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1. INTRODUCTION

This submission is a collaborative/competitive effort of
Agnitio, BUT and CRIM.

2. AGNITIO

Agnitio’s final system is based on three subsystems:
MFCC-PLDA, MFCC-BNF-4-PLDA and MFCC-BNF-
2-PLDA.

2.1. Datasets

We employed SRE 2004-2008 and Fisher data to train our
system. The datasets are as follows:

• SRE04, SRE05, SRE06 and SRE08 data were used
to train the UBM, i-vector extractor, NDA and the
PLDA,

• 300 hours of Fisher database was used to train a
DNN,

• Unlabelled development data was used for mean
and score normalization.

2.2. Feature Extraction

We used two feature extractors: MFCCs and Bottleneck
DNN features.



• We extracted 20 MFCC static coefficients (C0-
C19) from 250Hz to 3.400Hz including delta and
delta-delta. The analysis window is 20 ms long
with a frame rate of 10ms. Two combined systems:
Long-Term Spectral Divergence (LTSD) VAD and
energy based VAD computed speech/nonspeech
labels. First 50ms of every audio are removed to
avoid inconsistent VAD behavior. Once MFCC
coefficients are computed, they are normalized
applying Cepstral Mean Normalization (CMN),
RelAtive SpecTral Amplitude (RASTA) process-
ing and warping (3 seconds window).

• BNF features were computed using a 5-hidden
layer DNN, trained using 300 hours of data from
Fisher database. Each BNF is 60 dimensional.
Pnorm was selected as the appropriate the non-
linearity. It has 500 maxout units with inputs of
dimension 5000. Spliced MFCCs (with a context
of 4 frames to the left and 4 frames to the right)
were used as the input for the DNN.

2.3. Classifier Schemes

MFCC-PLDA: Our basic system is based on a full co-
variance Universal Background Model (UBM) of 2048
GMM-component, using MFCCs in the whole process.
400 dimensional i-vectors are extracted consequently.
Nearest-neighbor Analysis (NDA) performs a dimen-
sionality reduction of those ivectors from 400 to 250.
This process is followed by mean normalization, which is
adapted to the use case employing unlabeled development
data, and length normalization. Scoring between i-vectors
is achieved by using gender dependent PLDA (speaker
space dimension is fixed to 120).

AGN-MFCC-BNF-4-PLDA: Two feature extractors are
used: MFCC and BottleNeck Features (BNF). The bottle-
neck postion is in the fourth-hidden layer.

Two full covariance Universal Background Models
(UBMs) composed of 2048 component are trained on
MFCC and BNF features. For each audio, two 400-
dimensional i-vectors are extracted, respectively. They
are then stacked to obtain a single 800-dimension i-
vector per audio. Once again, NDA is employe, but
this time it performs a dimensionality reduction of those
ivectors from 800 to 500. The process is followed by
mean normalization, and length normalization. Scoring
between i-vectors is achieved using gender dependent
PLDA (speaker space dimension fixed to 200).

AGN-MFCC-BNF-2-PLDA: MFCC-BNF-2-PLDA is
identical to MFCC-BNF-4-PLDA, but modifying the po-
sition of the bottleneck. In this case it is allocated in the
second hidden layer.

2.4. Normalization

For each classifier we employed gender dependent s-
norm. Score normalization cohorts are adapted to the use
case, using SRE16 unlabeled development. Automatic
gender identification is obtained from i-vectors in PLDA
framework.

2.5. Fusion

Normalized scores for the three subsystems are linearly
fused by a simple weighted addition. Weights are 0.5,
0.25 and 0.25 for MFCC-PLDA, MFCC-BNF-4-PLDA
and MFCC-BNF-2-PLDA, respectively. The scores are
assumed to be of comparable scales because of score nor-
malization.

2.6. Performance and Processing Requirements

The infrastructure used to run the exprimentes is a CPU,
Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, with a total
memory of 8140568kB.

The execution time of an enrollment model in a single
thread is of 13.82RT, using 2.97GB of memory. On the
other hand, each trial employs 13.92RT and 2.97GB of
memory to calculate a score.

3. BUT

All BUT systems are based on ivector paradigm [1] with
different features and backend.

3.1. DATASET

• Primary Background Data: telephone data from
NIST SRE 2004 - 2008, Fisher English and
Switchboard

• nonEnglish data: we selected non English seg-
ments from our Primary Background data. We
split this data into 3 parts- train (for PLDA, LDA,
SVM, SNORM ...), dev (calibration, fusion), test
(blind test set). We followed the split between
training and development data designed in the
PRISM dataset and we also created short cuts with
durations of speech which reflects the evaluation
plan for NIST SRE 2016 - more precisely we
based our cuts on the actual detected speech in the
NIST SRE 2016 development labeled data. We
chose the cuts to follow the uniform distribution:

– Enrollment between 25-50 sec of speech

– Test between 3-40 sec of speech

– Train between 10-60 sec of speech



• Unlabeled data: unlabeled data from SRE16 devel-
opment

3.2. VAD

Our VAD is based on phone recognizer trained on Fisher
with 3 variants of Fisher with added noise at different
SNR. We dropped all frames that were marked as silence
or noise.

3.3. Features

All features have 19 direct coefficients with Energy or C0,
delta and double delta coefficients, which makes it 60 di-
mensional features. Short time cepstral mean and vari-
ance normalization over 3 second window (sCMVN) is
applied only on speech frames. We used 3 sets of fea-
tures:

• 19 MFCC+Energy - HTK based

• PLP+Energy - HTK based

• Perseus - description of these features can be found
in[2].

• MFCC+SBN-ENG (Stacked Bottleneck Features)
trained on provided English data

• MFCC+SBN-BABEL (Stacked Bottleneck Fea-
tures) trained on provided BABEL data

3.4. UBM+iVector

We used GMM with 2048 Gausians and iVector with
600 dimensions trained in gender independent fashion.
Both components are trained only on the telephone data
from MIXER collection, Fisher English and Switchboard
2. UBM is trained on random selection of 8000 files.
iVector is trained on the 74594 files from 16241 speakers.

3.5. Classifier

We have 3 variants of classifiers:

• PLDA: For training PLDA model, telephone data
from Primary Background Data and Non English
data were used. All iVectors were mean (mean
was calculated using all training data) and length
normalized, followed by LDA with Within Class
Covariance Correction (WCC) decreasing dimen-
sions of vectors from 600 to 200. The WCC is
based on weighted adding of the within-class co-
variance of different languages and datasets into
the within-class covariance of LDA. We were
also removing shift between the training data and
the minor and major datasets. Resulting scores

were normalized using speaker dependent snorm
with cohort from Primary Backround data and
unlabeled data. Speaker dependent means for the
snorm were computed on 500 closest ivectors for
each speaker.

• Discriminative PLDA: For training DPLDA
model, telephone data from Mixer+Fisher+Switchboard
was used along with unlabeled data from NIST
SRE16. Unlabeled data were used to form non-
target trials with labeled telephone data only (e.g.
no trials between two unlabeled utterances were
used for training). First, NAP was performed on
top of all ivectors. As classes for NAP, 20 lan-
guages from training list were selected along with
one class corresponding to both major and mi-
nor unlabeled data. After NAP all ivectors were
mean (mean was calculated using all training data
available) and length normalized. After the mean
normalization, we performed LDA, decreasing the
dimensionality of vectors to 250. As an initializa-
tion of DPLDA training, we used a corresponding
PLDA model. During the DPLDA training, we set
the prior probability of target trials to reflect the
SRE16 evaluation operating point.

• Support Vector Machines: One SVM per speaker
was trained using the enrollment ivector(s) as pos-
sitive samples and unlabeled major and unlabeled
minor data as negative samples. Length normal-
ization, WCCN and NAP were applied to ivectors.
All these were trained with telephone data from
Mixer+Fisher+Switchboard and the classes for
NAP were languages present in the training data1.
ZTNorm was applied to system scores. ZNorm
was trained on a subset of Chinese utterances from
the training portion of non-English short cuts, plus
the data from unlabeled major and unlabeled mi-
nor sets. TNorm was trained with the SVM models
trained on Chinese cuts, using the unlabeled ma-
jor an minor sets as background data (negative
samples).

3.6. Fusion

Fusion and calibration of the BUT subsystems were
trained with logistic regression optimizing the cross-
entropy between the hypothesized and true labels on our
development set composed of non-English short seg-
ments. Our objective was to improve the error rate on

1List of languages used for NAP: [’USE’, ’ENG’, ’CHN’,
’RUS’, ’ARB’, ’YUH’, ’THA’, ’SPA’, ’VIE’, ’HIN’, ’JPN’,
’BEN’, ’KOR’, ’WUU’, ’TGL’, ’FAR’, ’CFR’, ’CHN.YUH’,
’CHN.WUU’, ’ITA’]



the test part of our Non English test set, but we were also
monitoring error-rate trends on the labeled minor SRE’16
development set.

The following subsystems were used in the final fu-
sion:

• 2 DPLDA systems trained on PLP and MFCC,

• 4 PLDA systems trained on MFCC, Perseus, PLP,
MFCC-SBN

• SVM system trained on PLP

We produced two different fusions that we denote as
BUT-GI-BIG2 and BUT-GI-BIG3. The only difference
between these fusions is in a single system - PLDA sys-
tem trained on MFCC-SBN. The SBNs for fixed condi-
tion were trained on English data producing the BUT-GI-
BIG3, while for the open condition, we used BABEL lan-
guages. We denote the fusion for the open condition as
BUT-GI-BIG2.

Each subsystem was pre-calibrated by the logistic re-
gression and then all subsystems were fused by the means
of logistic regression using the development set from our
Non English development set that contains only the short
cuts. We report the results of our fusions and all individ-
ual subsystems in the Table 1.

3.7. Performance and Processing Requirements

The infrastructure used to run the expriments is a CPU, In-
tel(R) Xeon(R) CPU 5675 @ 3.07GHz, with a total mem-
ory of 37GB.

The execution time of iVector extraction process in
a single thread is of 18 times faster than real time (FRT)
(computed only on detected speech, would be 41FRT
computed for whole recordings including silence) for
MFCC only system and 3.3 FRT for the MFCC-SBN
system, using 3GB and 5GB of memory respectively.
Enrollment and scoring is negligible with respect to the
iVector extraction time for all our backends.

4. CRIM

We developed speaker verification systems based on three
different speech front-ends: MFCC, LFCC and LPCC.
For scoring we made use of 3 classifiers - cosine distance
(CD), Probabilistic Linear Discriminant Analysis (PLDA)
and Latent Dirichlet Allocation (LDA). CRIM’s final sys-
tem combines 8 sub-systems : LFCC-CD, LFCC-PLDA,
MFCC-CD, MFCC-DNN-LDA, MFCC-DNN1, MFCC-
DNN2, MFCC-DNN3 and LPCC-CD.

4.1. Datasets

We used SRE 2004-2008 and Switchboard data as back-
ground data for our systems. The dataset was partitioned
into two parts:

• Oriental Backgroud Data: This set includes record-
ings from Chinese, Mandarin and Tagalog (from
SRE 2004-2008 data).

• Primary Background Data: Everything else

• Oriental Data: We refer to the combination of the
Oriental Background Data and the SRE 2016 unla-
belled data as the Oriental Data.

4.2. Pre-processing

VAD: We removed all non-speech frames using an unsu-
pervised GMM-based voice activity detector.

Feature Extraction: We extracted MFCC, LFCC and
LPCC features from all the recordings. All features
are 60 dimensional. These incluse 20 static coefficients
including log energy, 20 delta and 20 delta-delta coeffi-
cients. Short-term mean and variance normalization is
also performed.

UBM: We trained a 2048-component diagonal covariance
UBM using the primary background data. This is then
iteratively adapted to the Oriental data using relevence
MAP.

4.3. i-vector Extractor

First we trained an i-vector extractor using sufficient
statistics extracted from all of the primary background
data. We use this model as an initialization we performed
several iterations of minimum divergence training on the
Oriental data. This extractor is used for extracting the
i-vectors used in all our systems.

4.4. MFCC-DNN Systems

In order to train a speaker classifier network (SCN) we use
a feedforward neural network to learn mapping between
i-vectors and speaker labels. Projecting the i-vectors
into a higher dimension space significantly improves
speaker discriminant properties of the resulting features
[3]. Projecting the i-vectors into a higher dimensional
space significantly improves speaker discriminative prop-
erties of the resulting features [3]. The SCN is two layers
deep and uses sigmoid nonlinearity in the hidden layers.
Each hidden layer consists of 2000 hidden units. The
softmax output distribution is over 4323 speakers in the



background set (Primary Background Data + Oriental
Background Data). The speakers are filtered based on
the number of their recordings. Speakers having at least
5 recordings/i-vectors are selected. We make use of i-
vectors that have been adapted to the oriental data for
SCN training. The i-vectors are length normalized before
being processed by the SCN. After the model is trained,
it is used as a feature extractor for the background, enrol-
ment and test data. Specifically, we extract the activations
of the last hidden layer and treat them as feature vec-
tors (d-vectors) for speaker verification. In the case of
SRE16 data (development and evaluation) we only make
the d-vectors to be of unit norm and do not perform any
mean-centering. Speaker verification is performed using
a cosine distance classifier with the SCN-projected fea-
tures (i.e., d-vectors). To this end with MFCC frontend
we developed three system variations:

• MFCC-DNN1: For speaker models with 3 enrol-
ment d-vectors (2000-dimensional) we average
the individual scores during cosine scoring. In all
other systems, for speaker models with 3 enrol-
ment i-vectors/d-vectors a single score is produced
by averaging the i-vectors/d- vectors.

• MFCC-DNN2: NAP projection is applied to all the
d-vectors produced by a SCN.

• MFCC-DNN3: In this case we reduce the dimen-
sion of the NAP projected d-vectors using a prin-
cipal component analysis (PCA) technique.

4.5. MFCC-DNN-LDA System

In this system we model the hidden activations of the
DNN speaker classifier using Latent Dirichlet Alloca-
tion (LDA). The system MFCC-DNN-LDA differs from
MFCC-DNN1 in that we replaced the cosine distance
backend with a probabilistic backend which was trained
blindly on the unlabelled training data. (We did not at-
tempt to assign speaker, language or gender labels to the
training data.)

As in MFCC-DNN1, the feature vector used to represent
an utterance consisted of the sigmoid activations of the
last hidden layer of the DNN. We viewed these features as
noisy binary vectors and modeled them by a hidden vec-
tor of Bernoulli probabilities. If speaker labels were avail-
able, we would associate one Bernoulli probability vector
with each speaker. Since we did not have speaker labels
for the training set, we treated the recordings as if they
all came from different speakers. We treated the compo-
nents of the feature vector as being statistically indepen-
dent and we placed a Beta prior on each of the Bernoulli
probabilities. We “estimated” the priors by appealing to

the maximum likelihood II principle, using the methods
in [3].

4.6. Performance and Processing Requirements

In order to report real time factor we conducted experi-
ments on an Intel(R) Xeon(R) CPU X5650 @ 2.67GHz
with a total memory of 94.5GB. The execution time for
the extraction of i-vectors/d-vectors (VAD segmentation
+ Features extraction + extraction of Sufficient statistics
+ generation of i-vectors/d-vectors) + enrollment + scor-
ing in a single thread is of 8 times faster than the real time
using 3.5GB of memory. By d-vectors we refer to the fea-
tures supplied by a speaker classifier network.

One of the advantages of working in low-dimensional
i-vector space is that computation times for neural net-
works is modest, both in terms of network training and
feature extraction.

Training: In order to provide timing information, we re-
port the avarage number of training epochs and the aver-
age epoch duration over 10 training runs. Network train-
ing was carried out on a NVIDIA Titan X GPU. Models
trained to convergence in 204 epochs on average and the
average epoch duration was 10.62 sec.

Feature Extraction: We extract features from the trained
network for 1000 i-vectors. This average duration of the
recordings represented by this set of i-vectors is 17184
frames. Feature extraction is performed 10 times on both
GPU and CPU, with the GPU being only marginally
faster. The average feature computation time on the CPU
is 0.0056 sec versus 0.0044 sec on the GPU.

4.7. Fusion of CRIM systems

For submission purposes, several CRIM systems were
fused to produce a single set of scores. The data used
for training the fusion parameters was the labelled minor
SRE’16 development data. After training, the fusion was
then applied: (i) to this same data (test-on-train) to pass
as training scores for the final ABC fusion; and (ii) to the
SRE’16 evaluation data, also as input to the final ABC
fusion.

The subsystems included in the fusion were selected
according to individual performance on the labelled mi-
nor SRE’16 development data. We did not base inclu-
sion/exclusion decisions on EER or DCF. Instead we
looked at the regularity of score histograms, DET-curves
and normalized DCF curves. We decided not to judge
system goodness by EER, because the EER operating
point is too far from the SRE’16 DCF operating points.
On the other hand, performance of systems and fusions
according to the SRE’16 DCF criterion also did not play



a major role in our decision making, because we believe
that the size of the labelled data did not permit accurate
estimates of error-rates at these operating points. Indeed,
we saw both individual systems and fusions could have
as few as zero false-accept errors on this small database.
We looked instead at DCF curves, which cover all op-
erating points between EER and the DCF’16 operating
points. The following 8 CRIM systems were used in the
fusion: LFCC-CD, LFCC-PLDA, MFCC-CD, MFCC-
DNN-LDA, MFCC-DNN1, MFCC-DNN2, LPCC-CD,
MFCC-DNN3.

Because of data scarcity and to combat over-training,
we used generative fusion and calibration strategies, with
as few as possible parameters. The fusion strategy was
linear-Gaussian pre-calibration of each sub-system, fol-
lowed by equal-weighted summation. Separate gender-
independent calibrations were done for 1-call and 3-call
enrollment. The linear-Gaussian calibration is done by
computing the log-LR obtained from a generative model
with two univariate Gaussians for targets and non-targets,
with different means and shared covariance. The pa-
rameters were estimated with maximum-likelihood. Pre-
calibration was applied before summation, so that: (i)
missing scores—because of VAD failure—could be re-
placed by log-LR = 0; and (ii) sub-system scores were
roughly at the same scale, with better system contributing
a bit more than weaker systems.

5. FINAL ABC FUSION & SUBMISSION

5.1. Primary ABC fusion for fixed condition

The input to the final ABC fusion consisted of 3 sets
of scores, each produced by the labs Agnitio, BUT and
CRIM. As explained in previous sections each of these
inputs were themselves fused from multiple subsystems.
Each lab provided both training scores and evaluation
scores as input to the fusion. The training scores con-
sisted of SRE’16 minor labelled development data. In
the case of CRIM, this constituted a second use of this
data. For the Agnitio and BUT systems, this data was
unexposed.

Here also, as already explained above for the CRIM
fusion, we did not judge fusion strategies by EER or
DCF’16. Instead we looked at regularity of score his-
tograms, DET-curves and normalized DCF curves. We
tried two fusion strategies, both generative:

1. Independent pre-calibrations of sub-systems (linear-
Gaussian), followed by combination by plain sum-
mation (no trainable parameters), followed by
post-calibration (generative, non-linear).

2. Linear-Gaussian generative fusion,2 followed by
non-linear post-calibration.

We chose strategy 2: It is more powerful and therefore
more risky w.r.t. overtraining, but it gave a significantly
better DET-curve at all operating points.

For post-calibration after fusion, we tried linear,
quadratic and NIG [4]. In all cases NIG gave much bet-
ter calibration as judged on the SRE’16 minor labelled
development data. The linear-Gaussian calibration is the
same as described in section 4.7 above. The quadratic
fusion is also generative Gaussian, but with independent
(rather than shared) variances for targets and non-targets.
The NIG calibration used independent normal-inverse
Gaussian (NIG) distributions for targets and non-targets.

NIG parameter estimation is tricky. For NIG maximum-
likelihood parameter estimation in [4], we had used a
trust-region Newton algorithm for direct optimization of
the likelihood. This time, we used a modified version
of the EM algorithm in [5]. The modification is similar
to the minimum-divergence trick—the model is over-
parametrized during the M-step and then simplified again
using a reparametrization of the hidden variable. The EM
algorithm was initialized with moment matching. After
a few hundred EM iterations, training was completed
using direct L-BFGS optimization, which gives faster
convergence during the end-game.

The inputs that were used in this fusion were the
Agnitio fusion of section 2.5, the CRIM fusion of sec-
tion 4.7 and the BUT fusion known as BUT-GI-BIG3 of
section 3.6.

5.2. Primary ABC fusion for open condition

For the primary submission to the open condition, the
same methods were used (linear-Gaussian fusion, fol-
lowed by NIG post-calibration). The same Agnitio and
CRIM systems were used, but the BUT system was BUT-
GI-BIG2.

5.3. Contrastive ABC systems

For the contrastive submission 1 to both conditions we
used BUT-GI-BIG3 for fixed and BUT-GI-BIG2 for open
condition. The motivation for this was that these fusions
did not see any of the labeled SRE16 data. For the con-
trastive submission 2 to fixed condition we submitted sin-
gle DPLDA system trained on PLP, but we have added

2Here we also pre-calibrated, but this has no effect. The fu-
sion algorithm that we applied was actually slightly non-linear,
with multivariate t-distributions instead of Gaussians, where
the t-distributions resulted from Bayesian marginalization over
model parameters.



SRE’16 minor labeled development data to the training of
DPLDA.
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Table 1. Comparison of systems on all labeled development data using NIST scoring tool, CPrm stands for CPrimary , * results for uncalibrated scores

Use DEV16 Equalized results Unequalized results
Site System Name Features Classifier Condition Labeled EER[%] minCPrm actCPrm EER[%] minCPrm actCPrm

B
U

T

DPLDA PLP PLP DPLDA fixed NO 19.56 0.6482 0.8616 18.57 0.6532 0.875829
DPLDA MFCC MFCC DPLDA fixed NO 20.06 0.8254 0.8809 19.69 0.8201 0.876658
PLDA MFCC MFCC PLDA fixed NO 17.89 0.8194 1.5811 18.96 0.7995 1.489117

PLDA PLP PLP PLDA fixed NO 18.44 0.7136 0.8232 18.43 0.6962 0.816542
PLDA PERS PERSEUS PLDA fixed NO 19.62 0.8117 0.8480 18.06 0.8017 0.837174

PLDA MFCCSBN MFCC+SBN-ENG PLDA fixed NO 20.96 0.7917 0.8644 22.68 0.7853 0.864065
PLDA MFCCSBN BABEL MFCC+SBN-BABEL PLDA open NO 16.58 0.7373 0.8320 18.66 0.7357 0.836106

SVM PLP PLP SVM fixed NO 18.04 0.7545 2.8636 18.28 0.7542 2.624896

A
G

N MFCC-BNF-4-PLDA MFCC+BNF PLDA fixed NO 16.14 0.6515∗ 0.8263∗ 17.43 0.6577∗ 0.840758∗

MFCC-BNF-2-PLDA MFCC+BNF PLDA fixed NO 15.49 0.6661∗ 0.8384∗ 16.61 0.6725∗ 0.850437∗

MFCC-BNF-FUSION MFCC+BNF PLDA fixed NO 15.71 0.6427∗ 0.9304∗ 16.88 0.6485∗ 0.942005∗

C
R

IM

LFCC-CD LFCC CD fixed NO 20.06 0.7860 0.8174 20.06 0.7860 0.8174
LFCC-PLDA LFCC PLDA fixed NO 21.19 0.8147 0.9662 20.79 0.8154 0.976265
MFCC-CD MFCC CD fixed NO 18.14 0.7207 0.7722 17.65 0.7067 0.751684

MFCC-DNN-LDA MFCC LDA fixed NO 15.04 0.8428 0.8863 15.09 0.8064 0.847248
MFCC-DNN1 MFCC CD fixed NO 17.42 0.7307 0.7932 16.51 0.7154 0.784878
MFCC-DNN2 MFCC CD fixed NO 15.13 0.7455 0.8048 15.53 0.7198 0.780887
MFCC-DNN3 MFCC CD fixed NO 15.33 0.7509 0.7969 15.55 0.7189 0.771041

LPCC-CD LPCC CD fixed NO 20.52 0.7671 0.8208 19.82 0.7620 0.803301

Primary - - fixed YES 13.98 0.5758 0.5920 13.77 0.5363 0.548390
Contrastive 1 - - fixed NO 15.03 0.6410 0.6581 15.24 0.6172 0.640508
Contrastive 2 PLP DPLDA fixed YES 11.76 0.5475 0.5713 11.79 0.5544 0.576740

Primary - - open YES 13.40 0.5588 0.5756 13.46 0.5122 0.534383
Contrastive 1 - - open NO 13.85 0.6368 0.6412 14.56 0.6095 0.613116


