Voice-print transformation for migration between automatic speaker identification systems

Ondřej Glembek, Pavel Matějka, Olda Plchot, Jan Pešán, Lukáš Burget, Jan Černocký, Vláďa Malenovský, and Petr Schwarz

i-vector transformation for migration between automatic speaker identification systems

Ondřej Glembek, Pavel Matějka, Olda Plchot, Jan Pešán, Lukáš Burget, Jan Černocký, Vláďa Malenovský, and Petr Schwarz

- Information-rich
- Low-dimensional
- Fixed-length
- Vector of real numbers

- Based on statistical model
- Easy to compare
- Easy to store
- Not recoverable to speech

Dehak, N., et al., Support Vector Machines versus Fast Scoring in the Low-Dimensional Total Variability Space for Speaker Verification In Proc Interspeech 2009, Brighton, UK, September 2009

System block-diagram

System block-diagram - detail

Interpretation of i-vectors

- The interpretation of i-vectors change from system to system
- This depends on many factors
 - Feature extraction
 - The way the GMM Universal background model (UBM) has been trained (initialization, EM algorithm, Gaussian splitting protocol, ...)
 - The way the i-vector extractor has been trained (initialization, involves numerical EM algorithm, MD, ...)

Can we use i-vectors produced by one system for scoring on another system?

- Inter-site data exchange
- i-vector standard
- i-vector extraction upgrade
- ...

Making it work

Making it work – standardized iVectors

Score, hard decision ...

Making it work – standardized iVectors

ALIEN SYSTEM

Score, hard decision ...

I The systems

reference

- 19 MFCC + C0 + delta + double delta
- 2048-component GMM
- 600 dimensional i-vector
- 9k hours of data (MIX+SW+Fish)

Red-ref

- 19 MFCC + C0 + delta + double delta
- 2048-component GMM
- 600 dimensional i-vector
- 2k hours of data (MIX only)

512/400

- 19 MFCC + C0 + delta + double delta
- 512-component GMM
- 400 dimensional i-vector
- 9k hours of data (MIX+SW+Fish)

Perseus

- 20 Perseus coefs + delta+double delta
- 2048-component GMM
- 600 dimensional i-vector
- 2k hours of data (MIX only)

BASELINE TEST

MATCHED TEST

HYBRID TEST

- We started with one-hidden-layer NN's (simply off-the shelf scripts)
- We experimented with multi-layer NN's
- In the end no hidden layer = simple linear regression works the best
- Trained using THEANO
- Fixed at MIX+SW+Fish, 9k hours audio data

Performance on various NN topologies

System	$\mathrm{DCF}^{\mathrm{min}}_{\mathrm{new}}$	$\mathrm{DCF}^{\mathrm{min}}_{\mathrm{old}}$	eer
reference	0.3834	0.1089	2.13
Perseus on reference	1.0000	0.7834	23.12
Perseus baseline	0.4924	0.1494	2.86
600-600	0.4662	0.1522	2.85
600-600*	0.4490	0.1360	2.64
600-600-600	0.5596	0.1799	3.48
600-600-600*	0.5039	0.1526	2.96
600-1200-600	0.5794	0.1732	3.56
600-1200-600*	0.4834	0.1467	2.93
600-600-600-600	0.5845	0.1898	3.66
600-600-600*	0.5045	0.1587	3.09

NIST SRE 2010, condition 5, female

^{*} Hybrid test

Performance of different systems

System		$\mathrm{DCF}^{\mathrm{min}}_{\mathrm{new}}$	$\mathrm{DCF^{min}_{old}}$	eer
reference	baseline	0.3834	0.1089	2.13
512/400	baseline	0.5711	0.1742	3.78
	400-600 400-600*	0.5011 0.4555	0.1548 0.1387	3.12 2.76
Red-Ref	baseline	0.4475	0.1283	2.64
	600-600 600-600*	0.4392 0.4224	0.1299 0.1213	2.73 2.53
Perseus	baseline	0.4924	0.1494	2.86
	600-600 600-600*	0.4662 0.4490	0.1522 0.1360	2.85 2.64

NIST SRE 2010, condition 5, female

^{*} Hybrid test

Conclusion

- We tried to explore whether i-vectors can be transformed in order to be compatible
- For a selected set of systems, we found that simple linear regression can be used to transform the i-vectors
- Hybrid test performs generally better
- In some cases it can be beneficial to extract i-vectors using one system and score using other
- Future work:
 - more feature types
 - different topologies
 - more experiments

Situation

- In the last 10 years, scientific advances in speaker recognition (JFA, i-vectors, PLDA) allowed for producing precise and robust SRE systems
- Quickly adopted by vendors, producing solutions that are successful
- R&D never stopping
 - Everyone continuously improving performance of their system, robustness, calibration, etc
 - New versions of engines released

A vibrant community working in cooperative/competitive mode both for R&D labs and vendors.

What is needed

- Fix the core iVector extraction algorithms
- Fix the necessary parameters
- Do the necessary minimum, let people freedom to use their (own, best)
 VAD and scoring.

Users

- Having interoperable systems
- Being able to exchange speaker information without compromising content
- within companies/agencies, across companies/agencies and across borders

Vendors

- Increasing the whole market (think about introduction of USB!)
- R&D labs
 - sharing i-vectors between labs without lengthy discussions on configuration (not excluded though!)
 - Giving a working recipe to juniors to play with.
 - Obtaining massive data from the users

We DON'T WANT

- stop R&D (both academic and commercial) of speaker recognition technology by saying that this will be the only iVector extraction scheme forever.
 - all of us are trying to push the field further, sometimes as collaborators, sometimes as competitors.
 - We want to define a snap-shot of the best practice up to day on which we could agree.
- Earn money on licenses or patents the proposed standard is license and patent-free
- Have something too complex and too relying on a proprietary and/or 3rd party technology.
- Present this as an ultimate forensic solution.

What is there

- http://voicebiometry.org/ technical description, Python code with all necessary parameters
 (feature extraction, UBM, T-matrix)
- Google group http://groups.google.com/d/forum/voice-biometry-standard
 - please subscribe

THANK YOU