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Abstract

We address the problem of speaker age estimation using i-
vectors. We first compare different i-vector extraction setups
and then focus on (shallow) artificial neural net (ANN) back-
ends. We explore ANN architecture, training algorithm and
ANN ensembles. The results on NIST 2008 and 2010 SRE
data indicate that, after extensive parameter optimization, ANN
back-end in combination with i-vectors reaches mean absolute
errors (MAEs) of 5.49 (females) and 6.35 (males), which are
4.5% relative improvement in comparison to our support-vector
regression (SVR) baseline. Hence, the choice of back-end did
not affect the accuracy much; a suggested future direction is
therefore focusing more on front-end processing.

Index Terms: age estimation, i-vector, multilayer perceptron

1. Introduction
Automatic age estimation of a speaker has received increased
interest recently. The internet provides a wide range of pos-
sibilities for commercial use, in the context when there is no
direct contact with the client; meta-information about the user,
such as her language, gender or age can be helpful for delivering
appropriate products and services [1, 2]. Automatic age recog-
nition systems can be a useful tool in forensic investigation as
well [3].

In the past, many methods have been studied for speaker
age estimation, including, for instance, support vector machines
(SVMs) [4, 5] and Gaussian mixture model (GMM) supervec-
tors [6]. One of the most recent approaches, adopted also by us,
uses i-vector representation of utterances [7, 8] originally de-
vised for speaker verification [9] but later adopted to other tasks
such as language [10] and accent [11] recognition. We use i-
vectors as inputs to support vector regression (SVR) back-end,
similar to [7, 8] where it was found one of the best methods.

We would like to study the applicability of artificial neural
network (ANN) back-ends for age prediction. Recently, [12]
studied such approach preliminarily, though the main focus was
not in age estimation. In contrast, we focus solely on age esti-
mation by providing detailed analyses how to configure ANNs
for the task. Specifically, we study the importance of features,
i-vector normalization, ANN training method, number of hid-
den neurons, two-vs-one hidden layer architectures and the use
of multiple ANN predictors. We attempt to provide answers as
which of these choices are most important and whether ANN
back-end will outperform SVRs studied in detail by [7, 8].

2. Speaker Age Estimation
The problem of automatic speaker age recognition can be for-
mulated as follows. Given a set of N training utterances {Xn}

with their age labels {Yn}, train a system that predicts, for an
unseen utterance Xtest its age Ytest as accurately as possible.

2.1. Baseline Approach

We consider the approach of [8] as our baseline. It was found to
be one of the most accurate approaches in the comparisons of
[8] including GMM supervector based SVR and other predic-
tors. The method is briefly described as follows. In the train-
ing phase, i-vectors for each utterance are extracted, followed
by within-class covariance normalization (WCCN) [13] to su-
press session and channel effects. WCCN normalizes the aver-
age within-class covariance of the feature space (e.g. i-vector
space) to identity matrix. The WCCN matrix, B, is obtained
from
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where wi
j is the i-th feature vector of the j-th speaker, the total

number of speakers is J and the number of vectors for the j-th
speaker is Nj . Finally, w̄j denotes the mean feature vector for
the j-th speaker. After training B, all the training and future
test vectors x are normalized by x �→ B�x.

The WCCN-normalized i-vectors are then presented to sup-
port vector regression model (SVR) [14] together with their age
labels to train it. SVR generalizes the idea of support vector
machines (SVMs), which finds the unique hyperplane in fea-
ture space separating two classes with maximum margin. In
particular, SVR finds a hyperplane for which most of the train-
ing data points would lie no further than distance ε from it.
That is, we search for parameters v and z such that the function
f(a) = vTΦ(a) + z accurately predicts the output for input
a. Here, Φ(a) denotes a feature mapping function defined in
advance. Function f can be found by solving an optimization
problem with linear constraints as detailed in [14]. In practice,
we apply LS-SVMlab toolbox 1 for SVR training. In the test
stage, an i-vector is extracted, WCCN transformation is applied
and the normalized vector is fed to the regression model, which
produces a predicted age (a scalar).

2.2. Modifications to i-Vector Front-End

The baseline approach described above was found effective for
age estimation in [8]. However, the resulting i-vectors are of
course strongly dependent on the acoustic features used to con-
struct them. We consider a few revisions that will be explored
in our experiments. Firstly, consider cepstral mean and variance
normalization (CMVN), which normalizes each cepstral coeffi-
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cient c in frame t by ĉ(t) = (c(t)− μ) /σ, where

μ =
1

L

t+L
2
−1∑

n=t−L
2

c(n) and σ2 =
1

L

t+L
2
−1∑

n=t−L
2

(c(n)− μ)2

denote, respectively, the mean and variance of c computed over
L frames. It produces features with zero-mean and unity vari-
ance over the normalization window. A special case is when L
equals utterance length and variance normalization is discarded.

Another variation is achieved by replacing MFCCs by other
features. We consider two such alternatives. Firstly, shifted
delta cepstral coefficients (SDCs) [15] are computed as,

siN+j(t) = cj(t+ iP + d)− cj(t+ iP − d), i = 0, .., k− 1.

Here, cj , j = 1, ..,M − 1 are the base MFCCs. SDCs are
defined by four parameters, the number of cepstral coefficients
(M ), the time difference between the frames (d), the time shift
between two blocks (P ) and the number of blocks (k). In lan-
guage recognition, M is usually set to 12, d to 1, P and k are
set to 3. Thus, SDCs are basically k blocks of delta cepstral
coefficients. SDCs add contextual temporal information to the
feature vectors which can be useful in terms of age estimation.

Our second alternative features are so-called Perseus fea-
tures which are a combination of MFCCs and MMeDuSa [16]
features. In contrast to MFCCs, Perseus uses gammatone fil-
ter bank instead of mel filter bank and adds a vector sub-frame
energy estimations to each frame. It also uses 1/15-th root com-
pression instead of log-compression in MFCCs.

2.3. Artificial Neural Network (ANN) Back-End

ANNs are very powerful in function approximation, classifica-
tion and other tasks. Here we study their usefulness in age esti-
mation. To this end, we use ANN in place of SVR. We consider
the multilayer perceptron (MLP), in which one neuron is de-
scribed by y = g(wTx + b), x being the input vector, w the
weights and b the bias. The function g is activation function,
here, a hyperbolic tangent. In MLP, the neurons are combined
in multiple layers connected to each other through their inputs
and outputs. The first and the last layers of network are called
input and output layers, while all the rest are hidden layers.

MLPs can be trained using a number of techniques, such as
the backpropagation algorithm [17]. We consider two methods,
stochastic gradient descent (SGD) [18] and Broyden-Fletcher-
Goldfarb-Shanno algorithm (BFGS) [19]. SGD uses the fact
that total error for the whole training set, E, is the sum of the
errors for individual training cases. While a gradient descent
algorithm would update weights at iteration τ based on gradient
on the whole data (1), SGD updates them according to gradients
of one data point at a time (2). The parameter α in both cases
denotes the step size to the chosen direction of the error surface.

w(τ+1) = wτ − α∇E(wτ ) (1)

w(τ+1) = wτ − α∇En(w
τ ) (2)

In practice, we divide the training data into several batches and
weight updates are done according to gradient of the error in
every batch.

While the SGD training algorithm utilizes only the first
derivative of the error function, BFGS requires second order
derivatives as well. It belongs to the class of so-called quasi-
Newton methods. BFGS does not explicitly calculate the actual

Hessian matrix of the second derivatives but makes an approxi-
mation, H , and uses this in optimization. The weights are up-
dated by searching for the direction pτ as a solution to (3), and
make a step α in this direction as w(τ+1) = wτ + αpτ .

Hτpτ = ∇En(w
τ ) (3)

In practice, we use a modification of BFGS known as limited
memory BFGS [20].

An important further consideration is to prevent ANNs be-
ing overfitted to training data. There are various techniques to
cope with the problem, such as early stopping [21], dropout
algorithm [22] and �2- regularization [23]. We adopt this last
strategy, which adds a quadratic term to the training objective
to penalize for large weights.

3. Experimental Setup
The data we use for experiments is NIST speaker recognition
evaluation (SRE) data from years 2008 and 2010. They con-
tain a large number of speakers and rich metadata, including
speaker’s age. Speakers of two corpuses are not intersecting.
We consider utterances from speakers between 20 to 70 years
old as there were too few utterances for other speakers. Table 1
and Fig. 1 summarize the statistics of the selected data. For our
experiments we use exactly the same evaluation setup as [7, 8].
To train the UBM and the T-matrix, we use all the available
NIST SRE corpuses except NIST 2008 and NIST 2010.

Table 1: Summary of the data used for age estimation

NIST 2008 NIST 2010

Number of speakers 1154 442

Number of utterances 3859 5583

Quality Telephone Telephone

Sampling rate 8.0 kHz 8.0 kHz
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Figure 1: Age histogram of the selected speech utterances from

NIST 2008 and 2010 corpuses

To gauge age estimation accuracy, we consider two objec-
tive measures utilized also in [7, 8]. The first one is mean ab-
solute error (MAE), MAE = (1/N)

∑N
n=1 |ŷn − yn|, where

N is the number of test segments, ŷn is the predicted age by
a regression model and yn is the chronological age that serves
as the ground truth. Smaller MAE implies better age predic-
tions, on average. The second measure is Pearson’s correlation
coefficient between the vectors of estimated and chronological
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ages:

ρ =
1

N − 1

N∑
n=1

(
ŷn − μŷ

σŷ

)(
yn − μy

σy

)
.

Here, μŷ and σŷ denote, respectively, the mean and standard
deviation of estimated ages and μy and σy correspond to the
same measures of actual ages. Higher ρ is considered better.

For the sake of consistency when comparing the results, we
adopt the same experimental scheme as [7, 8]. All the data used
for age estimation is divided into 15 folds so that speakers in
different folds do not overlap. Then, 15 independent tests are
executed so that 14 folds are used for training while the 15th
fold serves as a held-out test set. The final MAE and ρ val-
ues are their averages over the 15 test folds. Each time, two
gender-dependent age estimators are trained and the results are
presented separately for males and females.

4. Results and Analyses
4.1. Baseline Results

Baseline experiment was first carried out as follows. We use
60-dimensional features (19 MFCCs with their energy, deltas
and double-deltas) normalized using short-term CMVN [24].
Using these features, we extract 400-dimensional i-vectors to
train SVR. We used grid search to find optimal values for the
SVR parameters. Table 2 shows the optimized baseline along
with the results reported in [8]. The results are close to each
other and differences likely caused by differences in random
division into 15 folds and UBM/i-vector data selections.

Table 2: MAE (in years) and ρ for baseline approach

Male Female

MAE ρ MAE ρ

Our baseline 6.65 0.73 5.75 0.80
Baseline in [8] 6.53 0.73 5.78 0.81

4.2. Impact of Features

We next study the effect of features by using the SVR back-
end and varying the acoustic front-end, see Table 3. The first
three rows use exactly the same 60-dimensional MFCCs with
varied options for feature normalization. The last two rows con-
sider replacing MFCCs by SDCs or Perseus features described
in Section 2.2. In both cases, the feature vectors have the same
dimensionality as in the baseline approach, 60. No normaliza-
tion is applied to them.

The best performance for both male and female speakers
is achived with short-term CMVN. No obvious benefits are ob-
tained using Perseus or SDC features.

4.3. Neural Networks

We now turn our attention to the MLP back-end. We use
MFCC-based 400-dimensional i-vectors. For the majority of
our experiments, we use MLP with a single hidden layer. Penal-
ties of 0.1 and 0.01 for the weights of the first and second layers
are used, respectively. The learning rate in all experiments is
set to 0.5. These values were optimized in initial experiments
utilizing on MLP with 512 neurons in the hidden layer.

Effect of the training algorithm: In the first experiment,
we train a single hidden layer MLP and study the effect of the
training method. Fig. 2 shows dependency of MAE and ρ on

Table 3: MAE (in years) and ρ for SVR age estimators trained

on i-vectors with various setups

Male Female

I-vector Setup MAE ρ MAE ρ

no CMVN 6.77 0.70 5.85 0.79

short-term CMVN 6.65 0.73 5.75 0.80
utterance CMVN 6.73 0.72 5.78 0.80
Perseus features 7.01 0.69 5.99 0.79

SDC features 6.72 0.72 6.01 0.78

the number of hidden neurons for both the SGD [18] and the
BFGS [19] methods; the results are shown for males only. For
females the trends are similar. As Fig. 2 indicates, BFGS suffers
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Figure 2: MAE (in years) and ρ for male speakers

from too many neurons in the hidden layer. For SGD, in turn,
adding neurons helps. We did not conduct further experiments
with larger number of neurons due to high computational costs.
When the number of neurons is low, BFGS outperforms SGD,
but for larger network,the order is reversed. Training of SGD is
generally faster, too.

Effect of WCCN: In [8], Bahari et al. found WCCN
applied to i-vectors to improve SVR-based age estimator per-
formance. Interestingly, [8] reported that improvement was
achieved when each speaker was treated as a different class.
Probably a more meaningful strategy, training WCCN using
discrete age classes, actually decreases performance of age es-
timator. For this reason, and since our baseline results (Table
2) are similar, we study WCCN using speaker labels only for
convenience. Tables 4 and 5 compare the impact of WCCN for
networks of various sizes. The same single hidden layer archi-
tecture and SGD training algorithm are adopted as before. For
large networks (512 and 1024 hidden units), WCCN helps and
will be used in all the remaining experiments.

Table 4: MAE (in years) and ρ of the neural network age esti-

mator with and without WCCN for female speakers

no WCCN WCCN

Size of hidden layer MAE ρ MAE ρ

128 6.19 0.77 6.32 0.76

256 5.93 0.78 6.12 0.77

512 5.91 0.78 5.72 0.80
1024 5.66 0.80 5.49 0.81

Linear discriminant analysis: In the last experiment, we
investigate whether linear discriminant analysis LDA [25] – as
a session compensation and dimensionality reduction tool – can
improve age prediction accuracy. As in the case of WCCN, we
treat each speaker as a separate class. Table 6 shows the results
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Table 5: Same as Table 4 but for males

no WCCN WCCN

Size of hidden layer MAE ρ MAE ρ

128 7.11 0.68 7.25 0.67

256 6.90 0.69 7.06 0.69

512 6.85 0.71 6.48 0.73
1024 6.66 0.72 6.35 0.74

for different target size for reduced input to an MLP with 512
hidden neurons. As before, the training algorithm is SGD. In
general, LDA does not affect performance much. For the sake
of speed and resource consumption, it can still be beneficial.

Table 6: Effect of LDA dimensionality reduction.

Male Female

Target dim. MAE ρ MAE ρ

100 6.71 0.69 5.71 0.79

200 6.70 0.69 5.72 0.79

300 6.46 0.73 5.73 0.80
No LDA 6.48 0.73 5.72 0.80

Neural networks ensembles: It is known that combining
results of several predictors (e.g. neural networks) can help to
improve accuracy compared to the individual predictors [26].
Therefore, here we combine several age estimation networks.
One way is to train different networks by random initializations
of networks that share the same architecture and another is to
change the number of hidden neurons or training method. Table
7 represents these results.

Table 7: Combinations of different ANNs (averaged outputs).

Male Female

System configuration MAE ρ MAE ρ

1.n1 = 256, SGD 7.06 0.69 6.11 0.77

2.n2 = 512, SGD 6.53 0.73 5.72 0.79

3.n3 = 1024, SGD 6.35 0.73 5.49 0.81
4.n4 = 512, BFGS 6.66 0.71 5.69 0.79

1 + 2 + 3 6.42 0.75 5.56 0.81
2 + 2 + 2 6.45 0.73 5.63 0.81

2 + 4 6.58 0.72 5.59 0.80

For all the combined networks, WCCN is applied. The first
four lines correspond to single networks having different num-
bers of hidden neurons (ni) with jointly varied training algo-
rithm. The last three rows show performance of a few combi-
nations of these base networks.In each case, we simply aver-
age outputs of the individual networks. As expected, combina-
tion of several age estimators is helpful. The best improvement
achieved for combinations of networks having the same size.

Neural networks with two layers: After performing sev-
eral experiments with single hidden layer, we now investigate
the effect of network architecture closer by adding more non-
linear layers. Fixing all the other design choices as in the case
of one hidden layer (SGD training with WCCN), we attempt
to find appropriate size for each layer of the revised network.
Fig. 3 shows results for networks with 1024 neurons in the first
hidden layer while the size of the second layer is varied. Fig.

4 represents the opposite case, when size of the second layer is
fixed to 512 neurons and the number of neurons in the first layer
is varied.

Fig. 3 and Fig. 4 suggest that the best performance is
achieved when the sizes of the two layers are equal. But even in
this case, this alternative architecture does not outperforms the
best results achieved by a single layer network. One problem
is that we used parameter values optimized for single layer net-
work. They may require re-optimization for the 2-layer struc-
ture.
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Figure 3: Performance for 2- layers network estimator of male

and female speakers’ age. Size of second layer is various
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5. Conclusion
We studied age estimation using i-vectors. Our findings on
NIST 2008 and 2010 are: (1) conventional MFCCs with short-
term CMVN worked best as the features for i-vector extraction;
(2) WCCN, treating speakers as classes, helped; (3) LDA did
not help considerably; (4) BFGS was overfit with more than
256 hidden neurons while SGD was stable even with 1024 neu-
rons; (5) SGD produced more accurate age predictions with
faster computation; (6) only modest gain was obtained from an
ensemble of ANNs over a single predictor; (7) no clear bene-
fits were obtained with two-layer structure. Based on the last
three last findings, a single network with a single hidden layer,
trained with SGD, is the recommended choice. Considering
the results as a whole, the best improvement from MLP over
SVR was 4.5 % relative reduction in MAE. This suggests that
the back-end may not have so much effect when the already-
compressed i-vectors are used as input features. Future work
should thus address alternative utterance parameterizations in
place of i-vectors.
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