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ABSTRACT 
 
A group of junior and senior researchers gathered as a part of the 
2014 Frederick Jelinek Memorial Workshop in Prague to address 
the problem of predicting the accuracy of a nonlinear Deep Neural 
Network probability estimator for unknown data in a different 
application domain from the domain in which the estimator was 
trained. The paper describes the problem and summarizes 
approaches that were taken by the group1.  
 

Index Terms—  Performance monitoring, confidence 
estimation, multistream recognition of speech. 
 

1. INTRODUCTION 
 
An implicit assumption in machine learning is that the harmful 
variability that is encountered in use of a machine is drawn from 
the same distribution as the variability that was present in the 
training data. However, in practice, obtaining training data that 
covers all unexpected variability is difficult, if not impossible [1]. 
When faced with unexpected variability, a machine that has not 
been trained on this particular type of variability can generate 
spurious outputs that do not represent relevant aspects of the input.  
Thus, an estimator that is effective on data from one domain may 
perform poorly on data from another domain.  
 
Identifying such domain anomalies [2] is desirable. Because the 
goal is to identify those mismatches that result in poor 
generalization to the new domain, it is not sufficient to simply 
identify data outliers.  Instead, it is necessary to identify data that 
do not produce reliable results in a particular estimator.   
 
A question then arises as to how one might determine the 
reliability of an estimator without already knowing the desired 
output of the computation. Evaluating the quality of the output 
requires predicting its accuracy in an unsupervised setting.  In this 
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paper we explore the possibility that, even when we do not know 
what the correct outputs for a given input should be, we sometimes 
know general characteristics that the output from the estimator 
should exhibit. These characteristics can often be learned from the 
estimator’s performance on training data.  
 
We focus on the specific case of a front-end speech recognition 
system that estimates the posterior probabilities of phonemes given 
the speech signal. The dominant technique here is currently the 
Artificial Neural Net (ANN) discriminative technique, and our 
focus was on this approach.  Figure 1 shows posteriograms 
(estimates of posterior probabilities as a function of time) for 
phoneme labels, for posteriors derived from data that are similar to 
training data, and for posteriors derived in a domain that is 
different from the domain of the training data.  It appears possible 
to estimate visually which posteriogram is more accurate.  Our 
efforts examine ways of quantifying this intuition by machine.   
 
The problem we address is:  
 
Given an estimator that yields a vector of posterior probabilities 
of phonemes for every 10 ms of speech input, predict the 
accuracy of these estimates. 
 

 
 
Fig. 1 Posteriograms from labels (top, matched data (middle), and 
mismatched data (bottom). 
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2. RELATED WORK 
 
Prediction of accuracy of the estimation is related to the 
extensively studied task of estimation of confidence in ASR (see, 
e.g., [3] for the current state of the art). However, these tasks are 
not identical. In the confidence estimation we need to determine 
how reliable the result of the estimation is. In our case, we would 
like to know how accurate the result of the estimation is, without 
knowing what the true answer should be.  Still, a number of 
techniques that originated in confidence estimation for GMM-
based ASR can be also applied in predicting the accuracy of the 
estimation for ANN-based ASR. One frequently-used standard 
technique that we investigated in this work and that is applicable to 
ANN-based ASR requires a full Viterbi search for the best path 
through the probability estimates, is based on the averaged 
likelihood of the recognized sound sequence.  
 
Several ANN-specific techniques were used for the prediction of 
the estimation accuracy from discriminative ANN estimators in the 
past. Among these are comparison of the highest-probability 
estimate to the next several lower ones [4] and a related technique 
based on the entropy of the estimator output [5][6]. Another 
previously proposed technique (not studied here) is based on the 
autocorrelation matrix of transformed probability estimates [7][8]. 
We adopted the entropy-based technique as a baseline technique in 
our evaluations in the workshop.  
 
The technique that was the most effective prior to the workshop 
evaluates averaged dissimilarities of probability estimates spaced 
in several time spans apart (denoted here as the M-measure) [8][9]. 
This technique represents another baseline for our evaluations. 
 

3.	
  DATA	
  USED	
  DURING	
  THE	
  WORKSHOP 
 
Data from 31 different probability estimators trained and tested 
using the TIMIT database (continuous read speech, adult males 
and females) were used during the workshop. In training the 
probability estimators we used about 200 minutes of the TIMIT 
data in the form of either a) the original (clean) speech data, or b) 
training speech data corrupted by various levels of subway noise.  
 
A deep ANN spectral band probability estimator (4 hidden layers, 
1000 nodes each), was trained on each of frequency band. 
Concatenated posteriors from each of 31 nonempty combinations 
of the spectral bands were used as inputs to 31 different merging 
probability estimators, also implemented as deep ANNs.  Each of 
these merging estimators was trained on clean training data.  In 
that way, 31 probability estimators were constructed, each stream 
using some combination of 5 spectral bands, from one spectral 
band up to all five spectral bands. The estimator using all five 
spectral bands is shown in Figure 2. 
 

 
 
Fig. 2  Probability estimator using all five spectral bands.  
 

All test data were processed by each of the 31estimators. Thus, 
altogether there were 310 different posterior streams to be 
evaluated, each containing data from 400 TIMIT sentences The 
test data for the probability estimations consisted of about 20 
minutes (400 sentences) of the original test speech data and the test 
data corrupted by  
 
• Nine various additive noises: Seven broadband noises from 

the Noisex database (clean speech, speech babble 15 dB SNR, 
car noise at 5 dB SNR, exhibition hall noise at 5 dB SNR, 
factory noise at10 dB SNR, restaurant noise at 10 dB SNR, 
street noise at 5 dB SNR, subway noise at15 dB SNR), and 
two narrow-band noises  that fall in the 2nd and 4th frequency 
bands that were derived from the exhibition hall noise.  
 

• Band-pass filtering the signal by forming various 
combinations of the 5 spectral bands.	
  

	
  
Additionally, some experiments were performed on estimators that 
had been trained on data corrupted by different levels of the 
exhibition hall noise used different speech recognizer. These 
results are not reported or discussed in this paper.  
 

4. EVALUATION CRITERIA 
 

We applied the following evaluation criteria: 
 
• Correlations with divergences from perfect probability values 

(Fig. 1 upper part - labels).   
• Correlation with divergences from probability estimates 

derived on training-like test data (Fig. 1 middle part).  
• Correlations with accuracies of a phoneme recognizer that 

uses the probability estimates.  
• Phoneme recognition accuracy of a multistream adaptive ASR 

system that uses the estimates. 
 

The first three criteria evaluate all predictions, the last one only 
evaluates whether the predictor can identify the best estimator. 
 

5. OVERVIEW OF TECHNIQUES STUDIED 
 
5.1. Delta M-measure 
 
The original M-measure evaluates averaged divergences between 
estimates coming from different sounds. An extension of this 
technique, inspired by the segmentation algorithm proposed in 
[10], uses knowledge of average phoneme length derived from the 
training data, and computes the difference in divergences coming 
from the same sound and from different sounds. An interesting and 
successful extension computes the same/different sound 
probabilities in several time spans and solves the set of over-
specified linear equations. This technique was studied the most 
extensively and has yielded the best results to date. 
 
5.2. ANN-based autoencoder 
 
An ANN is trained on the training data to predict estimate of 
posterior probabilities of phonemes from itself.  To prevent a 
trivial solution, the ANN contains a bottleneck layer that is smaller 
than the output vector. This trained ANN is applied to the test data. 
The inverse of the error of the estimate is used as a predictor. This 
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technique, described in more detail elsewhere [11], appears to be 
promising.  
 
5.3. Fit of unigram and bigram probabilities 
 
Unigram and bigram probabilities of speech sounds estimated from 
labels (gold transcripts) or from posteriograms derived from 
training data (decoded transcripts) are compared to unigram and 
bigram probabilities computed from sequences of top probability 
estimates on the test data. This technique is intuitively appealing 
because the goodness of the estimate is judged by its degree of fit 
to expected linguistic information. Further work is required to fully 
understand its strengths and weaknesses. 
 
5.4. Values of hidden units of an ANN 
 
Several models of the distributions of values of the hidden units of 
the ANN are constructed on training data of the estimator. Outputs 
from these models are combined to predict the accuracy of the 
phoneme probability estimates.  This technique is unique among 
those studied in that it looks inside the ANN for information about 
its performance on unknown test data, rather than looking only at 
the output. Details of this technique with results it yields are 
reported elsewhere [12]. 
 
5.6. Deviations from speech manifold acquired in the training 
of the estimator 
 
This technique, based on a recent work described in [13] and 
assumes that speech lies on a low-dimensional manifold that can 
be learned during the training of the estimator. Significant 
deviations from this manifold that are detected during testing may 
indicate data-domain mismatch. More work is required to evaluate 
its full potential in application that were targeted in the workshop. . 
 

6. MULTI-STREAM BASED ADAPTATION OF THE 
PROBABILITY ESTIMATOR 

 
Multi-stream processing [14][15][16] is one biologically consistent 
way of adapting the classifier, which capitalizes on redundancies in 
coding of speech information. Different parallel processing streams 
attend to different aspects of redundantly coded information. When 
some streams are corrupted, the remaining uncorrupted streams can 
often still be used for decoding the message in the speech. This 
technique, unlike many others introduced for GMM-based 
estimators, is directly applicable to the currently-dominant ANN-
based ASR. 
 
Our probability estimators were constructed by exploiting various 
parts of the available speech spectrum. This allows for testing our 
techniques in this multi-stream adaptation paradigm.  In this test, 
our techniques for predicting the estimator accuracy is used as a 
“performance monitor”, i.e., we report the phoneme recognition 
accuracy from the phoneme recognizer (using Viterbi search on the 
estimated phoneme likelihoods using the bi-gram phonotactic 
language model), which uses the probability estimator that is 
predicted as the best one.  Even though selecting only the best 
estimator is a suboptimal strategy (using the N-best estimators 
typically yields higher phoneme recognition accuracies [8][18]), 
this test serves well as an indication of practical applications of our 
research. In addition, it also allows for positioning our techniques 
on the continuum between the best possible result (which exploits 

Oracle information) when the best stream is selected as the one, 
which gives the best result on known test data, and the accuracy 
obtained by selecting the stream for each sentence in random. 
Finally, we also report results obtained without any use of 
performance monitoring, i.e., the result obtained using all five 
bands of the full-band speech spectrum. 
 

7. SUMMARY OF MAIN RESULTS 
 
Because all measures are highly correlated with each other, we 
only show results of correlations with phoneme recognition error 
rate and choice of the best estimator for phoneme recognition. 
Furthermore, although we observed that the predictions improve 
significantly with the increasing length of test data used for 
prediction, we only show results using a single test sentence for 
prediction. Details of experiments mentioned here, comparisons 
with more investigated techniques and breakdown of results for 
different types of noises are reported elsewhere [17].  
 
7.1. Evaluations by correlations with phoneme error rate of 
phoneme recognizer  
 
400 correlation values are computed, one for each sentence of the 
test data, across the 31 phoneme recognizers using respective 
probability estimators.  All five measures highly correlate with 
each other. The M-delta measure yields the highest correlations 
with phoneme accuracy in all conditions. The averaged correlation 
values for all data (clean and 9 different additive noises) from three 
evaluation techniques, the inverse entropy of the output of the 
estimator the previously proposed M-measure, and the new M-
measure denoted here as delta M, are displayed in Figure 3 
below.

 
Fig. 3  Correlations with observed phoneme recognition accuracy 
 
Techniques using ANN-based autoencoder or distributions of 
values on hidden layers of a ANN were also investigated. 
However, at this time, direct comparisons are not easily obtained, 
since the data, the estimators, and the noise conditions in these 
investigations were all different. However, these two techniques 
are topics of separate papers [11][12]. 
 
7.2. Evaluations by selecting processing streams in multistream 
speech recognition 
 
Our second evaluation method uses the techniques developed for 
prediction of errors to select the most efficient phoneme recognizer 
out of the 31 streams. We compare the performance of the stream 
selected by the predictor the best possible result obtained using 
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Oracle knowledge (which in this case involves selecting the 
recognizer with the lowest phoneme error rate) and to a recognizer 
that uses the full speech band without any performance 
monitoring

 
Fig. 4 Phoneme error rates of best estimators selected by different 
accuracy prediction techniques 
 
Figure 4 summarizes some key results from the workshop. Using 
any of the performance monitors results in improvement over using 
the full 5 sub-band combination. Consistent with correlations 
reported above, the M-delta measure again yields the best results. 
Results of the oracle recognition indicates the space for 
improvement of performance monitoring techniques.  For clarity, 
we show only recognition results using the best stream; some 
previous work [8][18] suggests that using the N-best streams 
considerably improves results. 
 
7.3. Comparisons with conventional confidence estimation 
measures 
 
We compare our results to results obtained using the measure 
based on inverse entropy of estimator output [5][6]. We also 
pursued the more conventional HMM-based raw acoustic score 
technique of confidence estimation (see, eg. [3]), where the 
averaged likelihood of the best path through the sequence of scaled 
likelihoods of subword models is used as a measure of the 
goodness of the subword posterior estimation. This technique 
yielded results that were similar to results obtained by inverse 
entropy technique.  
 
So far, the newly introduced M-delta method yields consistent 
advantage compared to entropy-based technique when speech is 
corrupted by broad-band noise, and more significant gains when 
speech is corrupted by steady noise that is concentrated in narrow 
frequency range. This is advantage in narrow-band noise is 
understood since the narrow-band noise can yield high probability 
and low entropy estimates that are entirely wrong. However, such 
noise-induced estimates are revealed by the temporal-domain 
delta-M technique since they do not follow speech-like dynamics. 
 

8. SOME REMAINING OPEN ISSUES 
 
One issue that requires further investigation is the amount of 
speech data needed for reliable accuracy prediction. Our research 
so far mostly used estimation based on a single TIMIT sentence. 
Some of our preliminary evidence indicates that the accuracy of 
the prediction increases with up to tenths of sentences. 
 

Measures of how well each predictor performs also require further 
attention. We strived for application-agnostic measures, and thus 
used correlations with known results.  However, correlations are 
sensitive to nonlinear parameter transforms. Measures such as 
mutual information, which are invariant to parameter transforms, 
could be also applied.  
 
Finally, similarity-based measures such as correlations evaluate the 
whole range of results and weigh all the good and the bad outputs 
equally in judging the success of a predictor. Care needs to be 
taken to better understand this issue and to provide the correct 
balance of the good and bad results to obtain a meaningful 
measure.  In some other applications (e.g., selecting the N-best 
estimators) we need to know which estimators are bad. However, 
when the task is merely to get the best of the available estimators, 
we only need to predict the best outputs. Thus, ultimately, the 
evaluation needs to be directly linked to the intended application. 
 
Selecting the best estimator among the pre-trained available ones is 
not the only way of adapting the estimator. Alternative adaptation 
techniques could be developed and applied with our techniques. 
 

9. DISCUSSION AND SUMMARY  
 
Most of current powerful machine learning techniques rely on 
large amounts of training data. Nevertheless, there are a number of 
practical situations where the recognizer encounters data from 
domains, which were not seen in training. Such a domain 
mismatch is significant problem in stochastic ASR.  
 
Identifying the domain mismatch does not mean identifying data 
outliers. Instead, we need to identify data that that can cause 
problems for a particular probability estimator, and those two tasks 
are not always the same. Data could well be within the range of the 
previously seen training data but the information that they carry is 
for some reason corrupted, and subsequently the results of the 
estimation are also corrupted. In such situations it would be 
desirable for the data that cannot be well accommodated to be 
automatically identified as such and appropriately dealt with.  
 
Our current efforts described in this paper represent progress 
towards this goal. The results presented here show that the 
unsupervised estimation of accuracy of a phoneme recognizer is 
possible. When successful, it could be applied in the adaptation 
loop of the recognizer and could provide a desirable alternative to 
the seemingly never-ending increases in amounts of training data. 
 
We have proposed and investigated several new techniques for 
predicting accuracy of estimation of posterior probabilities of 
speech sounds on previously unseen data, and have shown the 
feasibility of this task.  A number of the techniques were found to 
be effective in addressing the task. Due to space limitations, we 
could only briefly describe here some basic principles of the 
techniques that were investigated during the workshop, and 
summarize the performance of the most promising ones.  
 
The overall best technique to date is the delta-M measure but more 
work is needed to fully evaluate the relative advantages and 
disadvantages of various techniques before any firm conclusions 
could be made. There is no doubt that new alternative techniques 
will emerge when the ASR community fully recognizes the 
importance of the problem. 
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