data is available (> 20h), where unlike i-vectors approaches,
which seem to saturate, DNNs still learn from data.

On the other hand, DNNs have several drawbacks, includ-
ing the training time, or the number of parameters to store.
Also, adjusting the proper number of hidden layers and units
is an empirical exercise for every database. Fortunately, we
found that (for the datasets used) moving from 8 to 2 hidden
layers, did not have a dramatic impact on performance. More-
over, those adjustments could be done off-line, with testing
time still reasonable.

As future work, we will focus on different lines such as
establishing a more appropriate averaging of frame posteriors
obtained in DNNs, exploring different fusions among DNNs
and i-vector systems, or dealing with unbalanced training
data.
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