MASK+:DATA-DRIVEN REGIONS SELECTION FOR ACOUSTIC FINGERPRINTING

Lucas Ondel'?, Xavier Anguera® and Jordi Luque*

Telefonica Research, Barcelona, Spain
2Faculty of Information Technology, Brno University of Technology, Czech Republic
iondel @fit.vutbr.cz, {xanguera, jls} @tid.es

ABSTRACT

Acoustic fingerprinting is the process to deterministically obtain a
compact representation of an audio segment, used to compare multi-
ple audio files or to efficiently search for a file within a big database.
Recently, we proposed a novel fingerprint named MASK (Masked
Audio Spectral Keypoints) that encodes the relationship between
pairs of spectral regions around a single spectral energy peak into
a binary representation. In the original proposal the configuration of
location and size of the regions pairs was determined manually to
optimally encode how energy flows around the spectral peak. Such
manual selection has always been considered as a weakness in the
process as it might not be adapted to the actual data being repre-
sented. In this paper we address this problem by proposing a un-
supervised, data-driven method based on mutual information theory
to automatically define an optimal MASK fingerprint structure. Au-
dio retrieval experiments optimizing for data distorted with additive
Gaussian white noise show that the proposed method is much more
robust than the original MASK and a well known acoustic finger-
print.

Index Terms— Audio fingerprinting, content recognition

1. INTRODUCTION

With the increasing availability of vast quantities of audio-visual
content online, it is very important to develop techniques allowing
for an efficient representation and effective comparison of such con-
tent in search of duplicates or derivate works. In the audio domain
this can be achieved through acoustic fingerprinting, which is the
process by which audio content can be deterministically encoded
into a compact representation that can be then used for search and
retrieval applications. As described in [1], a good acoustic finger-
print can be measured in (at least) four main dimensions: discrimina-
tory power, robustness, compactness and efficiency. Discriminatory
power measures how different the fingerprints extracted from ver-
sions of the same audio are versus other audio. Robustness measures
how much the fingerprint gets affected when distorting the original
audio. Compactness refers to the size needed to encode the audio,
and efficiency regards to how fast the fingerprint can be obtained
from the audio and, equivalently, how fast it can be applied in the
task it is used for.

Although the literature already offers many possible fingerprint-
ing algorithms (see [2] for an early review of the area) most are not
suitable for real-life situations. Probably the most well known fin-
gerprints are Wang (Also known as Shazam) [3], Haitsma-Kalker
(also Known as Philips) [4], Burges et al. (named RARE) [5] and
Baluja-Covell (named Waveprint) [6]. The fingerprint used in this
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work builds mostly on inspiration from Wang and Haitsma finger-
prints, which we briefly review next. On the one hand, in [3] they
select relevant salient points in the short-term spectrum of the signal
and encode their relationship in pairs. The strength of this method
lies on the intelligent selection of robust salient points to be robust
to typical audio distortions and additive noise. On the contrary, by
encoding pairs of points they double the probability to miss at match-
ing time when either of the original salient points disappears in the
modified audio. On the other hand, in [4] they propose a binary
representation of the acoustic signal obtained at fixed time intervals
by encoding energy differences between adjacent frequency bands.
This method allows for a thorough (but still compact) representation
of the signal that is resilient to light distortions and noises. When
using the fingerprint in very noisy conditions it looses most of its
performance. To quantify this, in [7] the authors estimate an upper
bound to the Haitsma fingerprint performance under noisy condi-
tions and validate such model with real data. In [8] they perform
a complete analysis of the Haitsma fingerprint under strong noisy
conditions and propose the use of a power mask during matching
process to improve its performance.

Recently we proposed MASK (Masked Audio Spectral Keypoints)
[1] as an efficient and effective representation of the audio signal,
improving upon some of the shortcomings observed in previously
proposed fingerprints. For instance, in MASK the acoustic sig-
nal is represented by a series of compact low-dimensional binary
fingerprints, obtained by encoding the energy flow around most
relevant spectral energy peaks (whose desired density can be set
as a parameter). Both fingerprint extraction and matching among
fingerprints is very efficient and it was shown in [1] to be quite
robust to most typical acoustic transformations, as well as useful at
discriminating between acoustic signals. A known shortcoming of
the initial MASK proposal is that it requires to manually define a
spectro-temporal “mask” indicating what spectral region pairs to be
compared. While a reasonable mask was proposed in [1] it was not
proven whether it was optimal for the given test data. In addition,
later tests distorting the input signal with additive Gaussian white
noise showed that MASK’s matching accuracy (as well as other
fingerprints) still suffers in very noisy conditions.

In this paper we propose an extension of the MASK fingerprint
composed of a data-driven optimization method to automatically de-
rive the spectro-temporal mask to be optimal under certain acoustic
conditions. In this paper we focus on optimizing for data affected
by strong additive Gaussian noise and show how, while the origi-
nal MASK and Haitsma [4] fingerprints get quickly degraded, the
proposed data-driven MASK performs much better at low Signal-to-
Noise Ratio (SNR) levels.

The rest of the paper is organized as follows: first, in Section 2
we review how the MASK fingerprint is generated. Then, in Section
3 we introduce the use of Mutual Information (MI) as a measure
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of robustness. Next, in Section 4 we explain how we use MI as
an optimization method to automatically select the spectral regions
in MASK. The fingerprint is then tested and compared to others in
Section 5. Finally, we conclude and propose some next steps.

2. MASK ACOUSTIC FINGERPRINT

In this section we review how the MASK acoustic fingerprints [1]
are extracted. The key idea of MASK is to encode the energy flow
around salient points of the time-frequency spectrum using a binary
descriptor. In order to increase robustness against noisy spectra, re-
gions of the spectrum (instead of single time-frequency bins) are
used to set each bit in the fingerprint. The MASK extraction process
can be summarized in four steps as shown in figure 1, and described
below.
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Fig. 1: MASK fingerprint extraction block diagram.

2.1. Time-to-Frequency Transformation

First, the signal is band-pass filtered between 300Hz and 3KHz, sam-
pled in segments of 100 ms at a fixed sampling rate of 10 ms. Then,
we apply a Hamming window to each segment, compute the FFT and
apply a MEL filter bank of 21 triangular filters to the spectrum with
equispaced filters. Note that on the contrary of the traditional MFCC
or PLP features, neither equal loudness preemphasis nor compres-
sion is applied in this case. We repeat this process for all the signal
to obtain a spectrogram representation used in the next step.

2.2. Selection of Salient Key Points

Next, we search for the spectral energy peaks in the short term spec-
trum. Like in previous works [3], we have observed that spectral
energy peaks are robust to typical audio distortions and transforma-
tions, which makes them good “anchor” points to base the finger-
print on. In this work we consider a salient key point as a point in
the time-frequency plane whose energy is greater than the energy of
its direct neighbors (both in time and frequency). In order to limit
the number of selected salient key points we apply a post-detection
filtering to select only the peaks whose energy stays above a given
temporal masking threshold defined according to its distance to the
previously selected peak in the same frequency band. The threshold
is defined as follow:

t2

(At)
Thr[n] = amE[n —1]e” 207

where At is the distance in frames between the previous spectral
peak and the considered one, E[n — 1] is the energy of the previ-
ously selected peak and «, o are two free parameters used to set the
threshold falling rate and its width, respectively. Throughout all our
experiments we set @« = 0.98 and o = 40. In addition, because of
the fixed size of the mask used in the next step, spectral peaks that
are detected in the top or lower-most spectral bands are discarded to
avoid edge problems in the mask.

336

2.3. Spectrogram Masking Around Salient Key Points

Similarly to [4] we encode the information in the spectrogram by
using a set of binary comparisons between spectral values. To im-
plement this, in MASK we define a spectro-temporal “mask” cen-
tered around each selected key point. Such mask identifies pairs of
spectral regions (i.e. groups of spectro-temporal energy points in the
spectrogram) to obtain a good representation of how energy flows
around each key point. In practice, the energy values inside each
region are averaged and compared to define each bit in the final fin-
gerprint. This process can also be seen as similar to the widely used
A features in speech but in this particular case the A are computed
along the time and/or the frequency axes and at different scales (i.e.
the size of the regions).

Choosing the regions wisely is fundamental to obtain a robust
and highly discriminant final MASK fingerprint. Previously [1] we
had defined the regions by hand trying to optimally cover the space
around the key point. The resulting mask was thus derived from ex-
perience and not as a result of an optimization process to the target
acoustic condition. As explained in Section 4, in this paper we pro-
pose a data-driven method to obtain an optimal mask according to
a mutual information criterion. Figure 2 shows the mask we used
in the experiments in this paper, optimized for low SNR signals.
Position (0,0) in the mask is centered on the spectral salient point.
The gray levels in the mask indicate how many times each particular
time-frequency location was involved in defining any of the compar-
ison regions, i.e. the importance of each point in the fingerprint. It is
interesting to see that in this case both frequencies below and times
before the salient point become most important.
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Fig. 2: Mask obtained by the proposed method. The darkness level
indicates the number of overlapping regions.

2.4. Fingerprint Construction, Indexing and matching

Finally, the MASK fingerprint is obtained by joining together the in-
formation about the band location of the key points (in binary form)
and the set of bits obtained from applying the mask. On the one
hand, the band location is a fixed length binary string that indicates
in which filter bank the spectral peak appears. In our configuration
we used 5 bits to encode 21 band locations. On the other hand, each
difference between region pairs in the mask is stored as a single bit
in the final fingerprint. In this paper we used 20 region pairs, thus
accounting to a 25bits fingerprint.

Each fingerprint is then indexed into an inverted file index where
the fingerprint acts as the key and each content field contains a list of
all content IDs and time locations (in frames) where this fingerprint
was found.

For this paper we implemented a simple matching algorithm be-
tween query and reference. For each query file (i.e. a distorted



version of a file whose fingerprints have been pre-indexed) we ex-
tract its fingerprints and retrieve for each one the matching content
ID and its time within the file. Then a histogram of counts is built
per reference content ID to obtain a matching score. The histogram
counts how many query-to-reference time-differences are equal (i.e.
Hist(Ay = T, — Ty), where T and T, are the times where refer-
ence and query contain the same fingerprint). The maximum of this
histogram is used as the matching score.

3. MUTUAL INFORMATION AS A MEASURE OF
ROBUSTNESS

Next we review the mutual information (MI) measure and explain
how we use it as a measure of robustness in order to formulate a
data-driven region selection method for MASK. Let X be a random
variable whose realisations are the vectors x = (z1, ..., xn)T where
each x, represents the difference of energies computed, as explained
above, from audio references. Let Y be another random variable
whose realisations are defined as y = (f(z1), ..., f(x,))" where f
is a quantization function shown in Eq. 1.

f(Ik)—{

Thus y is a multidimensional binary variable. In a similar way,
let the random variables X’ and Y be the counterpart of X and Y’
for the audio queries. We make the assumption that audio queries are
transmitted via a Gaussian channel at a specific SNR. Given that the
random variable X is defined as a linear transformation of the time
varying spectrum (averaging and taking the difference) the random
variable X is also defined as a Gaussian channel with input X, as
X' = X + N, where N is the noise sample from a normal distri-
bution with mean 0 and is independent of X. It is important to note
that the particular realizations of Y (and consequently of Y”) greatly
depend on the choice on the regions to be compared in building the
fingerprint. Because we would like our fingerprint to be robust to
general signal transformations and to noise we wish to select the
configuration 6 that yields the lowest error for a given SNR.

Note that the naive solution to the problem of selecting the re-
gions configuration giving the lowest error between Y and Y could
result in an inefficient robust solution. Indeed if Y is composed of
robust variables having a low entropy, the fingerprint configuration
will be robust but will carry little information, and hence resulting
into a weak fingerprint. Therefore our problem needs to be thought
of as a constrained minimization problem where we try to minimize
the error while keeping the entropy of Y as high as possible. Another
remark is that the configuration in the fingerprint also determines the
dimension of the variable Y, hence our goal here is to find a subset
of bits (each bit will be one dimension of Y) that satisfies the afore-
mentioned constraints.

The Mutual Information (MI) is a measure of dependence be-
tween two random variables and it is defined as

0
1

ifx <0

1
ifzx >0 M

I(X;Y) = HIX]+ H[Y] - H[X, Y] )
Where H[X] is the entropy of X, H[Y] the entropy of Y and
H[X,Y] is the joint entropy of X and Y. This measure is widely
used in features selection for classification where it offers a way to
quantify how informative is a feature when inferring a class. An
important property of this measure is that I(X;Y) > 0 always,
equality being reached if and only if the two random variables are
independent. For instance, for a low SNR Y’ will tend to be inde-
pendent of Y thus leading to MI close to zero whereas at high SNR
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Y’ will be correlated to Y, resulting in a high mutual information.
The regions selection problem can be therefore turned into a problem
of finding the configuration that maximizes the mutual information
between Y and Y’. This interpretation is possible thanks to the
Gaussian channel assumption and because Y and Y are (multivari-
ate) binary variables. A situation where this method would yield a
poor solution would be if Y and Y are inverted, i.e. if Y = 101...
then Y’ = 010... and vice-versa. Such situation would yield high
mutual information while making the fingerprint completely inef-
ficient. This is however an unrealistic case since adding Gaussian
noise can only result in a decorrelation of the two variables. Note
that using MI as a regions selection criterion respects the constraint
that the final fingerprint configuration should have an entropy as
high as possible to keep the search of fingerprint in the database
efficient.

4. DATA-DRIVEN REGION SELECTION IN MASK

In this section we describe the method followed to select the bits (i.e.
the region-pairs comparisons) of the MASK fingerprint so that, for
a given noise level, those bits are robust and are not altered between
clean and noisy signals.

First of all, we generate all possible fingerprints in a training set.
The fingerprints are extracted as defined in Section 2 but obtaining
all possible comparisons of block pairs of size 3x1, 3x2 and 4x2 (we
limited our search to these block topologies to constraint computa-
tional cost). Block pairs overlapping each other for more than 50 %
of their size were discarded. This produced a set of fingerprints of
about 6500 bits each. In addition, we generated another set of finger-
prints with the same configuration and the same audio data but with
white noise added at an SNR of 0db. Following the model described
above, Y will be the multidimensional random binary variable which
takes as values the fingerprints from the clean data (the references)
and Y the multidimensional random binary variable which takes as
values the fingerprints from the noisy data (the queries). We modeled
the probability of these two variables with a mixture of Bernoulli
distributions [9] as shown in Eq. 3

p(y, y'lm, o) =D mp(y, y' |, 1) 3)

k

with
D D , ,
p(y, ¥ |’y = [Tt (= ) ) Ty (1= )0
i=1 =1

We used 100 components in the mixture and we estimated the pa-
rameters with the Expectation-Maximization (EM) algorithm. The
number of components directly reflects the capacity of the model to
capture the covariance across bits. Because of the high number of
bits of the fingerprint, we found that 100 components was a good
trade-off between computational requirements and accuracy of the
model. The bit selection process (i.e. the selection of the most rele-
vant spectral pairs) is then performed as described in Alg. 1.

Note that evaluating the MI for a high dimensional vector can
quickly become computationally infeasible. To avoid this computa-
tional barrier we iteratively ran several times the algorithm in blocks
of 5 bits and then concatenated those chosen bits all together yield-
ing an approximate solution of our problem.

5. EXPERIMENTAL EVALUATION
5.1. Experimental Setup

In this section we evaluate the proposed fingerprint and compare it
to the original MASK [1] and the Haitsma [4] fingerprints.
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Fig. 3: Accuracies for 10 seconds queries for different SNR levels and acoustic transformations(T)

Algorithm 1 data-driven bit selection process based on MI

Input: y,y’
Output: set of selected bits
i « (argmax; MI(y;,y;))
y < [yi]
y' [yl
for number of desired bits do
i + (argmax; MI([y, yi], [y’, yi]))
y < [y, vil
y <y, i
end for
return y

Tests were performed on a database, composed of 150 audio
excerpts of 30 seconds each, obtained from various sources (approx.
45% from TV and movies, 40% from music files and 15% from clean
speech). Each file in the database was modified using the acoustic
transformations defined in the NIST-TRECVID benchmark evalua-
tions [10], obtaining 7 versions of each file: the original file (trans-
form 0) + 6 transformations (transforms 1-6).

After fingerprints are extracted for all files in all conditions, the
task consists on retrieving the correct “clean” file given one of the
“transformed” files. Accuracy was measured by checking whether
the best match corresponds to the same file. After preliminary exper-
imentation, we observed that both MASK and Haitsma fingerprints
performed very well on all transformations (obtaining matching ac-
curacies between 98% and 100%). To make the task harder we fur-
ther deteriorated all signals by adding Gaussian noise at SNR levels
between 0 and 30dB (depending on the test). In all cases we used a
single data-driven MASK, trained on the original data (transform 0),
not specifically adapted to any of the audio transformations.

5.2. Experimental Results

Table 1 shows results of searching for the correct clean audio file
by using each of the transformed files (around 30s/query) at SNR
= 0 dB. We see that the data-driven MASK is almost not affected
by the noise whereas we observe severe performance degradation on
the Haitsma fingerprint and on the original MASK.

To further investigate the effects of noise on the acoustic finger-
prints, we kept the same search index but we shortened the length
of the query to 10 seconds and computed the matching accuracies
at different SNR values, ranging from 0 to 30db. Figures 3a, 3b
and 3c show the results for the acoustic transformations 4, 5 and 6,
corresponding to the most challenging cases.
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Table 1: Accuracy in percent of the MASK system for the different
audio transformations and SNR = 0 dB

Transform | Haitsma | Original MASK | data-driven MASK
1 19.04 81.75 100
2 58.50 92.56 100
3 78.91 96.62 100
4 6.12 45.27 100
5 11.56 52.02 94.55
6 22.44 66.89 97.95

We see that Haitsma fingerprint performs quite well for high
SNR values but it quickly degrades in noisy signals. On the con-
trary, MASK does not degrade so abruptly because energy compar-
isons are performed between bigger spectro-temporal regions (not
only on very few spectral points). When automatically training the
mask using the proposed data-driven algorithm we obtain an even
more robust fingerprint, whose performance does not collapse at low
SNR rates. Note that although the mask has been trained and tested
on the same data, the high volume of fingerprints extracted (in the
order of millions) avoids the system to overfit to the data, but instead
learns how low SNR levels affected the data.

6. CONCLUSIONS AND FUTURE WORK

In this paper we propose an improvement to MASK, a recently pro-
posed acoustic fingerprint that has been shown to be effective at com-
pactly representing an acoustic signal using binary descriptors. In
particular, we propose a data-driven method to define the structure of
the MASK fingerprint to be optimal for a desired target acoustic con-
dition. To do so, we use mutual information as an optimization crite-
rion to select which spectral region pairs around each salient spectral
peak are most robust when the signal is deteriorated. We test the al-
gorithm optimizing for noise at 0dB SNR and applying it in an audio
search task using signals with various distortion and SNR levels. Re-
sults show that the proposed data-driven MASK clearly outperforms
the original MASK implementation as well as an implementation
of the well known Haitsma fingerprint, specially at low SNR levels.
Our next steps include the understanding of how different sorts of
audio can affect the automatic selection of spectral regions. We also
plan to train and test the fingerprint with bigger datasets and for par-
ticular use-case scenarios (e.g. for music-only, TV or speech-only).
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