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Abstract

This work studies the usage of the (currently state-of-the-art) Deep
Neural Networks (DNN) i-vector/PLDA-based speaker recognition sys-
tems in multi-language (especially non-English) conditions. On the “Lan-
guage Pack” of the PRISM set, we evaluate the systems’ performance
using NIST’s standard metrics. We study the use of multi-lingual DNN
in place of the original English DNN on these multi-language conditions.
We show that not only the gain from using DNNs vanishes, but also
the DNN-based systems tend to produce de-calibrated scores under the
studied conditions. This work gives suggestions for directions of future
research rather than any particular solutions.

1 Introduction

During the last decade, neural networks have experienced a renaissance as a
powerful machine learning tool. Deep Neural Networks (DNN) have been also
successfully applied to the field of speech processing. After their great success
in automatic speech recognition (ASR) [1], DNNs were also found very useful
in other fields of speech processing such as speaker [2, 3, 4] or language recog-
nition [5, 6, 7]. In speech recognition, DNNs are often directly trained for the
”target” task of frame-by-frame classification of speech sounds (e.g. phones).
Similarly, a DNN directly trained for frame-by-frame classification of languages
was successfully used for language recognition in [7]. However, this system pro-
vided competitive performance only for speech utterances of short durations.

In the field of speaker recognition, DNNs are usually used in more elaborate
and indirect way: One approach is to use DNNs for extracting frame-by-frame
speech features. Such features are than used in the usual way (e.g. input to
i-vector based system [8]). These features can be directly derived from the
DNN output posterior probabilities [9] and combined with the conventional
features (PLP or MFCC) [10]. More commonly, however, bottleneck (BN) DNNs
are trained for a specific task, where the features are taken from a narrow
hidden layer compressing the relevant information into low dimensional feature
vectors [6, 5, 11]. Alternatively, standard DNN (with no bottleneck) can be used,
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where the high-dimensional outputs of one of the hidden layers can be converted
to features using a dimensionality reduction technique such as PCA [12].

In [13], we analyzed various DNN approaches to speaker recognition (as
was similarly studied e.g. in [14, 15]). We used two different DNN’s (a mono-
lingual—trained on the Fisher English data corpus—and a multi-lingual—trained
on 11 languages of the Babel data collection). The rest of the system was trained
on the PRISM set, i.e. mainly on the English data. We reported our results
only on the NIST SRE 2010 telephone condition (i.e. only on English speech)
via the Equal Error Rates (EERs) and the minimum DCF NIST metrics.

However, when tested on non-English test sets, we observed that the benefit
of using the DNNs performance of the systems degraded dramatically. We used
the “lan” Language Pack of the PRISM set (described later in the paper), and
its Chinese subset—the “chn” pack in comparison with the originally used NIST
SRE 2010 telephone condition. Not only we saw performance degradation in
terms of EER and the minimum DCFs, but more so in terms of the actual
DCFs, i.e. the systems produce heavily de-calibrated scores.

Our hypothesis was that when we use the DNN trained for the target lan-
guage, the error rates would decrease. To match the sre10, “lan”, and “chn” test
conditions, we chose two DNNs: i) the Fisher English, and the ii) Multilingual
DNN. However, it turned out that, apart from the Fisher English being optimal
for the NIST SRE 2010 test, there was no clear correlation between the test
language and the DNN training language.

This paper merely analyzes the problems that emerged when applying the
current state-of-the-art SRE systems to non-English domains, and rather pro-
vides directions for future research.

2 Theoretical Background

2.1 i-vector Systems

The i-vectors [8] provide an elegant way of reducing large-dimensional input data
to a small-dimensional feature vector while retaining most of the relevant infor-
mation. The main principle is that the utterance-dependent Gaussian Mixture
Model (GMM) supervector of concatenated mean vectors s is modeled as

s = m+Tw, (1)

where m = [µ(1)′ , . . . ,µ(C)′ ]′ is the Universal Background Model (UBM) GMM
mean supervector (of C components), T = [T(1)′ , . . . ,T(C)′ ]′ is a low-rank ma-
trix representing M bases spanning subspace with important variability in the
mean supervector space, and w is a latent variable of size M with standard
normal distribution.

The i-vector φ is the Maximum a Posteriori (MAP) point estimate of the
variable w. It maps most of the relevant information from a variable-length
observation X to a fixed- (small-) dimensional vector. LX is the precision of the
posterior distribution.
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The closed-form solution for computing the i-vector can be expressed as
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with c being the GMM UBM component index, and the ‘bar’ symbols denote
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where Σ(c)− 1

2 is a symmetrical decomposition (such as Cholesky decomposition)

of an inverse of the GMM UBM covariance matrix Σ
(c).

2.2 Stacked Bottleneck Features (SBN)

Bottleneck Neural-Network (BN-NN) refers to such topology of a NN, one of
whose hidden layers has significantly lower dimensionality than the surrounding
layers. A bottleneck feature vector is generally understood as a by-product of
forwarding a primary input feature vector through the BN-NN and reading off
the vector of values at the bottleneck layer. We have used a cascade of two such
NNs for our experiments. The output of the first network is stacked in time,
defining context-dependent input features for the second NN, hence the term
Stacked Bottleneck Features.

The NN input features are 24 log Mel-scale filter bank outputs augmented
with fundamental frequency features from 4 different f0 estimators (Kaldi,
Snack1, and two other according to [16] and [17]). Together, we have 13 f0

1http://kaldi.sourceforge.net, www.speech.kth.se/snack/
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related features, see [18] for more details. The conversation-side based mean
subtraction is applied on the whole feature vector. 11 frames of log filter bank
outputs and fundamental frequency features are stacked together. Hamming
window followed by DCT consisting of 0th to 5th base are applied on the time
trajectory of each parameter resulting in (24+ 13)× 6 = 222 coefficients on the
first stage NN input.

The configuration for the first NN is 222×DH×DH×DBN×DH×K, where
K is the number of targets. The dimensionality of the bottleneck layer, DBN

was fixed to 80. This was shown as optimal in [6]. The dimensionality of other
hidden layers was set to 1500. The bottleneck outputs from the first NN are
sampled at times t−10, t−5, t, t+5 and t+10, where t is the index of the current
frame. The resulting 400-dimensional features are input to the second stage NN
with the same topology as first stage. The 80 bottleneck outputs from the second
NN (referred as SBN) are taken as features for the conventional GMM/UBM
i-vector based SID system.

We experimented with English and multilingual BN features. In the case
of multilingual training, we adopted training scheme with block-softmax, which
divides the output layer into parts according to individual languages. During
training, only the part of the output layer is activated that corresponds to the
language that the given target belongs to. See [19, 20] for detailed description.

2.3 DNN Alignment

The true frame alignment is a hidden variable in GMM modeling. Traditionally,
it is computed using the GMM UBM (as used in the “baseline” and “SBN”
experiments further in the paper). However, it was shown that DNNs (as well as
other models, e.g. [13, 15, 14]) can be used directly for posterior computation [2]
.

For completeness, we report the performance of the DNN alignment systems,
where the posteriors of the SBN-NNs from the previous section were used. In
other words, we show the utility of the trained DNNs as both feature- and
posterior-extractors.

Note that the output activation function of the Multilingual SBN is a block-
softmax, giving a set of posterior probabilities (one set per training language).
Therefore, we cannot utilize the Multilingual SBN for this purpose in a straight-
forward way.

Note also that the normalization GMM UBM (i.e. the µ(c) and Σ
(c) param-

eters) should be computed via the same alignment as used in eq. (2) and (3),
i.e. the DNN alignment.
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Table 1: Comparison of the systems under the PRISM “lan” and “chn”, and the
SRE2010-condition 5 (tel-tel) tests. We expected (without result) the Multilang
SBN to perform best in the “lan” and “chn” conditions.

Test set System
DCFmin

new DCFmin
old EER [%]

male female male female male female

chn Baseline 0.1834 0.3019 0.0621 0.0894 1.44 2.27

English SBN 0.1491 0.2251 0.0418 0.0838 1.00 1.99
Multilang SBN 0.2121 0.1907 0.0439 0.0670 1.16 1.93

English DNN 0.1373 0.3621 0.0616 0.1192 1.29 3.05

lan Baseline 0.2979 0.9836 0.1021 0.2007 2.60 5.05

English SBN 0.2963 0.9848 0.0979 0.2305 2.45 4.93
Multilang SBN 0.4008 0.9854 0.0898 0.2997 2.16 5.03

English DNN 0.2963 0.9463 0.0914 0.2228 2.70 5.68

sre10 Baseline 0.3577 0.3387 0.0967 0.1013 1.84 1.94

English SBN 0.1295 0.1679 0.0387 0.0471 1.17 1.11
Multilang SBN 0.1280 0.1696 0.0416 0.0544 1.21 1.16

English DNN 0.1200 0.2212 0.0352 0.0449 0.71 0.93

3 Experiments

3.1 DNN Training Data

For training the Multilingual neural networks, the IARPA Babel Program data2

were mainly used. This data set simulates the scenario of what one could col-
lect in a limited time from a completely new language. It consists mainly of
conversational telephone speech (CTS), but scripted recordings, as well as far
field recordings, are present. We used 11 languages to train our multilingual
SBN feature extractor. The language list (as referred to later in this para-
graph) consists of Cantonese, Assamese, Bengali, Pashtu, Turkish, Tagalog,
Vietnamese, Haiti, Lao, Tamil, and Zulu. More details about the character-
istics of the languages can be found in [21]. The phone-state target labels
were obtained using forced-alignment with our BABEL ASR system [22], with
471 + 141 + 147 + 216 + 126 + 252 + 303 + 99 + 411 + 102 + 219 = 2487 phone
states, respectfully to the language list.

For the English DNN variant, we have used a selection of 250 hours of data
derived from the Fisher English Part 1 and 2 with 2423 tied tri-phone states.

2Collected by Appen, http://www.appenbutlerhill.com

5



Table 2: Analysis of the actual DCF’s under the PRISM “lan” and “chn”, and
the SRE2010-condition 5 (tel-tel) tests. Note the system de-calibration on the
“lan” and “chn” conditions. Also note that de-calibration is more emphasized
for the female conditions. (Due to the dynamic range of the values, we prefer
to report a table of numbers rather than a graph plot.)

Test System
DCFnew DCFold

actual min actual min

male female male female male female male female

chn Baseline 5.7461 16.0798 0.1834 0.3019 0.1206 0.2785 0.0621 0.0894

English SBN 1.5201 10.4024 0.1491 0.2251 0.0515 0.1857 0.0418 0.0838
Multilang SBN 3.9156 12.3843 0.2121 0.1907 0.0863 0.2189 0.0439 0.0670

English DNN 10.2419 46.4058 0.1373 0.3621 0.1856 0.6857 0.0616 0.1192

lan Baseline 3.5369 14.0482 0.2979 0.9836 0.1142 0.2812 0.1021 0.2007

English SBN 2.1503 24.4566 0.2963 0.9848 0.0702 0.3476 0.0979 0.2305
Multilang SBN 5.2089 38.1320 0.4008 0.9854 0.1121 0.4855 0.0898 0.2997

English DNN 6.6261 36.8887 0.2963 0.9463 0.1427 0.5451 0.0914 0.2228

sre10 Baseline 0.4323 0.3442 0.3577 0.3387 0.1587 0.2171 0.0967 0.1013

English SBN 0.1472 0.1750 0.1295 0.1679 0.0976 0.1098 0.0387 0.0471
Multilang SBN 0.1530 0.1921 0.1280 0.1696 0.1171 0.1339 0.0416 0.0544

English DNN 0.1234 0.2286 0.1200 0.2212 0.0800 0.1204 0.0352 0.0449

3.2 Test Set and Evaluation Metric

We report our results on the “Language Set” pack of the PRISM set [23], referred
to as “lan” later in the results. It was crafted from the NIST SRE 2005–2008
datasets by selecting 500 speakers for which there exists at least one session in
a language other than English. Additional 300 speakers (that appear only in
English conversations) were added from the NIST SRE 2010. The trials were
created as a Cartesian product of all sessions sessions, resulting in 3590/130880
male, and 6304/297683 female target/non-target trials, respectively. Note that
half of the trials are still English.

Moreover, results on the Chinese subset of the “lan” condition, referred to
as “chn” are reported. The set comprises of 1027/59004 male, and 1555/113405
female target/non-target trials, respectively.

To provide a contrastive view, we also report the results on the NIST SRE
2010 data extended core condition (telephone-telephone, “condition-5”), re-
ferred to as “sre10”, with 3465/175873male, and 3704/233077 female target/non-
target trials, respectively.

The detection cost function (DCF) is used as a primary evaluation metric.
We report two numbers: DCFmin

old and DCFmin
new, corresponding to the primary

6



evaluation metric for the NIST speaker recognition evaluation in 2008 and 2010,
respectively. We also report their actual variants DCFact

oldand DCFact
new. Equal

Error Rate (EER) is also reported. For more details, see the evaluation plans
of NIST SRE 3.

3.3 System Description

Voice Activity Detection (VAD) was performed using Neural Network speech/non-
speech classifier. The NN was trained on Czech CTS data where we artificially
added noise with different levels of SNR to 30% of the database. The NN had
two hidden layers each comprising of 300 neurons. We used a vectorized block
of 31 frames of 15 Mel filter bank energies as input features. For the interview
data, we removed the interviewer based on the ASR transcripts provided by
NIST.

As the baseline features, we used 19 MFCC coefficients + energy augmented
with their delta and double delta coefficients, resulting in 60-dimensional feature
vectors. The analysis window was 20ms long with the shift of 10ms. First, we
removed silence frames according to VAD, after which we applied short-time
(300 frames) cepstral mean and variance normalization.

The PRISM set [23] was chosen as the base training dataset platform. It
contains the following telephone data: NIST SRE 2004, 2005, 2006, 2008, 2010
Switchboard II Phases 2 and 3, Switchboard Cellular Parts 1 and 2, Fisher
English Parts 1 and 2 giving 9670 female speakers. We have not included any
noisy or reverberated data.

A gender-independent UBM was represented as a full or diagonal covariance
2048-component GMM. It was trained on a subset of PRISM, giving 15602
files equally distributed between telephone and microphone condition, and male
and female portions. The variance flooring was used in each iteration of EM
algorithm during the UBM training.

Gender-independent i-vector extractor was trained (in 10 iterations of a joint
Expectation Maximization and Minimum Divergence steps) using the entire
PRISM set. The results are reported with 600-dimensional i-vectors.

Gender-independent LDA and PLDA was trained on the same data as the
i-vector extractor.

3.4 Results

Tab. 1 shows the overall results of all systems in terms of (calibration insensitive)
DCFmin

old , DCFmin
new, and EER. For the “sre10” test, the best performing system

is the DNN-alginment with the DNN trained on the Fisher English data, as
expected. However, when looking at the “lan” condition, there is no gain from
switching from the Baseline system to English DNN (and only a negligible gain
in switching to English SBN).

3www.itl.nist.gov/iad/mig/tests/sre/
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Our hypothesis was that this behavior would be fixed by using a more general
DNN, such as the Multilingual DNN (only in the SBN variant, as explained in
Sec. 2.3), since the test comprises of numerous languages.

Looking at the “chn” condition, we again expected the Multilingual SBN to
to significantly outperform the English DNN (or SBN), but with no result.

Our initial hypothesis was that the English training corpus is the largest,
and therefore had to provide best phoneme accuracy and thus a better acoustic
space clustering. However, it was observed in many cases (e.g. in [24]) that
better phoneme accuracy does not necessarily imply better SRE performance.
Therefore, we leave this question open for future research.

Let us also note that the UBM/i-vector/PLDA training data are identical—
i.e., mainly English—across the different systems. Our hypothesis is that even
if the DNN matches the target language, the acoustic space clustering does
not correspond to the observed data. Therefore, the first-order statistics (3)
for the i-vector extractor computation are “warped”, and the i-vector extractor
captures a different “total” variability than is in fact used for the test. One
of the possible indications for this hypothesis is the fact that the performance
on the “sre10” condition does not vary dramatically across different systems.
Similar hypothesis holds for the PLDA/LDA modeling, where the within/across
variabilities are modeled using these “warped” i-vectors.

Tab. 2 shows the overall performance summary in terms of the actual vs. the
minimum DCF values, i.e., it directly shows the calibration loss. We see that
the “sre10” condition is well calibrated, i.e., the actual values are close enough
to the minimum counterparts. However, looking at the “chn” and “lan” tests,
and especially at the new DCF metric, the calibration losses are extremely high.
This effect is even more pronounced for the female part of the tests. All this
behavior indicates a heavy language-dependent score modality.

4 Conclusions
In this work, we have studied the behavior of the DNN techniques in SRE i-
vector/PLDA systems, currently considered to be state-of-the-art, as evaluated
on the most common NIST SRE English test sets, such as the NIST SRE 2010,
conditioin 5. We have shown that when applied to non-English test sets, these
techniques stop being effective and are susceptible to de-calibration of the scores
produced by the traditional i-vector/PLDA systems.

This work suggests that we focus on the analysis of the DNN acoustic space
clustering with regard to multiple languages and other types of variability.
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“Automatic language identification using deep neural networks,” in
ICASSP 2014, Florence, Italy, 2014.

[8] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. PP, no. 99, 2010.

[9] Mireia Diez, Amparo Varona, Mikel Penagarikano, Luis Javier Rodriguez-
Fuentes, and Germán Bordel, “Using phone log-likelihood ratios as features
for speaker recognition,” in Interspeech 2013, Lyon, France, 2013.

[10] Jeff Ma et al., “Improvements in language identification on the RATS noisy
speech corpus,” in Interspeech 2013, Lyon, France, 2013.

[11] Najim Dehak Fred Richardson, Douglas A. Reynolds, “A unified deep
neural network for speaker and language recognition,” in Interspeech, 2015.

[12] Yuan Liu, Yanmin Qian, Nanxin Chen, Tianfan Fu, Ya Zhang, and Kai
Yu, “Deep feature for text-dependent speaker verification,,” Speech Com-
munication, vol. 73, pp. 1–13, October 2015.
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