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Abstract

In this paper, we study the use of features based on frame-by-

frame phone posteriors (PLLRs) for language recognition. The

results are reported on the datasets developed for the DARPA

RATS (Robust Automatic Transcription of Speech) program,

which seeks to advance state of the art detection capabilities

on audio from highly degraded communication channels. We

show that systems based on the PLLRs outperform the stan-

dard acoustic system based on PLP2 features. By experiment-

ing with the system combinations, we also demonstrate that the

PLLR-based systems contain complementary information with

respect to the PLP2 system. Finally we make a comparison

between the PLLR and phonotactic systems with the outcome

favorable to the PLLR.

Index Terms: language recognition, PLLR, iVector, phone pos-

terior, neural network, RATS

1. Introduction

Building language and speaker recognition (LRE and SRE) sys-

tems on top of the iVector [1] paradigm has been a state-of-the-

art approach for the last three years. An iVector is a fixed-length

low-dimensional vector, which is extracted for each utterance.

Using these relatively small vectors representing the whole ut-

terances as input features allows us to build all kinds of simple

and powerful classifiers.

In 2011, the iVector approach was successfully applied in

the MFCC-based LRE system using a generative linear clas-

sifier [2]. In our NIST-LRE2011 submission, we have used

multi-class logistic regression and later on, in our RATS Phase

1 LRE submission [3], we have successfully used neural net-

works (NN) as a classifier with iVectors as inputs.

The success of iVector-based systems built on top of the

standard acoustic features led us to adapt the iVector paradigm

to the phonotactic approach, which has been dominant in the

LRE for many years.

In the classical phonotactic system, a phoneme recog-

nizer is used to tokenize the speech utterances into phone se-

quences, which are then presented to the generative classifier

(e.g. smoothed n-gram language model) or converted to the

fixed-length vector of n-gram counts and used as inputs for the

discriminative classifiers: e.g. logistic regression (LR) or sup-

port vector machines (SVM). The size of these vectors depends

on the size of the phone dictionary and grows exponentially

with the order of the n-grams.
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To represent these large vectors of discrete events in the

compact iVector form, we have used a regularized subspace n-

gram model (SnGM) [4, 5]. This approach has proven to be

robust and performs better than previous state-of-the art phono-

tactic systems. Although these systems are complementary to

the acoustic systems, they generally do not achieve their accu-

racy [6, 3].

Recently, the introduction of the Phone Log-Likelihood Ra-

tio (PLLR) features [7] has shown yet another way to exploit the

phonetic information provided by the phoneme recognizer. Un-

like the classical phonotactic systems or SnGM-iVector phono-

tactic systems, PLLR directly use frame-by-frame phone poste-

riors, which are provided by a neural network trained for frame-

by-frame phone classification. Additionally, as it was explored

in [8], the nature of PLLR features overcomes the non-Gaussian

distributions of the individual phone posteriors. Such proper-

ties allow us to treat PLLRs as classical acoustic features and to

build a standard iVector-based LRE system.

In this work, we compare a standard acoustic system with

phonotactic and PLLR systems using different phone recogniz-

ers. We also perform fusion of these systems to explore whether

the different modeling and feature extractions in phonotactic

and PLLR systems bring complementary information.

We perform all experiments in the (very noisy and difficult)

domain of the RATS data. The RATS program focuses on creat-

ing technology capable of accurately determining speech activ-

ity regions, detecting key words, and identifying language and

speakers in highly degraded, weak and/or noisy communication

channels. The data sets used in RATS are obtained by retrans-

mitting pre-existing or newly collected telephone conversations

in multiple languages over various types of channels, and aim

to capture/simulate the acoustic environment present in current

radio-based two-way communication systems used by the law

enforcement, emergency, air traffic control, etc.

By its nature, these means of radio communication are sen-

sitive to many factors which can degrade or change the quality

of the transmission. The most important are the background ra-

dio interference, atmospheric conditions, used bandwidth and

background additive noise. All of these factors greatly increase

the unwanted channel variability present in the audio.

2. Data

The Linguistic Data Consortium (LDC) provided the training

and test data. The provided datasets cover 5 target languages

(Arabic, Dari, Farsi, Pashto and Urdu) and 10 non-target lan-

guages (English, Spanish, Mandarin, Thai, Vietnamese, Rus-

sian, Japanese, Bengali, Korean, Tagalog). All recordings

were selected from existing databases (Fisher, Callfriend, NIST

LRE) or newly collected for the RATS program.

Every audio recording was approximately 2 minutes long
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and was retransmitted through 8 different communication chan-

nels, labeled by the letters A through H. A “push-to-talk” trans-

mission protocol was used in all channels except G. The com-

munication channels and the equipment used for the retransmis-

sion are described by LDC in [9]. The retransmitted data was

made available to the RATS participants in three incremental

data releases under the codes: LDC2011E95, LDC2011E111

and LDC2012E03.

The LRE systems in the RATS program are evaluated under

120s, 30s, 10s and 3s duration conditions. As only recordings

from the 120s condition were released for training and devel-

opment, we had to construct our own development samples by

making cuts of the corresponding durations from the 120s au-

dio files. We partitioned all available data into the training and

development sets. Detailed description of the partition can be

found in [3].

We have modified the extended training set from [3] by cre-

ating 10s cuts instead of 30s cuts from the 120s segments, in or-

der to focus the training set more on the shorter durations. Ad-

ditionally, we have used the smaller “main training set” with-

out any modification to train the Universal Background Models

(UBM) and iVector extractors.

For the purposes of development and calibration, we are

using the main development set (DEV), which contains approx-

imately 7120 segments per each duration condition. We tried

to keep the number of segments per class balanced as much as

possible [3]. The calibration set is the same as the DEV set, but

with 3s cuts excluded.

We also use the adjudicated version of the LID Phase 1 eval-

uation data (also called Dev2 within the RATS program) as an

independent evaluation set (EVAL). This dataset includes 1,914,

1,782, 1,715, 1,340 samples for the 120s, 30s, 10s and 3s con-

ditions, respectively.

3. Feature Extraction and Frontends

3.1. Voice activity detectors

Voice activity detection is performed by a neural network with

the input consisting of a block of Mel filter outputs with con-

text of 300ms. The NN has 18 outputs: 9 for speech and 9 for

non-speech, each corresponding to one of the channels (source

plus 8 re-transmitted). HMMs with Viterbi decoding are used to

smooth out and merge the outputs to speech and non-speech re-

gions. This NN is trained on RATS data defined for the speech

activity detection (SAD) task [10].

3.2. PLP2

The PLP2 features are an enhancement of FDLPs [11, 12, 13]

using their first stage of the processing to obtain the power spec-

tral estimates for performing the subsequent time-domain linear

prediction (TDLP).

The speech signal is divided into 10 second analysis win-

dows. Discrete cosine transform (DCT) is applied in each 10

second analysis window to obtain full-band DCT. The full-band

DCT is windowed into 96 linear sub-bands in the frequency

range of 125-3800Hz. Linear prediction is performed on each

sub-band to obtain parametric sub-band envelopes, which are

then stacked to form a two-dimensional time-frequency repre-

sentation, similar to spectrogram. This representation is dec-

imated to 100Hz sampling rate, providing an estimate of the

power spectrum of the signal in the short-term frame level.

These power spectral estimates are inverse Fourier transformed

to obtain an autocorrelation sequence [14, 15]. This sequence is

used for TDLP, using a 19th-order model. The TDLP provides

an all-pole approximation of the short-term spectrum. The out-

put TDLP parameters are converted to 20 cepstral coefficients

using cepstral recursion. Deltas and double-deltas are appended

to generate a 60-dimensional feature vector at each time frame.

Before removing the silence, feature warping [16] is applied us-

ing a 3s sliding window [14, 17].

We obtain the 600-dimensional iVectors by the means of

2048-component diagonal UBM and iVector extractor, both

trained on the main training set.

3.3. Phone Decoders

The phone decoders are based on a hybrid NN/HMM approach,

where neural networks are used to estimate frame-by-frame

posterior probabilities of phones from Mel filter bank log ener-

gies using the context of 310ms around the current frame. Each

phone is represented by three states. The posterior probabilities

for each phone are summed up before the PLLR processing. For

the SnGM system, the decoder produces phone lattices.

Two 4-layer NNs are trained on two datasets to produce

Czech (CZ) and Leventine Arabic (LE) decoders: Czech CTS

data where 30% was artificially corrupted with noise at lowest

level 10dB; and RATS LE keyword search data provided to the

RATS participants. The LE data are closer to the target data,

which are used to train and test the LRE systems. The phone

sets for the CZ and LE decoders contain 38 and 36 phones, re-

spectively.

3.4. SnGM System

Expected n-gram counts (“soft-counts”) [18] from phone

lattices were used during the subspace training. A 600-

dimensional subspace over the trigram counts in the main train-

ing set is trained using the regularized multinomial subspace

described in [5].

We use the model along with hard pruning of the low-

frequency trigrams to overcome the problem of the data spar-

sity [4]. The iVectors are the point estimates of the latent vari-

ables describing the coordinates of the utterance specific n-gram

model in a new low-dimensional subspace. The output is a 600-

dimensional iVector for every file.

3.5. PLLR

PLLRs are frame-level features, computed from the frame-by-

frame phone posterior probabilities provided by the NN de-

scribed above. Let us consider a NN that outputs an N -

dimensional vector of phone posteriors at each frame: p =
(p1, p2, . . . , pN), such that

∑N

i=1 pi = 1 and pi ∈ [0, 1] for

i = 1, 2, . . . , N . PLLRs are defined as1:

ri = logit(pi) = log
pi

(1− pi)
, i = 1, ..., N. (1)

As explained in [8], PLLRs seem to overcome the non-Gaussian

nature of phone posteriors for each individual phone model.

Nevertheless, when exploring the distribution of two or more

PLLRs, the features show a bounded distribution [19]. To avoid

this effect, the PLLRs are projected into a hyper-plane defined

by the normal vector:

1Note that Eq. 1 differs from the definition used in previous works
by missing constant offset [7, 8], which has been dropped from the
equation for simplicity.
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n|ri=−log(N−1) =
(N − 1)

N
√
N

· 1̂ (2)

where 1̂ = 1√
N
[11, 12, ..., 1N ].

The kernel (null space) of the desired projection is 1̂, then

the matrix P used to project the data into the selected hyper-

plane is given by:

P = I − 1̂
′ ∗ 1̂, (3)

where I is an identity matrix.

In order to decorrelate the parameters, PCA is applied on

the transformed PLLRs. Since the projected features lie on

an (N − 1)-dimensional hyper-plane, the number of non-zero

eigenvalues of the PCA projection matrix will be N−1. There-

fore, the dimensionality of the feature vectors, after PCA, will

be reduced by one.

In [7], it was shown that the use of first order dynamic co-

efficients provided significant performance gains in the systems

trained on PLLR features, whereas the use of second order co-

efficients degraded performance. Therefore, PLLR+δ were also

used as features in this work, resulting in the feature vectors of

size 74 and 70 for CZ and LE, respectively.

As in the PLP approach, 600-dimensional iVectors were

computed using a diagonal covariance UBM and the iVector

extractor trained on the main training set.

4. Scoring, Calibration and Fusion

4.1. Scoring

The iVector frontends provide input features for training the

two classifiers for each system: Multiclass regularized logis-

tic regression [20, 21] (LR) is trained on the main training set

and the iVectors are conditioned using within-class covariance

normalization (WCCN) before training. Three-layer neural net-

work (NN), with the 600-dimensional input, 300 neurons in the

hidden layer and 6 outputs (1 nontarget + 5 target languages),

is trained on extended training set. Stochastic gradient training

with L2 regularization[21] is used as the training procedure.

4.2. Calibration and Fusion

Scores were calibrated again by the LR trained on the calibra-

tion set. The process of training the LR is the same for the

calibration as for the recognizer, just the inputs are vectors of

scores instead of iVectors:

The L2 regularization penalty weight was chosen prior to

training to be proportional to the mean magnitude of the condi-

tioned input vectors (scores) [21].

The calibration uses an affine transform to convert the NL-

dimensional (NL is the number of target languages) vector of

input scores, st, for trial t, into a NL-dimensional calibrated

score-vector, rt:

rt = Cst + d. (4)

The parameters of logistic regression are given by C, a full NL-

by-NL matrix and d, a NL-dimensional vector. These parame-

ters are trained by minimizing the multiclass cross-entropy with

equalization of the amount of data for individual classes:

F = λ tr(CT
C)−

NL∑

i=1

1

NLNi

∑

t∈Ri

log
exp(rit)∑NL

j=1 exp(rjt)
,

(5)

where rit is the ith component of rt and Ri is the set of Ni

training examples of language i. The calibrated scores were

fused as:

ℓt =
∑

k

αkrtk + β, (6)

where rtk denotes the outputs of kth calibrated system, αk is a

scalar weight and β is NL-dimensional vector. These parame-

ters are also trained by to minimize cross-entropy objective on

the calibration set. Here, the regularization is not applied.

5. Experimental Results and Discussion

We reporting the performance of the systems on both our DEV

set and EVAL set. Despite the fact that a large portion of the

DEV set was used to train the calibration and fusion and the

results are therefore optimistic, we still believe that there is a

value in showing the performance on this set. The main rea-

sons to use this set is its size. It is approximately four times

larger than the EVAL set, and therefore the obtained results, es-

pecially for the longer durations, are more reliable. Also, the

data for the EVAL set were collected in a different time than

the DEV set, which has brought different channel effects com-

pared to the DEV, making this set harder. We report all results in

terms of Cavg as defined by NIST for the openset identification

scenario [22].

5.1. Logistic Regression vs Neural Networks

We chose to compare the systems using two different classifiers

trained on different sets. The LR (see Table 1) is a linear classi-

fier, which by its nature is less prone to over-training and which

has been successfully used in the NIST evaluations [23, 21].

Also, the set for the LR training does not contain repeated data

in the form of short cuts from the long segments, which are

present in the extended training set used for the NN training.

Adding these cuts into the LR training did not bring any sub-

stantial changes in the results.

With the NN (see Table 2), we are showing the effect of the

non-linear classifier and its ability to make use of large quan-

tities of examples to extract the useful information out of the

training dataset. We have never before observed NNs outper-

forming LR in our systems for NIST evaluations[23, 21], and

we believe that redesigning the training set to contain more seg-

ments in a similar way as we did for RATS might enable the NN

to outperform the LR on this dataset as well.

Most of the additional training samples with respect to the

main training set come from cutting the longer segments, ef-

fectively showing the NN same data twice, but in the form of

several iVectors per original segment. The original segments

are still included in the training set.

Indeed, the NNs have achieved overall better results with

the extended training set with the exception of the 120s condi-

tion on the EVAL set, where we can see much lower relative

improvements or even degradation. This behavior can be ex-

plained by over-weighting the short segments in the training. It
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is also important to note that the impressive relative improve-

ments achieved with the NN on the DEV set have to be taken

with a grain of salt, as the DEV set is clearly closer to the train-

ing data.

5.2. PLLR systems

Given the frame-by-frame phone posterior outputs provided by

the NNs from the Leventine Arabic and Czech phone recogniz-

ers, we have built two PLLR systems. To provide a compar-

ison with the phonotactic approach, we show the results from

the corresponding SnGM systems trained on the outputs of the

same recognizers. As the PLLR systems are very similar to the

standard acoustic systems using frame-by-frame features, we

have included a PLP2 system, which was the best-performing

acoustic subsystem in our RATS P2 and P3 submissions.

Both PLLR systems outperformed the PLP2 system on all

conditions with the exception of the Czech NN-based PLLR

system on 3s condition. Especially the Leventine Arabic system

has outperformed the PLP2 by a large margin, as the data used

for the phone recognizer training fall into the RATS domain and

the phone set is much closer to the majority of target languages.

When comparing the PLLR with the corresponding SnGM

systems, the gain in the performance is also substantial, espe-

cially on the shorter durations (30s, 10s). The phonotactic sys-

tems with respect to the PLP2 are behaving in a typical manner,

as they are able to achieve better performance for the longer du-

rations, when losing for the shorter ones. This is most certainly

caused by the lack of the decoded phones from the shorter seg-

ments and therefore under-estimated n-gram statistics.

5.3. Fusions

Having all of these systems lined up for the comparison invites

us to make an analysis of their combinations. The results in

the bottom part of Table 2 show combinations of the systems

trained by the NN and evaluated on the EVAL set.

From the results, we can immediately observe that having

a standard acoustic system in the fusion is still very beneficial

in the short duration conditions. The combinations without the

PLP2 system are lacking in the performance on 10s and 3s con-

dition.

If we are interested in the performance on the longer (120s,

30s) conditions, it would be beneficial to combine the corre-

sponding PLLR and SnGM systems, in this case especially Lev-

entine Arabic systems (2+4). This choice would bring the ad-

vantage of running a single feature extractor, but on the other

hand, one would have to run slightly more complex SnGM

training.

A favorable combination performing well across all condi-

tions is the fusion of both PLLR systems and a PLP2 system.

Adding the PLLR-CZ system brings improvements in some

conditions, while the same architecture of all subsystems allows

for streamlining the development process and making the cost

of including an extra system smaller.

The combination of all systems does not bring any substan-

tial improvements over the smaller fusions.

6. Conclusions

In this work, we have demonstrated that building an acoustic

system for language recognition based on the frame-by-frame

phone posterior features — in our case PLLR features — can

bring significant improvements in comparison with standard

acoustic systems. We have confirmed this claim by creating two

Table 1: Results with LR - Cavg [%]

DEV set 120s 30s 10s 3s

PLP2 2.08 6.52 11.78 22.46

PLLR-LE 0.84 2.93 7.35 18.43

PLLR-CZ 1.66 4.69 9.96 21.74

SnGM-LE 1.42 5.83 13.22 26.53

SnGM-CZ 2.38 8.38 16.54 29.09

EVAL set 120s 30s 10s 3s

PLP2 7.72 11.69 16.39 23.04

PLLR-LE 4.56 7.98 12.61 21.48

PLLR-CZ 6.95 10.76 15.13 21.32

SnGM-LE 5.86 12.28 18.53 26.45

SnGM-CZ 8.59 15.76 20.89 27.95

Table 2: Results with NNs - Cavg [%]

DEV set 120s 30s 10s 3s

1 PLP2-NN 1.36 4.61 9.24 21.50

2 PLLR-LE-NN 0.58 2.37 6.62 17.20

3 PLLR-CZ-NN 0.90 3.36 7.81 19.70

4 SnGM-LE-NN 1.21 5.08 11.58 23.39

5 SnGM-CZ-NN 1.35 5.09 11.15 24.00

EVAL set 120s 30s 10s 3s

1 PLP2-NN 7.21 9.21 12.43 18.58

2 PLLR-LE-NN 5.37 7.31 11.46 17.63

3 PLLR-CZ-NN 5.81 8.83 12.30 19.52

4 SnGM-LE-NN 5.53 9.34 15.61 22.76

5 SnGM-CZ-NN 7.23 10.46 15.38 24.05

Fusions - EVAL set 120s 30s 10s 3s

2+3 5.19 6.79 10.14 16.04

1+2 5.80 6.43 8.69 15.37

2+4 5.12 6.61 10.48 16.93

3+5 5.74 8.33 11.28 18.11

1+2+4 5.38 6.31 8.53 14.90

1+2+3 5.29 6.43 8.71 14.65

1+2+3+4+5 5.59 6.21 8.75 14.37

independent PLLR systems and comparing them to the state-of-

the-art PLP2 system, our best acoustic system.

By experimenting with the fusions, we have shown, that

combining a PLLR system with a standard acoustic system can

improve the performance on the short duration segments. Com-

parison of the PLLR systems to the phonotactic SnGM on the

RATS datasets came up strongly in favor of PLLR systems.

Finally, it should be reiterated, that all of the experiments

were done in a very noisy domain. The performance gains from

the PLLR features observed on the RATS data will most likely

be smaller in the standard CTS-based systems tested on rela-

tively clean NIST-LRE data.
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