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ABSTRACT

This paper summarizes our work for MediaEval 2013 Spoken Web

Search task evaluations. The task was Query-by-Example (search

of spoken queries within spoken data). We submitted a system com-

posed of 26 subsystems, of which 13 are based on Acoustic Keyword

Spotting and 13 on Dynamic Time Warping. All of them use three-

state phoneme posteriors as input features. Our main contribution

was m-norm normalization of particular subsystems together with

the fusion based on binary logistic regression. The results, including

per-language analysis, are provided on MediaEval 2013 dataset.

Index Terms— query-by-example spoken term detection,

acoustic keyword spotting, dynamic time warping, fusion, z-norm,

m-norm, TWV

1. MOTIVATION AND SYSTEMOVERVIEW

Spoken Web Search task at MediaEval 2013 (SWS2013) [1] was the

third in a series aiming at Query-by-Example Spoken Term Detec-

tion (QbE). The goal of Spoken Web Search task (SWS) is to search

for audio query within audio content.

As shown in a recent summary paper [2], the QbE approaches

can be roughly divided into two categories: the pattern-matching

approaches look for similarities at the feature level and are mostly

represented by Dynamic Time Warping (DTW)-style comparison of

query and utterance segments. The second category is represented

by Acoustic Keyword Spotting (AKWS) that builds a model of query

and processes the utterances by looking at log-likelihood ratio of the

keyword model and a background model.

In our previous research aiming at SWS2012 evaluations [3],

we found AKWS superior to DTW in a situation where we were

able to build QbE system in a supervised manner (phonetic tran-

script was provided for development utterances, so that a phone-state

posterior estimator could be trained on them). We also found, that

DTW based on phoneme posteriors has significant drawback when

going from in-language to cross-language condition [4]. According

to the above facts, we believed, that DTW is sub-optimal, especially

in multilingual and zero-resource conditions in challenging acoustic

conditions.

The SWS2013 dataset was challenging in the way of mixed lan-

guage and acoustic conditions, and we wanted to thoroughly com-

pare and combine DTW and AKWS approaches. In addition, we

improved the Artifitial Neural Network (ANN) based phoneme-state

estimators by unsupervised ANN adaptation and, inspired by the

work of our group in speaker and language identification, we cared

about proper normalization and fusion of several systems.

Our Query-by-Example (QbE) system (figure 1) is based on

phoneme-state posterior estimators. Each estimator (denoted as
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Fig. 1. Our Query-by-Exmaple system schema. On the right side is

the type of the data exchanged among the boxes. On the left side is

type of the boxes. Q means Queries as the input, U means Utterances

as the input.

Atomic system) is an artificial neural network taking raw audio

file as the input (either query example or test utterance) producing

phoneme state posteriors as the output. We used 13Atomic Systems,

see section 3 for details.

Phoneme state posteriors were then processed by Query-by-

Example Subsystems. We have two types of subsystems, one based

on AKWS (section 4) and the other based on DTW (section 5). The

input of each subsystem is the matrix of phoneme state posteriors

for query example and utterance. The output is a set of detections of

given query example in the utterance.

The next step is subsystem score normalization and calibra-

tion. It takes the set of detections and normalize the detection scores

with respect to the normalized cross entropy. Section 6 discusses our

findings in details.

Fusion is the final stage of the QbE system. It takes normalized

outputs of all subsystems and fuses them into one output. Again, we

optimize the fusion parameters with respect to the normalized cross

entropy (see section 7).

2. DATA AND SCORING

The SWS2013 development/evaluation database consists of only one

set of utterances – used both for development and evaluation – and

two sets of queries: one for development and the other for evalua-

tion. The overall length of utterance data is 20 hours. There are 9
languages in 6 subsets (see table 1).1

1The reader is kindly referred to visit http://speech.

fit.vutbr.cz/software/sws-2013-multilingual-

database-query-by-example-keyword-spotting for more
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minutes/segments dev/eval type

Isixhosa 65/395 25/25 read

Isizulu 59/395 25/25 read

Sepedi 69/395 25/25 read

Setswana 51/395 25/25 read

Albanian 127/968 50/50 read

Basque 192/1841 100/100 broadcast

Czech 252/3667 94/93 conversational

NNEnglish 141/434 61/60 lecture

Romanian 244/2272 100/100 read

SUM 1196/10762 505/503 mixed

Table 1. The upper part is set of 4 South African languages, the bot-

tom part is set of 5 European languages. The first column: amounts

of data per language. The second column: the numbers of develop-

ment (dev) and evaluation (eval) queries. The last column is type of

speech.

Given that utterances in the search repository were shuffled and

no side information was provided to participants regarding the spo-

ken language or the acoustic conditions, any adaptation needs to rely

on unsupervised algorithms, thereby introducing an interesting line

of research.

Note that the 9 languages selected for this database mostly cover

European and African language families. In addition, the non-native

English database consists of a mixture of native and non-native En-

glish speakers presenting their oral talks. This introduces a signif-

icant pronunciation mismatch between utterances, as this subset

includes utterances with, for example, strong Indian, French, Chi-

nese and other accents. Another interesting aspect of this database is

the variety of speaking styles (read versus spontaneous (Czech) ver-

sus lectures (NNEnglish)) and the variety of matched/mismatched

query-utterances conditions, which forces us to build system with

low/zero resources constraints. A clear example can be found in the

Basque subset with queries recorded in isolation by mobile phone

in order to retrieve utterances recorded from a broadcast news TV

channel.

We report our results in terms of Actual/Maximum Term

Weighted Value (ATWV/MTWV) and Upper Bound TermWeighted

Value (UBTWV). The UBTWV finds the best threshold for each

term separately (it maximizes the TWV for the term) and then cal-

culates the overall TWV [5]. It can be understand as oracle TWV or

TWV for a system having ideal score normalization. More details

on evaluation metrics used for SWS2013 can be found in [6].

3. ATOMIC SYSTEMS

All our Atomic systems use Artificial Neural Network classifiers

(ANN) to estimate per-frame phoneme state posterior probabilities

(so-called posteriorgrams). Our motivation was to re-use as many al-

ready trained phoneme posterior estimators (Atomic systems) avail-

able at Brno University of Technology (BUT) as possible.

The ANNs were trained as acoustic models for phoneme or

LVCSR recognizers in several past or running BUT projects2. Al-

together, we ended-up with 13 Atomic systems with the following

architectures and trained on the following datasets:

details about the SWS2013 database and for further references.
2Please bear in mind that reusing all these Atomic systems leads to many

inconsistencies among them — feature extraction, sizes and structures of
ANNs, etc.

• 3× SpeechDat3 (Czech, Hungarian and Russian; monolin-

gual LCRC systems [7], trained on 20 hours of read speech

per language),

• 1× BABEL (Cantonese, Pashto, Tagalog, Turkish; multilin-

gual stacked-bottleneck system [8], 100 hours of conversa-

tional speech per language). The BABEL ANN is one net-

work trained on 4 languages using split softmax approach –

each language has a separate part of the output layer with its

own softmax. The overall number of ANN outputs is 660.

• 1× SWS2012 (MediaEval SWS2012 development data –

isiNdebele, Siswati, Tshivenda, and Xitsonga); multilingual

stacked-bottleneck system [3], 1 hour of read speech per

language). The SWS2012 ANN is one networked trained on

4 languages having common phoneme set (IPA).

• 8× GlobalPhone (Czech, English, German, Portuguese,

Russian, Spanish, Turkish, Vietnamese; monolingual stacked-

bottleneck systems [9, 10], 20 hours of read speech per

language).

We also used unsupervised ANN adaptation on SWS2013 data.

We labeled the data with phoneme state labels using decoding with

free phoneme loop of the particular language. Then we retrained the

GlobalPhone and BABEL ANNs from scratch on the SWS2013 data

using the generated state alignments as the ANN targets. We saw

overall general improvement of TWV for both DTW and AKWS

subsystems (maximum improvement fromMTWV 0.1521 to 0.2183
for Portuguese GP DTW subsystem). Detailed analysis is beyond the

scope of this paper and is available from author’s web pages4 .

4. ACOUSTIC KEYWORD SPOTTING BASED QBE

The Acoustic Keyword Spotting (AKWS) based Query-by-Example

subsystems follows our paper [11]. We built an HMM for each query

and then calculated log likelihood ratio between the query model

and a background model (free phone loop). In QbE task, however,

we need to generate the phoneme sequence for each of the acoustic

examples – query-to-text step. This is achieved by decoding each

example using free phoneme loop. We cut-off initial and final silence

labels (if present) and omit queries having less than three non-silence

phonemes, as these short queries could generate huge amounts of

false alarms.

5. DYNAMIC TIMEWARPING BASED QBE

In our implementation, we follow the standard Query-by-Example

recipe – subsequence DTW [12]. A single DTW is run for each

combination of query and utterance and the query is allowed to start

at any frame of the utterance. When selecting the locally optimal

path in the standard DTW algorithm, transition from the smallest ac-

cumulated distance is chosen. In our implementation, we compare

the accumulated distances (including the current local distance) nor-

malized by the corresponding path lengths on-the-fly. Note that in

the standard subsequence DTW, no on-the-fly path length normaliza-

tion in performed, which results in the inappropriate preference for

shorter (recently started) paths. As the distance metric, we used the

usual negative logarithm of the dot product of phone-state posterior

vectors.

3http://speech.fit.vutbr.cz/software/

phoneme-recognizer-based-long-temporal-context
4http://merlin.fit.vutbr.cz/wiki/index.php/

SWS2013QbE
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Fig. 2. Distributions of scores of 6 randomly chosen terms for AKWS

and DTW sub-systems based on GlobalPhone Portuguese Atomic

system. Norm – raw score of detection is divided by the length of

the detection. Z-norm – mean and variance normalization is applied

on top of norm. M-norm – m-norm is applied on top of norm.

AWKS DTW

MTWV UBTWV MTWV UBTWV

norm 0.0005 0.1987 0.0000 0.3231
norm-sideinfo 0.0826 0.2000 0.0746 0.3282
z-norm 0.0007 0.1808 0.0775 0.3094
z-norm-sideinfo 0.0557 0.1817 0.1729 0.3091
m-norm 0.1162 0.2078 0.2138 0.2886
m-norm-sideinfo 0.1098 0.2100 0.1908 0.3053

Table 2. MTWV (Maximum Term Weighted Value) and UBTWV

(Upper-Bound Term Weighted Value) of SWS2013 development

queries for GlobalPhone Portuguese atomic system. We compared

both AKWS and DTW subsystems for various score normalization

techniques. The sideinfo tag means that the scores were calibrated

using approach described in section 6.1.

We further improved the DTW systems by applying Voice Ac-

tivity Detector (VAD) to cut-off the initial and the final silence from

the query examples. This improved the overall DTW system by 10%
relative.

6. SCORE NORMALIZATION

For both DTW and AKWS subsystems, the local maxima of frame-

by-frame accumulated detection scores are selected as candidate de-

tections. For overlapping detections, only the best scoring ones are

preserved. For AKWS, the accumulated detection scores are nor-

malized by the length of the detection, for DTW, by the length of

warping path (done on-the-fly). These scores are denoted as norm.

There might be significant differences between the score dis-

tributions corresponding to different queries and it is important to

normalize the scores for each query to allow for a single common

threshold maximizing the TWV metric (figure 2).

We adopted two normalization approaches: z-norm was demon-

strated as a promising normalization for QbE in SWS2012 evalua-

tions [13]. It applies mean and variance normalization of scores for

each query separately. The variance and mean should be estimated

on non-target detections (false-alarms). In case of QbE, the number

of non-targets is larger in orders of magnitude than the number of

targets (true hits), therefore, we can calculate the mean and variance

on the whole set of detection scores (both targets and non-targets)

without any significant difference.

Fig. 3. DET (Detection Error Trade-off) curves of SWS2013 devel-

opment queries for GlobalPhone Portuguese atomic system. AKWS

and DTW subsystems are compared with various score normaliza-

tion techniques (TWVs are in table 2). Note cyan and red curves for

m-norm. Solid lines represent sideinfo calibrations.

m-norm is our new score normalization technique we proposed

for SWS2013 evaluations. It is motivated by the observation that

score distributions have very long tails towards small scores, which

significantly differ in shape from query to query (figure 2). m-norm

is similar to z-norm, but when estimating the variance, it takes into

account only subset of the scores. First, maximum of the score dis-

tribution (approximated by histogram) is found . Let us denote the

score value corresponding to the maximum in distribution of par-

ticular query q as peakscore(q). Then we estimate standard devi-

ation (denoted peakstddev(q)) of set of query scores greater than

peakscore(q). Finally, we subtract the peakscore(q) to shift the

peak to 0 and then we divide the scores of all query detections by

peakstddev(q).

We evaluated MTWV and UBTWV on development queries for

Portuguese GlobalPhone Atomic system and corresponding AWKS

and DTW subsystems (table 2), and also plot corresponding DET

curves (figure 3). Note that similar behavior was observed also for

other subsystems.

6.1. Calibration Using Side Information

Next, we calibrated the scores using binary logistic regression (the

same as we used in fusion in section 7), where the input to the lo-

gistic regression was a vector of norm, z-norm, or m-norm scores

augmented with different per-term side-information scores [14] –

denoted as sideinfo. The best tested side information, which sig-

nificantly improved MTWV, was the logarithm of the number of de-

tections of a particular term.

According to the results (TWVs - table 2, DET curves - fig-

ure 3), the calibration using sideinfo significantly helped in case of

norm scores for both AKWS and DTW subsystems. Sideinfo helped

for the z-norm scores on AKWS subsystem only. With m-norm, the

sideinfo improves neither MTWV nor DET curve. This leads to con-

clusion that z-norm is not sufficient to properly normalize score dis-

tributions over different queries and the information about the num-

ber of term detections can help to make useful correction (shift) to

the distribution. After application of m-norm, the scores are already

well normalized
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Approach ALL Albanian Basque Czech NNEnglish Romanian Isixhosa Isizulu Sepedi Setswana

AKWSDTW 0.3776 0.5969 0.2989 0.1194 0.0601 0.6291 0.4780 0.3983 0.4517 0.2695
DTW 0.3557 0.5889 0.2403 0.1150 0.0594 0.5812 0.5261 0.4192 0.4860 0.3221
AKWS 0.3041 0.4460 0.3195 0.0993 0.0752 0.5299 0.4301 0.2971 0.3879 0.2127

Table 3. MTWV results of systems on evaluation queries for whole data set (ALL) and for 9 particular languages. DTW denotes fusion of

13 DTW subsystems, AKWS denotes fusion of 13 AKWS subsystems and AKWSDTW denotes fusion of 26 AKWS and DTW subsystems. 4

interesting conditions are typeset in bold: Basque – query and utterance mismatch, Czech – conversational speech, NNEnglish – dialect in

query and utterance mismatch, Romanian – read speech, acoustic match of query and utterance.

Subset eval dev

Approach ATWV MTWV UBTWV ATWV MTWV UBTWV

AKWSDTW 0.3751 0.3776 0.4835 0.4349 0.4373 0.5310
DTW 0.3535 0.3557 0.4585 0.4180 0.4199 0.5153
AKWS 0.3003 0.3041 0.4165 0.3642 0.3644 0.4713

Table 4. Results for our query-by-example approaches in Actual TWV, Maximum TWV and Upper Bound TWV for development (dev) and

evaluation (eval) queries. DTW denotes fusion of 13 DTW subsystems, AKWS denotes fusion of 13 AKWS subsystems and AKWSDTW

denotes fusion of 26 AKWS and DTW subsystems.
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Fig. 4. System combination of different keyword spotting systems,

including alignment and filtering step, as well as creation of feature

vector for logistic-regression classifier (from [14]).

7. FUSION

Normalized scores from the individual subsystems were fused fol-

lowing [14]. The scores from different subsystems are first aligned in

time and then linearly combined. The alignment respects a floating

window in which all putative hits are expected to represent particular

occurrence of reference detection (figure 4). If a subsystem provides

more putative hits, only the one with the highest score is considered.

In case no putative hit is declared by a subsystem, a zero score is

used for the particular system and the corresponding missing score

indicator (figure 4) is set to 1. The aligned scores together with the

missing score indicators (and optionaly sideinfo) form a vector rep-

resenting one candidate detection. Such vectors are used as the input

to binary logistic regression linear classifier, which is trained on the

development data and used to produce fused scores for evaluation

data.

8. RESULTS

Table 4 summarizes several systems submitted to SWS2013 evalua-

tions. AKWSDTW is the fusion of 26 systems while DTW or AKWS

are fusions of 13 DTW or AKWS subsystems respectively. It is

worth to note, that DTW achieves significantly better accuracy than

AKWS. However both systems are complementary.

In table 3, we analyzed per language accuracy. As can be seen,

read speech subsets achieved very good accuracy (except Setswana).

On the other hand Czech, NNEnglish and Basque achieved worse

results, that, in our opinion, are due to: significant acoustic condition

mismatch between queries and utterances (Basque), conversational

type of speech (Czech), and query and utterance mismatch on the

level of dialect (NNEnglish). The non-native English is definitely

the toughest condition.

Also very interesting is the observation of AKWS superiority

for Basque and NNEnglish subsets. The reason for Basque is that as

the queries are well dictated, the phoneme transcript is accurate and

the AKWS provides higher accuracy, opposite to DTW where the

query/utterance mismatch can be considered as a significant prob-

lem. In NNEnglish, the query conversion into phoneme string fol-

lowed by search of particular sequence can be also considered as

more robust for different dialects in query/utterance combinations.

It is also worth to note that the performance of AKWSDTW

fusion is worse than the best of the DTW or AKWS systems for

African languages, Basque and NNEnglish. This is probably due to

the fact that: 1) Each African language has only 1/20 of data and

2) the fusion is trained to maximize cross entropy. So it preferes to

maximize the performance on “easy” languages with large propor-

tions of data rather than “hard” ones having small fraction of data.

9. CONCLUSIONS

We have performed a comparison of AKWS and DTW approaches

with several phone-posterior generators for QbE in several lan-

guages. We found the proposed m-norm a really promising way of

score normalization of QbE systems. It seems robust and it is easy

to perform in comparison to calibration based on side information

and binary logistic regression. Our second interesting conclusion

concerns the per-language results. It looks like DTW is well per-

forming for high-quality speech and matching acoustic condition

between query and utterance. On contrary, in case of mismatching

acoustic conditions, the AKWS technique is a clear winner.
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