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Abstract
Performances of automatic speech recognition (ASR) systems
degrade rapidly when there is a mismatch between train and
test acoustic conditions. Performance can be improved using
a multi-stream framework, which involves combining poste-
rior probabilities from several classifiers (often deep neural net-
works (DNNs)) trained on different features/streams. Knowl-
edge about the confidence of each of these classifiers on a noisy
test utterance can help in devising better techniques for pos-
terior combination than simple sum and product rules [1]. In
this work, we propose to use autoencoders which are multi-
layer feed forward neural networks, for estimating this confi-
dence measure. During the training phase, for each stream, an
autocoder is trained on TANDEM features extracted from the
corresponding DNN. On employing the autoencoder during the
testing phase, we show that the reconstruction error of the au-
toencoder is correlated to the robustness of the corresponding
stream. These error estimates are then used as confidence mea-
sures to combine the posterior probabilities generated from each
of the streams. Experiments on Aurora4 and BABEL databases
indicate significant improvements, especially in the scenario of
mismatch between train and test acoustic conditions.

Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
State-of-the-art speech recognition technology performs rea-
sonably well when test condition is similar (matched) to the
training condition. Performance of the automatic speech recog-
nition (ASR) system degrades rapidly when there exists a mis-
match between test and train conditions. Robustness of ASR
systems can be increased using multi-stream ASR framework
[2, 3]. Multi-stream ASR framework involves training sev-
eral classifiers independently on different signal representations
(acoustic features) and combining the decisions from the clas-
sifiers during testing. State-of-the-art classifiers used in ASR
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Figure 1: A five layered autoencoder, with 3 non-linear hidden
and 2 linear visible layers. Architecture of autoencoder used in
this paper is {Y × 512× 24× 512×Y }, where Y corresponds
to input feature dimension.

tasks are DNNs. The central issue in multi-stream ASR frame-
work is combination of decisions (e.g. posterior probabili-
ties, N-best hypothesis, recognition outputs etc) from multiple
streams. In this work, we focus on frame-based combination
of posterior probabilities of DNNs from multiple streams. A
good combination rule should assign more weight to decisions
of DNNs which are robust to given acoustic condition. This
is achieved by using weights proportional to estimated perfor-
mance of DNN in the corresponding stream [8, 9]. The weights
are estimated based on the premise that a DNN is at its best
when applied to its training data. Deviations of stochastic reg-
ularities derived from training data degrade its performance. A
general framework for performance estimation of DNN based
classifiers is as follows:

• Model the activations of DNN on the train data

• Performance on test data is estimated by measuring the
deviation of test activations from the model.

Okawa et. al., Misra et. al. [8, 9] observed that as the noise in
test data increases, the output posterior probability distribution
from the multi-layer perceptron (MLP), trained on clean data,
converges to non-informative, uniform distribution. This results
in increase in the entropy of posterior distribution. Based on
this observation, inverse of entropy was proposed as a measure
of performance. Clearly, inverse entropy combination rule is a
special case of the general framework. In inverse entropy rule,
the assumption is output softmax layer activations on training
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Figure 2: (a) Illustration of property of autoencoder useful to distinguish matched data and mis-matched data. (b) Per-speaker mean
||e||2 vs WER.

data, result in a peaky, low entropy posterior distributions. So
performance on a test sentence is estimated to be proportional
to inverse of entropy values.

In this work, we propose to use an autoencoder to model the
activations of DNN. Autoencoders are feed-forward neural net-
works, used for modeling complex data distributions [4, 5, 6].
We train the autoencoders to reconstruct DNN activations of
training data. The reconstruction error on test data is used as
measure of DNN confidence on the test data. Autoencoder
based method can be thought as a generalization of entropy
method, since there are no assumptions on the structure of DNN
outputs of train data. Also, autoencoders can be used to model,
activations at the hidden layer as well, which is not possible in
rule based methods like entropy.

The reminder of the paper is organized as follows: Sec-
tion 2 provides details about architecture, training criterion and
basic properties of autoencoder. Section 3 introduces multi-
stream ASR system, conventional combination rules and pro-
posed combination rule based on autoencoder. Section 4 intro-
duces the experiments performed using autoencoder based com-
bination rule on Aurora4 and Babel databases, and Section 5
concludes the paper.

2. Autoencoder
Autoencoder is a multi-layered feed-forward neural network,
used in the context of unsupervised learning. During the train-
ing process, parameters of the network are optimized to mini-
mize squared error cost between a target vector and output vec-
tor from the autoencoder. The targets used to train the network
are inputs themselves. The cost function used to optimize the
network parameters (W) is shown in the following equation:

min
W

E||x− x̂||22 (1)

where x is input vector and x̂ is output vector from the network.
Figure 1 shows the architecture of autoencoder used in the
present work. An autoencoder with more than one non-linear
hidden layer is shown to capture complex, non-linear manifolds
present in the training data [5, 14]. In order to avoid a trivial
identity mapping (weights of network equal to unit matrix), the
number of nodes in the second hidden layer are chosen to be
fewer than input (or output) layer.

Since the network is trained to minimize the reconstruction
error, a vector sampled from distribution of the training data
will have a low reconstruction error compared to vector drawn

from a different distribution. This property is illustrated in fig-
ure 2, which shows distribution of l2 norm of reconstruction er-
ror vectors (||e||2), computed from training data, data similar to
training data, and data that deviates from the training data. Fig-
ure 2 (a) illustrates that reconstruction error is a good indicator
of the mis-match between training data and test data. Further
to evaluate the ability of reconstruction error to predict the per-
formance, we computed average reconstruction error for each
speaker in Aurora4 test set and correlated with average word
error rate of that speaker. A total of 112 data points, computed
over 14 test conditions of Aurora4 database, was used in the
plot. Figure 2 (b) shows the correlation between per-speaker re-
construction error vs per-speaker word error rate. It is evident
from the plot reconstruction error correlate well with WER, and
can be used to estimate the performance. Details about the train-
ing set, features, etc used to generate the plot are provided in
4.1.

3. Multi-stream ASR

Multi-stream framework involves extracting multiple features
from the acoustic signal. Similar to previous studies [10, 11, 12,
13], we used short-term spectral and long-term temporal modu-
lation features to study the effectiveness of proposed combina-
tion rule. We used perceptual linear prediction (PLP [17]) fea-
tures to capture short-term spectral information and MRASTA
[18] features are used to capture log-term temporal informa-
tion. In each critical band, one second long, energy envelope is
filtered using filters, representing first derivative G1 = [g1σi ]
and second derivative G2 = [g2σi ] of Gaussian function with
variance σi ∈ {0.8, 1.2, 1.8, 2.7, 4, 6, 8.5, 13}. These variance
values result in a filter-bank which is equally spaced in logarith-
mic modulation frequency domain.

During training phase of the system, two separate DNNs are
trained using MRASTA and PLP features. During test phase,
MRASTA and PLP features are extracted from the given acous-
tic signal, and forward passed through their respective DNNs.
Similar to previous studies [9, 10, 12, 13], the posterior proba-
bility vectors are combined using at each time frame. Lattice
generation and decoding is then performed on the combined
posterior probability vector. Figure 3 depicts the architecture
of multi-ASR system.
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Figure 3: Multi-stream ASR architecture. Two separate DNNs
are trained using PLP and MRASTA features. State posterior
probabilities obtained from the 2 DNNs are fused, and then used
for recognition.

3.1. Baseline combination rules

Various combination rules have been proposed in literature to
combine posterior probabilities obtained from neural networks:
sum, product, maximum, minimum rules [1]. In this section
we describe a few of the rules. Let us consider Xat and Xbt

as the two feature streams at a time t. Let pat ≡ P(s|Xat)
and pat ≡ P(s|Xbt) denote the posterior probability of HMM
states obtained from DNNs trained on the two feature streams,
Xat and Xbt, respectively. Sum and product rules [1] combine
the posterior probabilities as follows:

pct = (pat + pbt)/Zt

pct = (pat × pbt)/Zt

where Zt is a normalizing constant, used to make pct as a valid
distribution. Motivation for sum and product rule is given in [1].
Sum rule is a simple combination rule, based on the assumption
that all classifiers are equally confident about their decisions.
Product rule can be considered a log-linear average of posterior
probabilities.

In [9], Entropy of MLP output is used as confidence mea-
sure related to how feature streams are affected by noise or
mismatch. It was observed that value of entropy, H(pat) =
−∑

i piatlog piat, decreases with SNR of test data. This in-
dicates that posterior converges to a non-informative, uniform
distribution over the set of speech classes. Inspired by this find-
ings, [9] proposed a linear weighting scheme, referred to as in-
verse entropy combination. The inverse entropy combination is
given as,

pct = (wat pat + wbt pbt)

where the weights are inversely proportional to value of entropy,
i.e.

wat =
1/H(pat)

1/H(pat) + 1/H(pbt)
, wbt =

1/H(pbt)

1/H(pat) + 1/H(pbt)

The sum rule is a special case of inverse entropy combination,
when both the streams have equal entropy.

3.2. Proposed combination rule:

In this section, we describe procedure to map reconstruction
error obtained from autoencoder to weight associated with each
stream. For each stream, we train an autoencoder on the DNN
activations of the training data. During testing phase, for each
stream, we compute the reconstruction error of activations using
the stream’s autoencoder. Since, high reconstruction indicates
large mis-match between test and train datas, we choose the
following weight assignment:

wat =
1/||eat||2

1/||eat||2 + 1/||ebt||2 , wbt =
1/||ebt||2

1/||eat||2 + 1/||ebt||2

Correlation with WER

Log. phone posteriors 0.61

TANDEM 0.80

TANDEM LDA 0.82

Table 1: Comparison various input representations for training
Autoencoder.

where ||eat|| and ||ebt|| are l2 norms of reconstruction error vec-
tors corresponding to streams a and b, at time t.

4. Experiments
4.1. Noisy speech recognition experiments

The Aurora4 task is a small scale (14 hour), medium vocabulary
speech recognition task, aimed at improving noise and channel
robustness [19]. Aurora4 database is based on the DARPA Wall
Street Journal (WSJ0) corpus which consist of clean recordings
of read speech, with 5000 word vocabulary size. The training
set consists of 14 hours of clean speech, from 83 speakers, sam-
pled at 16000 Hz. The test set contains simultaneous recordings
in 14 different acoustic conditions. These test sets are usually
grouped into 4 subsets: clean (1 test case, group A), additive
noise (6 test cases, group B), clean with channel distortion (1
test case, group C) and additive noise with channel distortion
(6 test cases, group D). The six additive noise conditions are
“street”, “babble”, “train”, “car”, “restaurant”, “airport”, with
varying signal to noise ratio levels from 5 to 15 dB. Each test
condition contains 330 recordings with a total of 40 minutes of
speech.

We used hidden Markov model-deep neural network
(HMM-DNN) system based ASR system is used for the exper-
iments. The system is implemented using Kaldi speech recog-
nition toolkit [20]. We used 6 hidden layer DNNs. The DNNs
are pre-trained using RBM algorithm [21] and fine-tuned using
cross-entropy cost function. The targets used for fine-tuning are
on context dependent tri-phone states, generated using a HMM-
GMM system trained on MFCC features.

4.1.1. Optimal features for Autoencoder training

In order to identify best feature to the train autoencoder, we ex-
perimented with 3 feature representations extracted at the output
of DNN. These are:

• Log. phone posterior features: Phone posterior proba-
bilities are obtained by merging context dependent state
posteriors corresponding to the phoneme. Log. phone
posteriors are estimated by transforming phone posteri-
ors using logarithm.

• TANDEM: Pre-softmax outputs of DNN, trained on
context dependent HMM state targets, are transformed
using principal component analysis (PCA). The PCA
transformation matrix is estimated on the same data used
to train the DNN.

• TANDEM LDA: In this feature representation, we
transform the pre-softmax outputs using multi-class lin-
ear discriminant analysis. The context dependent states
are used as classes for estimation of LDA transformation.

Table 4.1 shows the correlation of reconstruction error, com-
puted from autoencoders trained on each of these features. Cor-
relation is computed between mean reconstruction error of a
speaker and mean WER of that speaker. It is evident from the
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A B C D

MRASTA 3.70 41.61 17.21 59.03

PLP 3.40 55.39 42.50 71.79

Sum 3.05 41.05 18.92 59.17

Product 3.03 39.04 25.33 60.63

Inverse Entropy 3.03 37.54 18.92 56.82

AE TANDEM LDA 3.19 35.95 15.17 54.42

Table 2: Comparison of WER (%) of proposed combination
technique with baseline combination techniques, on Aurora4.
AE TANDEM LDA refers to reconstruction error computed
from autoencoders trained on TANDEM LDA features. Test
set A corresponds to clean condition, B, C and D corresponds
to test set with additive, convolutive and additive+convolutive
distortions, respectively.

table that, autoencoder can be used to predict the WER, regard-
less of feature representation used for its training. The reason
for the observed trend in the table might be due to amount of
HMM state level discriminative information retained by each
transformation. Log. phone posterior has the lowest state level
discriminative information of all the 3 features. TANDEM fea-
tures retain some of the information lost by Log. phone posteri-
ors. In TANDEM LDA, the discriminative information present
in pre-softmax outputs is further emphasized by the additional
LDA transformation.

4.1.2. Comparison with baseline combination rules

Table 2 show the results of PLP and MRASTA systems in the
4 test sets of Aurora4 database. In clean condition, system
trained on PLP features performs better than the one trained
on MRASTA features. Whereas, the performance of system
trained on MRASTA features is significantly better in mis-
matched conditions, especially in conditions which have con-
volutive distortions due to microphone variations (test C and
D).

Out of the combination rules, product and Inverse entropy
combination rules achieve best performance in matched condi-
tion (test set A). In mis-matched conditions, sum and product
rules doesn’t always guarantee WER values lower than individ-
ual streams. In test sets C and D, sum and product rule have
WERs higher than MRASTA stream. This might be due as-
sumption that all classifiers degrade to the same extent, irre-
spective of acoustic condition in test data. Inverse entropy com-
bination is improving the performance over both the streams
in all the test sets, except test set C. This might be due to sig-
nificant difference between performance of MRASTA and PLP
features in test set C, where MRASTA features has 60 % rela-
tive improvement over PLP features.

In matched and mis-matched conditions, results obtained
by combination using autoencoder are better than results ob-
tained by each stream independently. This shows that au-
teencoder based combination never produces results inferior to
those of the best individual streams. Of all the combination
rules, autoencoder based combination is giving best results in
mis-matched conditions. Also, we obtain a 4.2 % relative im-
provement over inverse entropy in test set B and D, and a sig-
nificant 19.8 % improvement in test set C. We hypothesize the
reason behind this behavior as follows: In the acoustic condi-
tions where is a significant difference between performance of
individual streams, proposed combination rule has emphasizes
the best stream more aggressively, by assigning more weight.

MRASTA PLP AE TANDEM LDA

Home Office Mob. 51.6 50.2 49.6

Car Kit 44.7 44.4 43.5

Public Place 47.8 46.4 45.9

Street 45.5 43.8 44.2

Vehicle 48.4 48.4 46.9

Microphone 70.0 70.9 68.7

Table 3: WER (%) in various acoustic conditions of Babel Tok
Pisin language.

4.2. Speech recognition in real far-field conditions

In this section, we use autoencoders to improve robustness to
acoustic mis-matches IARPA Babel data. Babel dataset was
chosen as it contains various real world acoustic conditions.
These are named as “Vehicle”, “Home Office Mobile’, “Micro-
phone”, “Public Place”, “Street” and “Car Kit”. Experiments
aimed at improving robustness are performed on Tok Pisin lan-
guage pack.

We use the following LVCSR pipeline to train individual
streams: We first built a GMM system on VLLP data ( 3 hours)
using PLP features. The GMM system is then used to align the
FullLP data. The new alignments are used to train two bottle-
neck MLPs with MRASTA and PLP features. In each stream,
a fMLLR-GMM [15] system is trained on bottleneck features
corresponding to the stream. The fMLLR features are then used
to train a 6 hidden layer DNN, with RBM pre-taining [21]. The
training recipe is similar to the one proposed in [16]. The dif-
ferences between the recipe in [16] and recipe used for here are,
the DNNs are not sequence trained and input features are bottle-
neck features, rather than standard acoustic features. The entire
pipeline is referred to as stream. The posterior probabilities ob-
tained from the two streams are combined using autoencoders,
as describe in previous section.

Table 3 shows the results in various acoustic conditions in
Babel data. Similar to Aurora4 dataset, autoencoder based com-
bination rule performs better than the best individual stream.
This shows the generality of the proposed combination rule.

5. Conclusions
In this paper, we have proposed techniques to estimate per-
formance of DNN based classifiers. The technique is based
on modeling the distribution of DNN outputs, using autoen-
coders. Reconstruction error of an autoencoder trained on out-
puts of DNNs, was shown to correlate well with word error
rate. Inverse of reconstruction error values is used as confi-
dence measure of the corresponding DNNs. The confidence
measure is applied in multi-stream speech recognition system,
using frame level linear weighting of posterior probability vec-
tors from multiple DNNs. The proposed rule is shown to be
performing better than previously proposed frame based com-
bination techniques like sum, product and inverse entropy rule,
in Aurora4 database. Significant improvements (20 % relative
improvement) over baseline techniques are observed in condi-
tions when one of stream is performing significantly better than
other stream. Improvement was also observed when tested on
more real acoustic mismatch conditions like Babel Tok Pisin
database.
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