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Abstract

Linear models in i–vector space have shown to be an effec-

tive solution not only for speaker identification, but also for lan-

guage recogniton. The i–vector extraction process, however, is

affected by several factors, such as noise level, the acoustic con-

tent of the utterance and the duration of the spoken segments.

These factors influence both the i–vector estimate and its uncer-

tainty, represented by the i–vector posterior covariance matrix.

Modeling of i–vector uncertainty with Probabilistic Linear Dis-

criminant Analysis has shown to be effective for short-duration

speaker identification. This paper extends the approach to lan-

guage recognition, analyzing the effects of i–vector covariances

on a state–of–the–art Gaussian classifier, and proposes an ef-

fective solution for the reduction of the average detection cost

(Cavg) for short segments.

Index Terms: i–vector, uncertainty, calibration, stacked bottle-

neck features, language identification

1. Introduction

I–vectors [1] have become a standard approach for speaker

identification, and have grown in popularity also for language

recognition [2, 3, 4, 5]. An i–vector is a compact represen-

tation of a Gaussian Mixture Model (GMM) supervector [6],

which captures most of the GMM supervectors variability. It is

obtained by a Maximum–A–Posteriori (MAP) estimate of the

mean of a posterior distribution [7]. Recent works [8, 9, 10, 11]

have shown that, for speaker identification with short utter-

ances, the approximation introduced by performing a point–

estimate of an i–vector can adversely impact the accuracy of

a speaker recognition system. Indeed, the uncertainty in the

i–vector extraction process, represented by the i–vector pos-

terior covariance, conveys useful information that can be ex-

ploited by classifiers based on Probabilistic Linear Discrimi-

nant Analysis (PLDA). I–vectors have shown to provide very

good results also for language recognition. Generative Gaus-

sian models in i–vector space [3, 5] can provide results that are

similar or better than those of discriminative classifiers based on

Support Vector Machines or Multiclass Logistic Regression [3].

As in speaker recognition, however, these classifiers do not ex-

ploit the i–vector uncertainty. The goal of this work is therefore

the extension to language recognition of the Full–Posterior–

Distribution (FPD) PLDA approach introduced in [8, 9]. In par-

ticular, we follow the approach in [5] to show that the Gaus-

sian Backend (GB) model [12], which has been used in [3]

for i–vectors classification, can be interpreted as an approxi-

mation of PLDA suited for closed–set detection, and that the

(closed–set) PLDA scoring becomes equivalent to GB scoring

whenever the number of training utterances for each language

is sufficiently high. The use of PLDA for language recognition

has two advantages. It allows addressing both open–set and

closed–set language identification tasks, because it allows com-

puting open–set detection likelihood ratios, from which closed–

set likelihood–ratios can be recovered [13]. The second advan-

tage is that we can directly apply to language recognition the

derivations of the FPD–PLDA approach of [8, 9].

In this work we present the experimental results of a FPD–

PLDA system on the 2009 NIST Language Recognition Eval-

uation (LRE) [14]. Consistently with our findings for speaker

identification, the results show that modeling the i–vector un-

certainty can be beneficial for short utterances.

The paper is organized as follows. Section 2 briefly de-

scribes the i–vector extraction process. Section 3 recalls the

GB generative model and its relationship with PLDA. Section

4 shows how i–vector uncertainty can be modeled in the con-

text of PLDA and GB classifiers. Our experimental setup is

presented in Section 5, and results are given in Section 6. Con-

clusions are drawn in Section 7.

2. I–vector model

The i–vector model constrains the GMM supervector represent-

ing the characteristics of a given speech segment, to live in a

single small-dimensional subspace according to:

s = u+Tw , (1)

where u is the supervector stacking the means of the Univer-

sal Background Model (UBM), composed of C components of

dimension F . T is a low–rank matrix spanning the i–vector

supspace, and w is a realization of a latent variable W, of size

M , having a standard normal prior distribution. Given T and a

set of τ feature vectors X = {x1, x2, . . . , xτ} the posterior

distribution of W given X can be computed as:

W|X ∼ N
(
μ
X
,Γ
−1
X

)
, (2)

where

ΓX = I+

C∑
c=1

N
(c)
X
T

(c)T
Σ

(c)−1
T

(c)

μ
X

= Γ
−1
X
T

T
Σ
−1
fX .

In these equations, N
(c)
X

are the zero–order statistics estimated

on the c-th Gaussian component of the UBM for the set of

feature vectors in X , T(c) is the F × M sub-matrix of T
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corresponding to the c–th mixture component such that T =(
T(1)T, . . . ,T(C)T

)T

, and fX is the supervector stacking the

first–order statistics f
(c)
X

, centered around the corresponding

UBM means:

f
(c)
X

=
∑
t

(
γ
(c)
t xt

)
−N

(c)
X
m

(c)
, (3)

Σ(c) is the UBM c–th covariance matrix, Σ is a block diago-

nal matrix with matrices Σ(c) as its entries, and γ
(c)
t is the oc-

cupation probability of feature vector xt for the c-th Gaussian

component.

In the i–vector paradigm, an utterance is represented as the

MAP point–estimate μ
X

of the i–vector posterior distribution,

and the term i–vector usually refers to this point–estimate. In

this work, however, we are interested in exploiting the addi-

tional information conveyed by the uncertainty in the i–vector

extraction process, represented by the i–vector posterior covari-

ance Γ−1
X

. Thus, we will explicitly refer to μ
X

as the “i–vector

point–estimate”, to avoid confusion with the i–vector posterior

distribution. In order to increase readability, in the following we

will also drop the reference to the feature set X from μ
X

and

ΓX .

3. Gaussian models for language
recognition

Generative modeling of i–vector point–estimates for language

recognition has proven to be an effective alternative to discrim-

inative classifiers based on Logistic Regression or Support Vec-

tor Machines. In [3] the authors have proposed a simple linear

classifier based on Gaussian distributions which provides accu-

racies similar to those of linear discriminative approaches. The

model assumes that, for each language, the corresponding i–

vector point–estimates μi are generated according to:

μi =m� + εi , (4)

where m� is a language–dependent mean vector and

εi ∼ N
(
0,Λ

−1
)

(5)

represents a (language–independent) residual. The model pa-

rameters can be easily obtained by Maximum–Likelihood esti-

mation. The class–conditional log–likelihood for μi given lan-

guage � can be computed as:

logP (μi|�) =
1

2
log |Λ| −

1

2
(μi −m�)

T
Λ(μi −m�) + k ,

(6)

where k is a data–independent constant. A drawback of model

(4) is that it defines only class–conditional likelihoods [3].

Therefore, it allows computing only closed–set likelihood ra-

tios, and it is not suited for open–set identification tasks. How-

ever, as already mentioned in [5], the model (4) can be seen as

an approximation of the PLDA model, which is suited for both

open–set and closed–set tasks. Moreover, addressing the LID

taks by means of PLDA allows us to directly introduce i–vector

uncertainty in the model using the same approach of [8, 9].

3.1. PLDA and Gaussian Backend

The PLDA model describes the i–vector generation process as:

μi =m+Uy + εi , (7)

where m is a fixed mean vector, y is a standard normal dis-

tributed hidden variable, εi ∼ N (0,Λ−1) is a residual term,

and U is a matrix whose columns span the subspace for the

hidden variable y. In speaker identification variable y repre-

sents the speaker identity. For language identification we can

assume the same model for the i–vector point estimate gener-

ation process, with the hidden variable y representing the lan-

guage. Given a trained model M, PLDA allows computing the

open–set detection likelihood ratios:

r =
P (μ,D�|HS ,M)

P (μ,D�|HD,M)

=
P (μ, |D�,HS)P (D�)

P (μ)P (D�)

=

∫
P (μ|y)P (y|D�) dy∫
P (μ|y)P (y) dy

, (8)

where the conditioning on M was dropped to ease readability.

In (8), D� denotes the set of training utterances for language �,

HS and HD denote the same–language and different–language

hypotheses, respectively. Equations (8) correspond to the fa-

miliar likelihood–ratio expressions for speaker identification,

where μ plays the role of test segment and D� represents the

set of enrollment utterances for a target speaker. Indeed, ex-

pressions (8) allow addressing open–set language identification

tasks with the same approaches used in speaker identification.

Closed–set likelihood ratios and class posteriors required for

closed–set identification can be directly computed from open–

set likelihood–ratios [13].

For closed–set tasks, the PLDA model becomes equivalent

to the GB model, whenever the size of D� is large enough.

Indeed, the numerator of (8) can be interpreted as the class–

conditional likelihood for an i–vector point estimate:

P (μ|�) = P (μ|D�) =

∫
P (μ|y)P (y|D�)dy . (9)

If the size of D� is sufficiently large, as it usually happens in

language recognition, the posterior distribution for y�|D� be-

comes sharp, and can be replaced by its MAP point estimate

ŷ� =

(
U

T
ΛU+

I

N�

)−1

U
T
Λm� , (10)

where m� = 1
N�

∑
i

(
μ�,i −m

)
and N� is the number of ut-

terances for language �. Assuming that m� lies in the range

space of U, as N� increases the PLDA term Uŷ� converges to:

Uŷ�

N�→∞−−−−−→m� , (11)

and the class–conditional likelihood P (μ|�) has the same ex-

pression of (6).

4. Gaussian models and i–vector
uncertainty

In the previous section we have shown that the generative mod-

els employed for closed–set LID tasks can be interpreted as an

approximation of the PLDA model. This allows us to account

for i–vector uncertainty following exactly the same approach

that has been used for speaker recognition [8, 9]. In particular,

the i–vector uncertainty can be taken into account through the

modified PLDA model:

μi =m+Uy + εi , (12)
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where the residual term εi in (7) has been replaced by the term

εi, with an utterance–dependent distribution given by:

εi ∼ N
(
0,Λ

−1
eq,i

)
,

Λ
−1
eq,i =

(
Λ
−1 + Γ

−1
i

)
, (13)

where Γi is the i–vector posterior precision. This model

can again be interpreted as a generative model for i–vector

point estimates, where the i–vector posterior covariance ap-

pears through an additional linear term in the PLDA formu-

lation [10, 8]. Model parameters can be estimated through

Expectation–Maximization following the approach in [10]. For

long training utterances, however, i–vector covariances can

be safely neglected during training, so that PLDA parameters

can be obtained using the standard approach. Long training

utterances allow also for efficient scoring strategies, such as

the Asymmetric FPD–PLDA scoring [8], which uses point–

estimates for enrollment segments. Moreover, if we are inter-

ested only in closed–set detection, and training utterances are

long, the model can be simplified as:

μi =m� + εi . (14)

The class–conditional log–likelihoods logP (μi|�) for a test i–

vector mean μi, with associated i–vector posterior covariance

Γ−1
i , given language �, can be computed as:

logP (μi|�) =−
1

2
(μi −m�)

T
(
Λ
−1 + Γ

−1
i

)−1
(μi −m�)

−
1

2
log

∣∣Λ−1 + Γ
−1
i

∣∣+ k (15)

where k is a data–independent constant.

5. Experimental set–up

5.1. LID training and evaluation corpora

The results of this work are presented for the NIST Language

Recognition Evaluation (LRE) 2009 [14]. Model training fol-

lows the setup in [15]. In particular, training data comprises ut-

terances from the Callfriend, Fisher English Part 1 and 2, Fisher

Levantine Arabic, HKUST Mandarin, Mixer (data from NIST

SRE 2004, 2005, 2006, 2008) datasets. The data has been ar-

ranged in three sets. The first set, denoted as full54, contains

all the utterances in the datasets, belonging to 54 languages and

corresponding to 79 thousand segments. The second set, de-

noted as full23, is a subset of full54 set and contains utterances

from the 23 target languages from NIST LRE 2009, correspond-

ing to about 51 thousand segments. The third set, denoted as

balanced, is a subset of full23 containing at most 500 utterances

for every language, corresponding to a total of 9.8 thousand seg-

ments.

The UBM was trained using the balanced dataset, while the

i–vector extractor was trained on the full54 set. PLDA and GB

have been trained on the full23 set, restricted to utterances of at

least 60 seconds(with the exception of Indian English, for which

only shorter segments were available). Calibration was trained

on a separate development dataset, which comprises data from

all previous NIST LRE evaluations, OGI-multilingual, OGI 22

languages, Foreign Accented English, SpeechDat-East, Switch

Board and Voice of America radio broadcasts.

5.2. LID system description

The architecture chosen for our LID system is based on the

state-of-the-art acoustic i–vector system from [3], with acous-

tic features based on Stacked Bottle–Neck (SBN) instead of

Shifted Delta Cepstra (SDC) coefficients [12]. The choice of

stacked bottle–neck features was motivated by the superior re-

sults these features achieved with respect to SDCs [16]. A full

description of SBN can be found in [17], and is summarized in

the next paragraph.

5.2.1. Stacked Bottleneck features

Bottleneck Neural Networks and especially their multilingual

variants have become a favorite tool to extract information–

rich features from the acoustic signal. This approach has been

successfully used for speech recognition [18, 19, 20] and re-

cently also in the field of speaker and language recognition

[21, 22, 23].

These networks are characterized by the presence of a low–

dimensional intermediate hidden layer, which compresses the

information needed to map the network inputs to its outputs.

The networks are trained for a specific task, in our case phone

state classification. Bottleneck features are the outputs of the

low-dimensional bottleneck layer.

In the Stacked Bottleneck approach, a cascade of two such

networks is used. The bottleneck outputs of the first network

are stacked in time, and used as inputs for a second network.

This allows providing the second network with a broader con-

text input.

In our work, the network input features are 24 mel-scale

filter bank outputs augmented with fundamental frequency fea-

tures as described in [17, 16]. The network is trained following

a multilingual approach [20], so that the final bottleneck fea-

tures are able to capture relevant information for more than one

language. The training scheme is based on a block–softmax

approach [19]. The network was trained on the IARPA Babel

Program data1. More details about the data can be found in [24].

5.2.2. Estimation of i–vectors and scoring

After feature extraction, voice activity detection (VAD) is per-

formed by the BUT Hungarian phoneme recognizer, dropping

all frames that are labeled as silence or noise. The GMM is com-

posed of 2048 full–covariance components. The dimension of

i–vectors was set to 400. Before training the PLDA or GB mod-

els, i–vector point–estimates have been whitened by means of

Within Class Covariance Normalization (WCCN) and length–

normalized. The i–vector posterior covariances are normalized

accordingly. In particular, the transformed i–vector posteriors

means and covariances are computed as:

μ←
Aμ

‖Aμ‖
, Γ

−1 ←
AΓ−1AT

‖Aμ‖2
, (16)

where A is the inverse of the Cholesky decomposition of the

training i–vector point–estimates within–class covariance ma-

trix Cw = A−1A−T . A rationale for these transformations

can be found in [8].

5.2.3. Calibration

A simple linear model with a single scaling factor and a

language–dependent bias was used for calibration [13]. The

parameters were obtained optimizing the Cllr cost [13] on the

development set. The L–BFGS algorithm [25] was used to op-

timize the objective function.

1Collected by Appen http://www.appenbutlerhill.com
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Table 1: Actual and optimal % Cavg and normalized Cllr for the 3s, 10s and 30s conditions of the NIST LRE 2009 evaluation.

System
3s condition 10s condition 30s condition

% Cavg % C∗avg Cllr C∗llr % Cavg % C∗avg Cllr C∗llr % Cavg % C∗avg Cllr C∗llr

PLDA 6.43 6.12 0.254 0.246 2.07 1.78 0.104 0.091 1.20 1.11 0.071 0.060

GB 6.44 6.11 0.254 0.246 2.07 1.78 0.104 0.091 1.21 1.11 0.071 0.060

FPD PLDA 5.99 5.68 0.237 0.227 2.03 1.75 0.100 0.087 1.21 1.12 0.071 0.059

FPD GB 6.03 5.73 0.239 0.229 2.05 1.75 0.101 0.087 1.23 1.13 0.071 0.059

6. Experimental results

Results are reported in terms of percent Cavg as defined by

NIST [14], and in terms of Cllr [13], normalized so that a well–

calibrated, but useless, recognizer would obtain Cllr = 1. We

also report the “optimal” costs, denoted by C∗avg and C∗llr . Op-

timal costs should be interpreted as the costs that would be ob-

tained by performing a “cheating” calibration, i.e., by training

the calibration directly on the evaluation set.

Table 1 shows the results of the different systems on the

3, 10 and 30s conditions defined by NIST for the 2009 LRE

evaluation. The first and second line of the table show the re-

sults of a PLDA and of a GB classifier, respectively. As ex-

pected, the two systems provide very close results. The third

and fourth lines show the results of the PLDA and GB classi-

fiers incorporating the i–vector uncertainty, denoted as FPD–

PLDA and FPD–GB, respectively. The covariance of training

i–vectors was ignored both in model training and scoring, be-

cause training utterances are long. The results show that the

introduction of the i–vector uncertainty allows reducing both

the actual and optimal costs for short utterances, whereas the

accuracy of the standard approaches is retained for longer utter-

ances. As for standard PLDA and GB, also the FPD–PLDA and

FPD–GB systems have very close performance.

7. Conclusions

In this work we have proposed an approach that accounts for

the uncertainty in the i–vector extraction process in the frame-

work of generative Gaussian models for language recognition.

In particular, we have shown that the successful Gaussian linear

model for language identification can be interpreted as a par-

ticular instance of PLDA. PLDA–based LID allows accounting

for i–vector uncertainty using the same techniques employed

in speaker recognition. Experimental results show that model-

ing i–vector uncertainty improves the system accuracy for short

segments.
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P. Matějka, “Language recognition in ivectors space,” in

Proceedings of Interspeech 2011, 2011, pp. 861–864.

[4] N. Brummer et al., “Description and analysis of the

brno276 system for LRE2011,” in Proceedings of

Odyssey: The Speaker and Language Recognition Work-

shop, 2012, pp. 216–223.

[5] A. McCree, “Multiclass discriminative training of i–

vector language recognition,” in Proceedings of Odyssey:

The Speaker and Language Recognition Workshop,

Joensu, Finland, 2014.

[6] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker

verification using adapted Gaussian Mixture Models,”

Digital Signal Processing, vol. 10, no. 1-3, pp. 31–44,

2000.

[7] P. Kenny, “Joint factor analysis of speaker and session

variability: Theory and algorithms,” in Technical report

CRIM-06/08-13, 2005.

[8] S. Cumani, O. Plchot, and P. Laface, “On the use of i-

vector posterior distributions in probabilistic linear dis-

criminant analysis,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 22, no. 4, pp. 846–857,

2014.

[9] S. Cumani, O. Plchot, and P. Laface, “Probabilistic Linear

Discriminant Analysis of i–vector posterior distributions,”

in Proceedings of ICASSP 2013, 2013, pp. 7644–7648.

[10] P. Kenny, T. Stafylakis, P. Ouellet, M. Alam, and P. Du-

mouchel, “PLDA for speaker verification with utterances

of arbitrary duration,” in Proceedings of ICASSP 2013,

2013, pp. 7649–7653.

[11] B. Borgstrom and A. McCree, “Supervector bayesian

speaker comparison,” in Proceedings of ICASSP 2013,

2013, pp. 7693–7697.

1005



[12] P. Torres-Carrasquillo, E. Singer, M. Kohler, R. Greene,

D. Reynolds, and J. Deller, “Approaches to language iden-

tification using gaussian mixture models and shifted delta

cepstral features,” in ICSLP 2002, Sep. 2002, pp. 89–92.
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