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Introduction
Mobile robot’s full autonomy widens their range of applicability. 

In this context, it is essential that a mobile robot is able to construct its 
own map based on sensors data readings, which are the only means the 
robot has to interact with its surroundings. Thus, map building, path 
planning, obstacle avoidance, and control are crucial in achieving full 
autonomy. Map building shall be carried out based on fusion of sensory 
information and uncertainty is one of the problems when dealing with 
sensor data readings. Therefore, it shall to be taken into account by the 
use of probabilistic sensor models.

Previous research on sensor data fusion has focused on different 
integration methods, i.e. Bayesian, Dempster Shafer, Fuzzy Logic, 
Neural Networks, among others [1-3]. Each sensor fusion method 
previously mentioned is unique to some extent. The Bayesian is the 
oldest approach and the one with strongest foundation. It offers an 
approach to some of the fundamental problems of sensor fusion: 
information uncertainty, conflicts, and incompleteness [4]. Due to this 
fact, the inclination of using Bayes has been taken into consideration to 
carry out the fusion process along the research in this paper. The result 
of the fusing process from the sensory information can be used to build 
a map of the robot’s environment by means of the mentioned Bayes 
approach. Once the map has been created, modules for localization, 
path planning, obstacle avoidance and control can be applied in the 
hierarchical architecture of the robot, thus achieving full autonomy.

One of the requirements when dealing with sensor data fusion 
that has to be taken into consideration is the choice of the internal 
representation. This representation must be chosen so that it is 
common to all sensors. This means that sensor readings of different 
modalities must be converted to the common internal representation 
in advance before the fusion process is carried out. Therefore, occupied 
as well as empty areas of any arbitrary environment must also be 
modeled without a prior knowledge of it. It must also represent the 
estimation and the certainty values of the confidence of the true 
parameters. The fusion process for different sensors must be feasible 
under this internal representation. Conversion of sensor data from the 
physical measurements to the internal representation should be easy to 
carry out. In this context, the map should be expanded as needed and 
must have multiple resolutions for different mobile robot tasks [5-8].

One internal representation that fulfills the above requirements is 
the occupancy grid introduced by Elfes [5-7]. An occupancy grid is a 
tessellation of the robot’s environment into cells defined over a discrete 
spatial lattice. The parameters in this random field are the stochastic 
random variables or cells Ci, i = 1, …, n. The status of these cells being 
occupied or empty is denoted o and e respectively. The state of each 
cell is exhaustive and exclusive, meaning that Po + Pe ≡ 1, where P is the 
probability of a random variable that gets a particular state. 

Previous research on map building based on sensor fusion between 
laser range finder and cameras has been carried out. For instance Saurav 
et al. [9] has presented a heuristic sensor fusion method for a laser and a 
stereo vision camera to generate 2D occupancy grid. However, despite 
they have presented good results in reducing computational burden, 
the method lacks a more reliable sensor fusion technique that can cope 
better with uncertainties. Peyman et al. [10] has focused on fusing 
laser with depth images using a stereo vision system, where Vector 
Field Histogram (VFH) is used as a sensor fusion technique. The main 
result of this paper is to show that the field of view of both sensors 
complements each other when creating an occupancy grid map for 
robot planning tasks. A 2D model is constructed in front of the robot 
by projecting the 3D world model from disparity information, which 
then can be fused with the 2D laser map. Jia et al. [11] exemplifies 
successfully a map building method based on a Bayesian technique 
using range data from a binocular stereo vision and laser range finder 
sensors.

Moreover, other works on stereo vision system and laser for map 
building based on sensor fusion can be found in the literature. Yoder 
et al. [12] uses the Bayesian Occupancy Filter (BOF) to combine both 
stereo vision and laser sensors to an occupancy grid. The BOF consists 
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of a prediction phase and an estimate phase. This work has presented as 
the first experiments in the use of the BOF to fuse data obtained from 
stereo vision and laser sensors, on an intelligent vehicle platform.

One of the main drawbacks of the Xtion Pro Live RGBD camera 
when compared to the stereo vision system is the missing depth 
measurements (nmd pixels) [13]. However, the main advantages of the 
RGBD are its low price and the possibility to acquire video and depth 
data with a good resolution. And, the research done in this work has 
been focusing on the problem of fusing laser range and RGBD readings. 
Thus, a sensor data fusion approach has been followed by combining 
the information of a laser scanner (2D) with the RGBD image (3D) for 
mapping purposes. This is an advantage since the vertical field of view 
of the RGBD sensor provides more information what is in front of the 
robot than the laser does. However, the laser catches more information 
in the horizontal field of view than the RGBD sensor.

The research done in this paper has shown the feasibility to use 
the novel RGBD camera into the field of sensor data fusion and map 
making based on the well known Bayesian method. The approach 
has been exemplified by building a map of an indoor environment 
robot. It is also shown that by integrating both sensors, more reliable 
and accurate maps are produced. Ray casting to a hit occupied cell is 
proposed instead of a probabilistic sensor model.

Section 3 describes the sensors used in the present work e.g. the 
laser range finder and the RGBD. Section 4 deals with a description 
of the probabilistic sensor model. Section 5 explains how the Bayes 
recursive formula can be applied to the occupancy grids in order to 
integrate and update the maps. 5 - .1 also describes the fusion of two 
sensors with two occupancy grids. Section 6 shows the experimental 
results of the fusion of the different sensors using the previous methods 
and also analyses the maps by means of the Mahalanobis distance. And, 
finally, section 7 presents the conclusion and future research work.

Sensors
The RGBD sensor from Asus as seen in Figure 1 is becoming quite 

utilized in various mobile robot tasks [14].

However, the narrow field of view and the close range are limitations 
of the sensor. It has a field of view of 58° H, 45° V (Horizontal, Vertical). 
Meanwhile, the sensor’s depth image size is 640 × 480 pixels with a 
total of 307,200 pixels. To this end, a good field of view is important in 
mobile robots, because the more wide the field view, the more precise 
the map, e.g. the robot can catch more features from the environment 
in a single sensor reading. On the other hand, a mobile robot with poor 
field view must constantly maneuver to fill up the missing map. The 
distance of use of the sensor is between 0.8m and 3.5m. This limited 
range might be a problem when navigating. More precisely, the robot 
may crash with objects that are situated between the RGBD sensor and 
the minimum range.

The Hokuyo UTM − 30LX laser range finder [15] was selected 
because of its size and price. It has a sensing range from 0.1m to 30m. 
Measurement accuracy is within ± 3 mm tolerance up to 10m of the 
sensors range. The scanning rate is 25 milliseconds across a 270° range. 
These specifications make the laser ideal for this research in indoor 
applications. The Hokuyo laser sensor is depicted in Figure 2.

Figure 3 shows both the field of view of the laser range finder and 
the field of view of the RGBD sensor. It can be noticed that the laser has 
a wider field of view with respect to the RGBD; however the later gives 
a 3D field of view. And, it is the intention of this research to show that 
both fields of view complement each other.

Sensor Models
The laser can measure the distance to an object quite accurately. 

However, there is an uncertainty in the pulse that is reflected back to the 
sensor. On the other hand, the RGBD sensor also returns the depth to 
each pixel, which uncertainty also needs to be modelled. The approach 
taken by [5,6,16] to model the occupied and empty regions of the sonar 
beam can be taken into consideration to model the uncertainty in both 
sensors data readings. 

For instance, to model the RGBD occupied area, Kourosh et al. [17] 
models the standard deviation of the depth measurement ( )X Y Zσ σ σ  

as follows: 2 2
2( ) , ( )Z d X d

m mxZ Z
fb f b′ ′= =σ σ σ σ  and 2

2( )y d
my Z
f b ′=σ σ

, where Z is the depth return by the sensor, d the normalized 
disparity, m the parameter of a (supposedly) linear normalization 
(in fact denormalization), dσ the standard deviation of the measured 
normalized disparity, f is the focal length, b is the base length and 
(x,y) are the image coordinates. zσ  in the previous equation mainly 
expresses that the random error of depth measurement is proportional 
to the square distance from the sensor to the object. The empty area 
can be modelled according to the sonar beam model as it is proposed 
in [18]. 

Thrun presented the laser beam model in [19], which is computed 
by the multiplication of individual sensor measurements.

Figure 1: RGBD sensor.

Figure 2: Hokuyo UTM−30LX laser range finder.

240º

45ºH

58ºH

Figure 3: Field of view of the laser and the RGBD sensor.
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However, despite of the previous possibilities to model the 
sensor uncertainties, and inspired by Bresenham algorithm [20] to 
approximate the beam, a more simplistic model that abstracts the beam 
to a ray that hits a grid cell in a certain distance is proposed. Thus, 
taking the starting point in this method, a grid G of cells Ci, j, 1 ≤ i = xgrid 
≤ xmax, 1 ≤ j = ygrid ≤ ymax is defined in front of the sensor. 

In this ray trace model representation, let r denote a sensor range 
measurement and e the mean sensor range deviation error. The value 
µ represents the minimal measurement and δ is the ray distance from 
the sensor to the cell. Then, 1 2 2

o o o
n nP P P= == =  represents the sensor’s (s) 

probability of a cell Ci,j being empty (e), and o
sP  represents the sensor’s 

probability of a cell Ci,j being occupied (o). Where, o
sP  and e

sP  are 
fixed probabilities.

[ ], ,e
sP if r∈ −δ µ ε                     (1)

[ ], ,o
sP if r r∈ − +δ ε ε                     (2)

Sensor Fusion
Elfes [7] has proposed in his previous work the use of a recursive 

Bayes formula to update the occupancy grid for multiple sensor 
observations. When this formula is transferred to the occupancy grid 
framework, the following is obtained:

(1 )(1 )

o o
o S m

o o o o
S m S m

P PP
P P P P

=
+ − −                       (3)

• o
mP  and 1− o

mP  are the prior probabilities that a cell is occupied 
and empty respectively; they are taken from the existing map.

• o
sP  is the conditional probability that a sensor would return 

the sensor reading given the state of the cell being occupied. 
This conditional probability is given by the ray trace sensor 
model 2.

• oP  is the conditional probability that a cell is occupied given a 
sensor range reading r. In other words, it is the new estimate or 
the inverse sensor model.

A new sensor reading, introduces additional information about the 
state of the cell Ci,j . This information is done by the sensor model o

sP  
and it is combined with the most recent probability estimate stored in 
the cell. This combination is done by the recursive Bayes’ rule based on 
the current set of readings rt = (rt, rt-n, ...., ro) to give a new estimate oP . 
It is worth noting that when initializing the map an equal probability to 
each cell Ci,j must be assigned. In other words, the initial map cell prior 
probabilities are 1 0.5 .o o

m m ijP P C= − − ∀  

Fusion of sensors with two occupancy grids

In this method, equation (3) is applied to construct each sensor 
grid map. Then, the cells in each grid map are modified in order to 
reinforce the cell probability of being occupied. After wards, the cells 
that correspond to the same coordinates in each map are fused to 
obtain a resulting grid map [16];

• The probability of a cell Ci,j being occupied (Po) is set to one if 
it is higher than a predefined threshold To.

• Otherwise the value in the cell Ci,j remains, (Po). More 
precisely, the resulting grid map is computed in two steps.

Firstly, probability values in the grid maps are modified for each 
sensor type using the following expression:

1,2

1 ,o
o o

n o

for P T
P

P otherwise=

>
= 


                    (4)

1 2 2
o o o

n nP P P= == =  correspond to singular cell probabilities of each 
sensor grid map, e.g. RGBD and laser. To is selected to be 0.55. Secondly, 
the previous probability values are then inserted into the Bayes’ rule to 
obtain the occupied fused probability o

fP  of the cell Ci,j in the resulting 
grid.

1 2

1 2 1 2(1 )(1 )

o o
o
f o o o o

P PP
P P P P

=
+ − −

                    (5)

Experiments
The current robot system PatrolBot (PB) as it is shown in Figure 

4-serves as experimental testbed. 

The robot is equipped with a Hokuyo UTM-30LX laser range 
finder, a RGBD Asus sensor and a hp ProBook Intel®CoreTM i3 Pentium 
@ 2.40 GHz. The PB also delivers odometry data. In order to carry 
out the experiments, ROS (Robot Operating System) Groovy [21] is 
installed in Ubuntu GNU/Linux 12.10 (quantal) [22]. Both sensors 
are aligned, thus the sensor readings don’t suffer from misalignment 
that can potentially cause errors in the fused grid maps. Moreover, the 
experiments presented in this work were done using real data from an 
indoor environment.

The RGBD catches 3D depth readings and some of them are aligned 
within the field of view of the laser sensor. These data is projected into 
2D to ease the integration process. At the same time, the laser field 
of view also catches 2D depth data which for some part are aligned 
within the field of view of the RGBD sensor. From this point of view, 
the integration of both the laser and the RGBD data is relevant.

In this work, the measurements have been taken by the PB along 
a trajectory, which is situated in the middle laboratory’s corridor. In 
each measurement the laser scans a total of 512 readings distributed 
along 180°. Meanwhile, the RGBD sensor 3D data is projected into 
2D. Then, each sensor reading is interpreted by the heuristic sensor 
model as described previously, conditions 1 and 2. After wards, the 
recursive Bayes formula 3 is applied to fuse and update the data in 
each probabilistic grid map, e.g. the RGBD and laser maps. Then, 

Figure 4: PatrolBot from MobileRobots, which dimensions are; (58.9cm L, 
48.3cm W, 37.8cm H).
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Equation 5 is applied to both maps in the integration process to obtain 
a single fused map. In this map the gray value represents the unknown 
probability, e.g. 1 0.5 .o o

m m ijP P C= − = ∀

Throughout the experiments, the values of o
sP  = 0.95 and e

sP  
= 0.40, corresponding for occupied (white) and free cells (black), 
respectively. The previous values have been determined experimentally 
to work best for the case of mapping mostly in static environments. 

Figure 5 presents the grid map created from detected laser readings. 
This map presents quite accurately the shape of the laboratory; however, 
as one may expect some features were not detected, especially those 
that are outside the laser field of view. 

Figure 6 presents the grid created from detected RGBD data. This 
map is more sparse in some areas where the laser is not. This is due 
to the narrow field of view of the sensor. Nevertheless, important 
information is shown, specially the features that are aligned and over 
the field of view of the laser.

The situation is clearer in Figure 7. The robot is turned towards 
the wall at angle of 45°. The first grid is created only from laser 
measurements, and due to the wide field of view of the laser, the door 
and the wall are quite well detected. The second grid shows a more 
sparse grid map created only by RGBD data. And, also due to its field of 
view just the wall was detected and some features that were not visible 

by the laser. The third grid presents the result of simple data fusion of 
laser data and RGBD data.

Furthermore, the robot is placed in a corridor which grid maps 
are showed in Figure 8. Both sensors can detect features on the two 
walls, (Figure 8a and 8b). The RGBD grid, as expected, is more sparse, 
whereas the laser is more dense. The combination of both sensors is 
depicted in Figure 8c. Figure 9a shows the map of the laboratory, it 
mainly shows the desks, shelves and walls. In this Figure, the frame that 
surrounds the map is just place as a ornament and the door (left down 
corner) is close, however during the measurements, the door is open. 
The combination of both sensors, as a result of applying equation 5 is 
depicted in Figure 9b. The fusion of these two sensor data readings into 
two different grids has the advantage of not affecting the individual grid 
data representations. Therefore, the final fusion is carried out in a third 
grid. This fusion is used only as a result of the data fusion process and 
is not used for integration of individual measurements. This approach 
can be suitable for cheap robot solutions, where the RGBD data 
detection can significantly improve the laser measurements. The fusion 
of both sensors reinforces empty (black) and occupied (white) areas. 
Hence, navigation of an autonomous robot in indoor environments 
can get the benefits of this process. The overlaid of the RGBD-laser on 
the laboratory map is depicted in Figure 10. It can clearly be seen that 
the desks, shelves and walls are well detected. Chairs, shelf’s cavities 
and other stuff that are placed on the desks and in the space between 
them are also detected

Mahalanobis distance comparison

The Mahalanobis distance measure approach was introduced by 
Mahalanobis [23] in 1936. It is based on correlations between random 
vectors. It differs from Euclidean distance in that it takes into account 
the correlations of the data set. This mathematical tool is used to 
compare the individual maps to a true map. After wards, the occupied 
cells of each map are calculated and then the mean and the covariance 
of the Mahalanobis distance is computed.

Let’s x and y
 

 be two random vectors, the Mahalanobis distance 

Shelf

Shelf

Shelf

Desk

Desk

Desk

(a)         (b)
Figure 5: (a) Represents the map of the laboratory, which dimensions are; 
(5.0m W, 7.06m L), (b) Grid created from laser data.

Desk

Desk

Desk

Shelf

Shelf

Shelf

(a)      (b)
Figure 6: (a) Represents the map of the laboratory, (b) Grid created from 
RGBD data.

(a)            (b)

                                             (c)
Figure 7: (a) Represents only laser data, (b) Represents only RGBD data, (c) 
Represents fusion of laser and RGBD data.
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dM from a vector y


 to the vector x


 is the distance from ˆy to x  , the 
centroid of x



, weighted according to Cx, the covariance matrix of x


, so that: 
1

' 1 2ˆ ˆ(( ) ( ))m xd y x C y x−= − −
 

                         (6)

Where:

1

1ˆ
2

xn

i
i

x x
=

= ∑                        (7)

'

1

1 ˆ ˆ( )( )
1

xn

x i i
x

C x x x x
n

= − −
− ∑                         (8)

The Mahalanobis distance from a RGBD and laser to a RGBD-
laser data vectors is computed in the following. The elements of the 
RGBD and laser vectors are the coordinates of the occupied cells of 
their respective maps. The elements of the RGBD-laser vector are also 
the coordinates of the occupied cells of its respective map. The RGBD-
laser is taken as a true parameter vector to be compared with the other 
vectors. The Mahalanobis distance is computed in squared units of 
each observation in the reference sample x . A unit has a value of 5 cm 
which is the size of a single cell in the grid. A 2D grid plot (RGBD-laser 
& RGBD), which has been generated by the RGBD-laser grid map and 
the RGBD grid map based on Bayes approach, is presented in Figure 

(a)      (b)

                  (c)
Figure 8: (a) Represents only laser data, (b) Represents only RGBD data, (c) 
Represents fusion of laser and RGBD data.

(a)        (b)

Shelf

Shelf

Shelf

Desk

Desk

Desk

Figure 9: (a) Represents the map of the laboratory, (b) The map is created 
by fusing two grids, one grid comes from the laser data and the second one 
from the RGBD data.

11. In Figure 11a, the red squares correspond to the occupied RGBD-
laser cells. In the other hand, Figure 11b represents the occupied 
cells of the RGBD grid map. Each colour in the asterisks in Figure 
11c represents the Mahalanobis distance to the RGBD-laser vector. 
The corresponding colour values of the distances are represented as 
a colour bar placed next to the map. Figure 11d depicts the plot of the 
Mahalanobis distance from Figure 11c. 

The situation where the laser coordinates vector is taken into 
account to compute the Mahalanobis distance to a RGBD-laser 
coordinate’s vector can be depicted in Figure 12. The colour of the 
asterisks in Figure 12c mainly oscillates from blue to light blue meaning 
that the Mahalanobis distance ranges from 12 to 4.0 square units, where 
just few cells are outside of this range.

Table 1 presents the number of occupied cells, whereas the mean 
and variance values of the maps that have been analyzed in this 
subsection are presented in Table 2. The number of cells in RGBD-
laser based on Bayes approach has been increased when compared 
with individual RGBD and laser maps. This can be attributed to the fact 
that, when fusing the laser map with the RGBD map, many accurate 
cells that are beyond the field of view of the laser map are taken into 
account. Another point to notice is that the mean value concerning the 
Mahalanobis distance of the (RGBD-laser)-RGBD map is less than the 
one of (RGBD-laser)-laser. This can be interpreted as the RGBD-laser 
map is more accurate to the true map.

Figure 10: The fused RGBD-laser grid map is overlaid to laboratory map.

Table 1: Summarizes the number of the occupied cells.

Bayes
Grid Map Occupied cells

Laser 2180
RGBD 1151

RGBD-laser 2906

Table 2: The mean and the variance values of the Mahalanobis distance.

Mahalanobis distance
Grid Map Mean Variance

(RGBD-laser) - laser 2.1603 4.3862
(RGBD-laser) - RGBD 1.4863 1.2042
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Figure 11: (a) The Occupied cells based on the fusion between the laser and the RGBD grid sensors. (b) The occupied cells based on the RGBD sensor grid map. 
(c) Mahalanobis distance between the RGBD and RGBD-laser maps based on Bayes. (d) Shows only the Mahalanobis distance in cells units from (c).
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Figure 12: (a) The Occupied cells based on the fusion between the laser and the RGBD grid sensors. (b) The occupied cells based on the laser grid map. (c) 
Mahalanobis distance between the laser and RGBD-laser maps based on Bayes. (d) Shows only the Mahalanobis distance in cells units from (c).
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Conclusion and Future Research
It is very rare that a single sensor provides sufficient information 

for the reasoning component. In this sense, the current research in 
this paper has been focusing on fusing information from two different 
sources in order to increase the capabilities of a single sensor. To this 
end, the fusing of a laser reading with data extracted from a depth 
image using the RGBD sensor has come up with good results.

The experiments have shown that both sensors complement each 
other. On one side, the RGBD map is sparse but it detects features that 
are beyond the field of view of the laser sensor, (Figure 6b). On the 
other hand, the laser sensor covers more area, because its field of view 
is wider, (Figure 5b). This combination produces a more accurate and 
reliable map when compared to an individual sensor map, (Figure 9b).

We believe that the approach used in this work that consisted of 
fusing data provided by a laser range and the depth image constitutes 
an appropriate framework for mobile robots, which tasks of combining 
the depth sensors with other sensors are demanding.

The intention of this research is to investigate further the 
applicability of the framework to SLAM, nonlinear control tasks, 
navigation, localization and obstacle avoidance. Future research work 
could also be to compare the results achieved in this article with other 
sensor fusion techniques, e.g. Dempster- Shafer evidential theory, 
artificial neural networks and fuzzy logic.

Acknowledgment

This work was supported by The European Social Fund (ESF) in the project 
Excellent Young Researchers at BUT (CZ.1.07/2.3.00/30.0039). This project is part 
of the IT4Innovations Centre of Excellence (CZ.1.05/1.1.00/02.0070).

References

1. Ren CL, Chih CY, Kuo LS (2002) Multisensor fusion and integration: 
approaches, applications, and future research directions. Sensors Journal, 
IEEE 2: 107–119.

2. Ren CL, Michael GK (1989) Multisensor integration and fusion in intelligent 
systems. Systems, Man and Cybernetics, IEEE 19: 901–931.

3. Ren CL (1990) A tutorial on multisensor integration and fusion. Industrial 
Electronics Society, 16th Annual Conference of IEEE 1: 707-722.

4. Jerome JB (2000) Dempster-shafer theory and bayesian reasoning in 
multisensor data fusion. Sensor fusion: Architectures, algorithms and 
applications. SPIE.

5. Hans PM, Alberto E (1985) High resolution maps from wide angle sonar. 
Robotics and Automation. Proceedings, IEEE International Conference 2: 
116–121.

6. Alberto E (1989) Using occupancy grids for mobile robot perception and 
navigation. Computer, IEEE 22: 46–57.

7. Alberto E (1989) A tessellated probabilistic representation for spatial robot 
perception and navigation. Proceedings NASA Publications 3: 90.

8. Alberto E, Larry M (1987) Sensor integration for robot navigation: Combining 
sonar and stereo range data in a grid-based representation. IEEE Conference 
on Decision and Control, IEEE.

9. Saurav K, Daya G, Sakshi Y (2010) Sensor fusion of laser & stereo vision 
camera for depth estimation and obstacle avoidance. International Journal of 
Computer Applications 1: 22–27.

10. Peyman M, Wijerupage S, Dong J (2008) Improving Path Planning and 
Mapping Based on Stereo Vision and lidar. International Conference on 
Control, Automation, Robotics and Vision.

11. Jia S, Cui W, Li X, Fan J, Sheng J (2011) Mobile robot bayesian map building 
based on laser ranging and stereovision. IEEE International Conference on 
CSAE 3: 10-12.

12. Yoder JD, Perrollaz M, Paromtchik I, Mao Y, Laugier C (2010) Experiments 
in Vision-Laser Fusion using the Bayesian Occupancy Filter. International 
Symposium on Experimental Robotics 79: 899-907.

13. Massimo C, Luis S (2012) Efficient spatio-temporal hole filling strategy for 
kinect depth maps. SPIE.

14. Asus. Xtion pro live. 

15. Hokuyo. UTM-30LX. 

16. Peter S, Miroslav K, Libor P (2005) Robust data fusion with occupancy grids. 
Systems, Man, and Cybernetics, IEEE.

17. Kourosh k, Sander O (2012) Accuracy and resolution of kinect depth data for 
indoor mapping applications. Sensors 12: 1437-1454.

18. Alfredo CP, Jan DB (2009) Sensor data fusion architecture for a mobile robot 
application using sift and sonar measurements. The Journal of Intelligent 
Cybertetic Systems, ICS.

19. Sebastian T, Dieter F, Wolfram B, (2006) Probabilistic Robotics. The MIT Press. 

20. John A, Andrew W (1987) A fast voxel traversal algorithm for ray tracing. 
Eurographics.

21. Garage W (2012) Ros (Robot Operating System). 

22. Ubuntu 12.10 (Quantal Quetzal). 

23. Mahalanobis P (1936) On the generalized distance in statistics. Proceedings of 
the National Institute of Sciences 2: 49–55.

Citation: Chavez A, Karstoft H (2014) Map Building Based on a Xtion Pro Live 
RGBD and a Laser Sensors. J Inform Tech Softw Eng 4: 126. doi:10.4172/2165-
7866.1000126

Submit your next manuscript and get advantages of OMICS 
Group submissions
Unique features:

• User friendly/feasible website-translation of your paper to 50 world’s leading languages
• Audio Version of published paper
• Digital articles to share and explore

Special features:

• 300 Open Access Journals
• 25,000 editorial team
• 21 days rapid review process
• Quality and quick editorial, review and publication processing
• Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
• Sharing Option: Social Networking Enabled
• Authors, Reviewers and Editors rewarded with online Scientific Credits
• Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission/

http://dx.doi.org/10.4172/2165-7866.1000126
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1000251&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F7361%2F21602%2F01000251.pdf%3Farnumber%3D1000251
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1000251&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F7361%2F21602%2F01000251.pdf%3Farnumber%3D1000251
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1000251&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F7361%2F21602%2F01000251.pdf%3Farnumber%3D1000251
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=44007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D44007
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=44007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D44007
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=149228&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D149228
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=149228&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D149228
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=906317
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=906317
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=906317
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1087316&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1087316
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1087316&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1087316
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1087316&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1087316
http://www.sci.brooklyn.cuny.edu/~parsons/courses/3415-fall-2011/papers/elfes.pdf
http://www.sci.brooklyn.cuny.edu/~parsons/courses/3415-fall-2011/papers/elfes.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4049608&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4049207%2F4049208%2F04049608.pdf%3Farnumber%3D4049608
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4049608&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4049207%2F4049208%2F04049608.pdf%3Farnumber%3D4049608
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4049608&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4049207%2F4049208%2F04049608.pdf%3Farnumber%3D4049608
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.5692&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.5692&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.5692&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4795550&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4795550
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4795550&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4795550
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4795550&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4795550
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5952687&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5952687
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5952687&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5952687
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5952687&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5952687
http://link.springer.com/chapter/10.1007%2F978-3-642-28572-1_62
http://link.springer.com/chapter/10.1007%2F978-3-642-28572-1_62
http://link.springer.com/chapter/10.1007%2F978-3-642-28572-1_62
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1345471
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1345471
http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
https://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1386458&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5326%2F30180%2F01386458
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1386458&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5326%2F30180%2F01386458
http://www.mdpi.com/1424-8220/12/2/1437
http://www.mdpi.com/1424-8220/12/2/1437
http://www.amazon.com/Probabilistic-Robotics-Intelligent-Autonomous-Agents/dp/0262201623
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.3443
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.3443
http://wiki.ros.org/groovy
http://releases.ubuntu.com/quantal/
http://www.bibsonomy.org/bibtex/2aef303a4aba53e4fcd7b0e58f7c205b6/thoni
http://www.bibsonomy.org/bibtex/2aef303a4aba53e4fcd7b0e58f7c205b6/thoni
http://dx.doi.org/10.4172/2165-7866.1000126
http://dx.doi.org/10.4172/2165-7866.1000126

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Sensors
	Sensor Models 
	Sensor Fusion 
	Fusion of sensors with two occupancy grids 

	Experiments 
	Mahalanobis distance comparison 

	Conclusion and Future Research 
	Acknowledgment
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Table 1
	Table 2
	References

