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Abstract

We propose a novel approach to design modulation frequency
filters for the first stage processing of critical band spectrum
of speech using deep neural network (DNN). These filters re-
place conventional modulation frequency filters currently used
in state-of-the-art BUT speech recognition system and yield
about 10% relative improvement in phoneme recognition accu-
racy. The resulting filters are consistent with some known tem-
poral properties of higher levels of mammalian auditory pro-
cessing and suggest more efficient scheme for pre-processing
of speech for ASR.
Index Terms: deep neural network, convolutive layer, modula-
tion filters, mammalian auditory processing

1. Introduction
In early days of ASR, typical features were derived from rather
short 10-20 ms segments of the signal. However, over the years,
ASR field gradually started to use longer and longer temporal
contexts, and features of some of state-of-the-art systems are
derived from temporal contexts of hundreds of ms. Such longer
temporal context carries information about spectral dynamics
rather than merely using a short-time spectrum of speech [1].
This brings the concept of so called modulation spectrum of
speech [2], which is spectrum of changes of spectral envelopes
in speech.

One of the early techniques, which utilize modulation spec-
trum is RASTA processing [3], where band-pass filters with
time constants of the order of a couple of hundred ms are ap-
plied to deal with harmful effects of linear distortion in the sig-
nal, and enhancing modulation frequency components with syl-
labic frequencies. Success of RASTA spurred further research.
The TRAP technique [4] simply uses long temporal trajecto-
ries of spectral energies as inputs to frequency-localized non-
linear classifiers. Linear discriminant analysis (LDA), applied
to derive filters directly from labeled speech data, yields im-
pulse responses, which resemble temporal derivatives of Gaus-
sian function, again emphasizing modulation frequency com-
ponents in the neighborhood of 5 Hz [5]. Somehow surpris-
ingly, the LDA-derived filters are almost identical at all carrier
frequencies, suggesting appropriateness of frequency-invariant
processing of information in speech. This means that similar
information-carrying features in dynamic speech spectrum are
being extracted at all frequencies, just as it is hypothesized that
similar shapes of edges of objects are extracted at all positions
in a picture in the first stages of image recognition.

Longer temporal contexts would be consistent with dom-
inant temporal properties of spectro-temporal auditory cortical
receptive fields (STRFs) [6]. Various emulations of STRFs with
the long context emerged [7] for use in ASR.

To extract these frequency-invariant dynamic features,
MRASTA [8] uses temporal derivatives of Gaussian functions
with varying variance, thus effectively extracting various com-
ponents of the modulation spectrum. Similarly, the bottleneck
features [9] use projections of 300 ms long temporal trajecto-
ries of spectral energies in individual critical bands on Ham-
ming window weighted cosine bases as inputs to subsequent
DNN, again implying various band-pass filters on the modula-
tion spectrum.

In this paper, we experiment with a similar setup where the
Hamming window weighted cosine bases are used as modula-
tion frequency filters. The question we are addressing in this pa-
per is to what extent are such filters optimal as pre-processing
steps in deriving information from spectral dynamics. To an-
swer such question, the modulation filters are learned directly
from acoustic data by training their impulse responses using the
DNN training framework. We report improved recognition per-
formance obtained with the learned filters. We also analyze the
frequency response of the filters.

2. Temporal context in DNN training
Many state-of-the-art speech recognition systems use Deep
Neural Network (DNN) to map speech features frame-by-frame
into phone (or phone state) posteriors, which are in turn used in
HMM based decoder to decode phoneme or word sequences.
The speech features usually used with the DNN classifiers are
MFCC [10] or the log Mel filter bank outputs. Typically, fea-
tures from some temporal context around the current frame are
taken as the DNN input to predict a phone. Traditionally, to in-
corporate the information about the temporal context in GMM-
HMM based recognizers, raw features were augmented with the
temporal derivatives (delta and acceleration coefficients). How-
ever, these coefficients represented rather short context of few
frames (few tens of millisecond). In current DNN-HMM based
systems, much longer context up to several tens of frames (hun-
dreds of miliseconds) is used. All the frames from the required
context can be simply stacked into one vector to form the DNN
input. However, this results in very high-dimensional vector
with lots of redundant and noisy information. Typically, some
dimensionality reduction is applied to ”smooth” the information
encoded in the time context.

2.1. Baseline system

Figure 1 shows the scheme of our baseline system, where the
DNN input is derived from 40 log Mel filter bank outputs. The
temporal context of 31 frames (current frame ± 15 frames) is
considered. For each of the 40 frequency bands, the 31 point
temporal trajectory of the log Mel filter bank output is projected
into 16 Hamming window weighted DCT bases (see first row of
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Figure 1: Scheme of our baseline system.

Figure 2) resulting in 40 × 16 = 640 dimensional DNN input.
This (or similar) processing has proven to provide state-of-the-
art performance for many tasks in our earlier experiments [11].
The rationale behind using the Hamming window weighted
DCT bases was as follows: The Hamming window makes DNN
to pay more attention to (or to represents in greater detail) the in-
formation around the current frame, for which DNN tries to pre-
dict the phone state class. The DCT bases are used to ”smooth”
the temporal trajectories log filter bank outputs over time by dis-
carding information about their fast changes. At the same time
DCT makes the resulting coefficients more decorrelated, which
may be beneficial for DNN training [12].
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Figure 2: 4 DCT bases with their corresponding frequence re-
sponses.

3. Learning modulation frequency filters
Now, let us see the frame-by-frame log filter bank outputs of one
band as samples of a signal. As described above, we project
31 points of such signal (around the current frame) into the
Hamming-DCT bases. Since we repeat this projection for every
frame, we can see this operation as a convolution between the
signal and the bases. In other words, we can see the bases as
impulse responses of FIR filters operating on the temporal tra-
jectories of log filter bank outputs. Such filters are known as
modulation frequency filters as they shape temporal modulation
of energies in individual frequency bands. In the second row of
Figure 2, we can see the frequency responses of the modulation
filters, which are all low-pass or band-pass filters discarding the
fast temporal changes in the log filter bank outputs (i.e. discard-
ing high modulation frequencies). In our case, the same set of
modulation filters is used for all the frequency bands.

In our baseline system, the modulation filters impulse
responses are precomputed and fixed as the Hamming-DCT
bases. However, in the framework of DNN training, the mod-
ulation filters can be trained together with the other DNN pa-
rameters. In fact, the modulation filters impulse responses can
be represented as an additional linear layer in the DNN, where

the matrix of weights has a sparse structure. In the experiments
described in section 5, the modulation filters are trained in such
a way that the same set of filters is trained for each frequency
band. This is achieved by sharing the weights (accumulating
the back-propagated gradients) of the corresponding filters op-
erating on different frequency bands.

4. Experimental setup
In our experiments, we use the baseline system described in sec-
tion 2.1. The DNN has 640 dimensional input and 135 outputs
corresponding to phoneme state posterior probabilities (3 states
for each of 45 phonemes). It consists of 3 hidden layers with
2500 neurons in each layer. The Sigmoid activation functions
are used in hidden layers. Softmax is used for the output layer.

The DNN is trained using stochastic gradient descent to
minimize frame-by-frame cross-entropy with weights randomly
initialized (including the modulation frequency filter parameters
to be trained). For all experiments, the same training strategy
and learning rate scheduler (Newbob) [13] is applied. We re-
port results in terms of phone recognition accuracy and frame
classification accuracy (with phoneme states as classes).

The experiments were carried out on a proprietary database
containing American English read and spontaneous speech data
with medium background music and babble noise. The training
set consists of 6 hours of transcribed speech from 32 speakers.
One hour (10 speakers) is reserved for cross-validation set and
one hour (10 speakers) for the test set. Data were manually tran-
scribed on the word level and the phoneme state level transcrip-
tions were obtained using forced alignment with a GMM-HMM
based LVCSR system [14]. To facilitate evaluation of progress
on such proprietary database, we compare our new results to the
results from our baseline speech recognizer described in sec-
tion 2.1.

As described before, the modulation filters can be repre-
sented by an aditional layer prepended to the DNN. In such
configuration, it is necessary to modify the learning rates for
the first two layers (the new layer with filters and the first layer
of the original DNN). Nonlinearity between layers limits values
on the neuron outputs to a fixed range. The absence of the lim-
iting nonlinearity can cause oscillations during the training as
the gradients of weights connected through the linear units are
highly correlated (multiplying weights in one layer by scalar
and in the other layer by its inverse leads to an equivalent so-
lution). We scaled the learning rate on the first and the second
layer by factor 0.01 and 0.1, respectively.

5. Results
In our baseline system described in section 2, 16 Hamming-
DCT modulation filters were used with temporal context of 31
frames. In the following expepriments, we also experiment with
different numbers of modulation filters starting from a single fil-
ter (first column of Fig. 2) going up to 32 Hamming-DCT bases.
Next, we experimented with systems, where the modulation
filters were trained together with the parameters of the DNN.
Again, we experimented with different numbers of trained mod-
ulation filters (up to 31).

On the left of Fig.4, we can see frame accuracies on the
cross validation set for different tested systems. When com-
paring systems with the same number of modulation filters, the
trained filters always outperform fixed Hamming-DCT bases.
On the right, we can see phoneme accuracies on the test set. It
is obvious, that trained temporal filters outperforms the base-
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Figure 3: Frequency and impulse responses of 8 derived filters

line configuration. For modulation filters set to Hamming-DCT
bases, the best performance is obtained with full set of 31 fil-
ters, where the frame accuracy is 44.0% and phoneme accuracy
is 55.5% The trained modulation frequency filters perform the
best with frame accuracy 44.1% and phoneme accuracy 55.7%
with only 12 filters as can be seen on Fig. 4.

5.1. Extended time context

After the successful experiment with the 31 frames context, we
tried to extend context size to 61 frames (30 frames on both
sides around the central frame). In Fig. 5, we can see that the
difference in performance between Hamming-DCT filters and
modulation frequency trained filters is even larger. We can also
see that for the Hamming-DCT filters, the performance with
the context 61 frames is slightly worse compared to the con-
text of 31 frames. With the same number of filters, the trained
modulation filters again always perform better compared to the
Hamming-DCT based filters.

For the Hamming-DCT based filters,the best performance
is obtained with 28 filters, where frame accuracy is 41.1% and
phoneme accuracy is 54.9%. However, such system is outper-
formed by the one with only 8 trained modulation filters with
frame accuracy of 42.5% and phoneme accuracy 56.1%. Note
that, for the trained modulation filters, extending the context
from 31 frames to 61 frames helps to improve the phoneme
recognition performance. On the other hand, the frame clas-
sification performance is slightly worse.

6. Analysis of learned filters
We choose time context of 61 frames for the further analysis
of learned filters behavior. Improvements in recognition accu-
racy are important but even more interesting could be to see
which solutions the DNN optimization came with. Fig 3 shows
impulse and frequency responses of 8 FIR DNN-derived mod-
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Figure 4: Results with 31 frames of temporal context.
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Figure 5: Results with 61 frames of temporal context.

ulation filters. All filters significantly attenuate modulation fre-
quencies that are higher than about 20 Hz. Most filters also
suppress modulation frequencies that are lower than 1 Hz. Such
band-pass character is consistent with sensitivity of hearing to
sound modulations [15], and has been also observed in LDA
designed FIR modulation filters [5].

To gain some insight to relative importance of various
DNN-designed filters, we also show impulse and frequency re-
sponses of smaller set of filters. When only one filter is learned,
such a filter is low-pass, computing weighted average of spec-
tral values in 61 frames and passing modulation frequencies
lower that 14 Hz as in Fig 6. The phone recognition accuracy
obtained with the single filter at each frequency is only 26%.
With two filters, the recognition accuracy increases to 42.3%.
The filters are band-pass, suppressing modulation frequencies
below 1 Hz see Fig 6. Three filters in Fig 7 yield 47.1% ac-
curacy and we again observe one low-pass and two band-pass

Figure 6: Frequency and impulse responses of (a) 1 filter, (b) 2
filters.

filters.
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Figure 7: Frequency and impulse responses of 3 derived filter.

7. Conclusion
DNN paradigm was successfully used for design of modulation
frequency FIR filters. The technique optimizes the whole pro-
cess of deriving posterior probabilities of speech sound classes
(three-state phonemes). The FIR filters of interest represent the
first linear stage of the DNN. The filters have dominantly band-
pass character, suppressing modulation frequencies higher that
20-25 Hz and lower than 1 Hz. Such filters are qualitatively
consistent with FIR filters obtained by LDA, with human sensi-
tivity to modulations, and with observed temporal properties of
mammalian auditory cortical receptive fields. When applied in
the state-of-the-art ASR system, where they replace the previ-
ously used cosine-based filters, the new filters consistently yield
higher recognition accuracies. This tendency is the most pro-
nounced when smaller numbers of filters are being used, sup-
porting high efficiency of the derived FIR modulation filters.
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