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ABSTRACT

In this paper, we analyze the feasibility of using single well-

resourced language – English – as a source language for multilingual

techniques in context of Stacked Bottle-Neck tandem system. The

effect of amount of data and number of tied-states in the source

language on performance of ported system is evaluated together

with different porting strategies. Generally, increasing data amount

and level-of-detail both is positive. A greater effect is observed

for increasing number of tied states. The modified neural network

structure, shown useful for multilingual porting, was also evaluated

with its specific porting procedure. Using original NN structure in

combination with modified porting adapt-adapt strategy was fount

as best. It achieves relative improvement 3.5–8.8% on variety of tar-

get languages. These results are comparable with using multilingual

NNs pretrained on 7 languages.

Index Terms— DNN topology, Stacked Bottle-neck, feature ex-

traction, multilingual training, system porting, low resource

1. INTRODUCTION

ASR systems are working very well for the main world languages.

Many mobile telephone applications are well documenting the ma-

turity of the systems. However, outside the group of about 100 most

spoken languages, the speech technology is inaccessible. The main

reason for missing reliable ASR system is unavailability of a good

transcribed speech databases. Hand in hand with this problem might

come complicated phonology or syntax and uneducated population

missing phoneticians and linguists specialists able to describe their

own language.

All these aspects are becoming or have already become inter-

esting areas for research. Missing phonetic transcription can be

overcome by automatically generating phoneme-like units [1, 2].

Missing notion about words can be bridged by translation to well-

described language [3]. This usually applies when a regional lan-

guage is gradually replaced by the dominating one (official language

of the country or former colonial language). These two areas are just
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attracting interest and so far, they are bringing more questions than

answers.

On the other hand, researchers have dealt with limited resources

for building ASR system for some time already. Subspace Gaus-

sian mixture model [4, 5] can efficiently leverage data from other

sources to build model for target language with very little speech

data. As the neural networks (NNs) took over the Gaussian models,

techniques dealing with insufficient training data had to be devel-

oped too. The layer-wise training [6] of neural network limits the

amount of trainable parameters at a time. The trainable parameters

are also reduced by the drop-out technique [7] which also prevents

co-training of neurons.

To prevent over-training of neural networks, the above men-

tioned drop-out technique can be used. It was also successfully com-

bined with the maxout neuron structure [8]. The over-training can be

also prevented by introducing a regularization term into the objective

function [9, 10].

The problem of insufficient data can be also eased by so called

data augmentation [11, 12], where modified versions of the orig-

inal recordings are generated. This can be achieved by artificial

(de)noising and/or (de)reverberating of the original signal [13] or

by modifying the features by, for example, vocal tract length pertur-

bation [14].

The data from other sources can be used for unsupervised pre-

training [15] or for multilingual NN training and subsequent port-

ing to target language [16, 17, 18, 19]. The multilingual training

and porting attracted attention namely with IARPA BABEL program

with many more publication on these topics. It has been the most

efficient technique developed in the context of low resource ASR

system training.

The drawback of multilingual training and porting is the need of

language collection usable for multilingual training. Although there

are databases for many languages, they significantly differ in amount

of data, quality of audio and transcription. The IARPA BABEL

project is unique in a way researchers were provided with more-or-

less homogeneous databases of 23 languages. However, this collec-

tion is not publicly available and to put together a similar collection

from public resources would be an enormous effort.

1.1. Goals of the paper

In this paper we would like to provide guidelines for researchers

working with low resource languages who does not have access to

multilingual corpora. Instead, a large collection of single language

– English Fisher – will be used as source language for multilingual

training. We want to show that training the NN on a single (and dis-

tinct) language and porting it to target language can bring improve-

ment in final system performance. This analysis will also show how
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to handle a single language for multilingual training to get maximum

benefit from it.

The hierarchy of two NNs known as Stacked Battle Neck

(SBN) [20] is used in this analysis. This structure exhibits high

performance in place of feature extractor as well as acoustic model

and was adopted by other researchers [21, 16, 22, 17].

Revisiting the multilingual porting procedures [23] for single

source language scenario will reveal optimal porting strategy. The

effect of the amount of source language training data on ported sys-

tem performance will be shown. The impact of different “detailness”

(number of triphones) of source language alignment for NN training

will also be evaluated. The latest findings on optimal multilingual

NN structures [24] will be re-evaluated for single language case.

The evaluation will be done on five languages from IARPA BA-

BEL program. The selected languages belong to different language

families thus providing a representative sample.

2. DATA

The source language is English taken from the Fisher database1. En-

glish belongs to Germanic branch of the Indo-European language

family. In our setup, 39 phonemes (26 consonants, 13 vowels in-

cluding diphthongs) are used.

The forced alignment of the data was done using simple PLP-

based GMM-HMM system. The features are formed by HLDA

transform of 13 PLP coefficients with their first, second and third

order derivatives. The resulting feature vector has 39 coefficients.

The conversation side mean and variance normalization followed.

The model was trained from scratch using mix-up maximum

likelihood training. Three-state cross-word tied-states triphones

models were used, each state has 18 Gaussian mixture components.

The model was trained on randomly selected 1000 hours and it has

9824 tied triphone states.

After forced alignment, the segmentation was changed so that

each segment has a maximum 150 ms of silence on the each end and

pause between two speech parts cannot be longer than 300 ms. If

longer silence region occurred, the segment was split in two. The

resulting segmentation contains 1710 hours of audio data with ap-

proximately 13% of silence. Doing the re-segmentation to reduce

the amount of silence turned out to be beneficial for NN training and

has a non-negligible effect on final system performance.

The languages selected as target ones are the following BABEL

languages:

Telugu – TE – IARPA-babel303b-v1.0a – is a Dravidian lan-

guage spoken in the south-eastern part of India. Telugu phoneme

set used for the experiments contains 39 phonemes, vowels showing

long/short dichotomy and containing two diphthongs. Consonant set

contains quite a few retroflex phonemes.

Lithuanian – LI – IARPA-babel304b-v1.0b – language belongs

to the family of Baltic languages, and the phoneme set used for the

experiments consists of 110 phonemes. On vowels and voiced con-

sonants, it contains markings of stress and of falling or rising tone

where applicable. Apart from that, vowels have long and short ver-

sions. Nearly every consonant in the Lithuanian consonant set has

two versions: palatalized and non-palatalized.

Haitian Creole – HA – IARPA-babel201b-v0.2b – a French

Creole language spoken in Haiti. It is based mainly on French, which

belongs to Romance branch of the Indo-European family, but is also

1Fisher 1,2; LDC2004S13, LDC2005S13 for speech data; LDC2004T19,
LDC2005T19 for transcripts

Language TE LI HA LA ZU

LLP hours 8.6 9.6 7.9 8.1 8.4

LM sentences 11935 10743 9861 11577 10644

LM words 68175 83157 93131 93328 60832

dictionary 14505 12722 5333 3856 14962

# phonemes 39 110 32 132 66

# tied states 1370 1763 1257 1453 1379

dev hours 7.8 8.1 7.4 6.6 7.4

# words 59340 77790 81087 81661 50053

OOV rate [%] 16.1 11.4 4.1 1.8 22.4

baseline WER 78.7 60.3 65.9 63.6 74.2

Table 1. Statistics of the data for target languages.

influenced by other European languages, such as Spanish and Por-

tuguese, and West African languages. The phoneme set is relatively

simple, with just 32 phonemes, all of them typical to the aforemen-

tioned European languages.

Lao – LA – IARPA-babel203b-v3.1a – a tonal language from

the Tai-Kadai family, which is spoken in Laos and also in parts of

Thailand. With the total of 132 phonemes, Lao has a very compli-

cated vowel system. Apart from tones, vowels are also distinguished

according to their length. Moreover, there are three diphthongs. As

for consonants, some of them can be aspirated.

Zulu – ZU – IARPA-babel206b-v0.1e – a South Africa lan-

guage belonging to the Niger-Congo language family. The phonetic

set used in our data consists of 66 phonemes and differentiates be-

tween stressed and unstressed vowels and voiced consonants. Apart

from this, the vowel system is quite simple, whereas consonants pose

some problems for multilingual training, as Zulu has clicks, and they

are unique for our set of languages. Moreover, Zulu shows a wide

variety of non-pulmonic consonants and also has aspiration.

For training, the defined Limited Language Pack (LLP) was

used. This means that the dictionary contains only the words ap-

pearing in the training part and the data for language model consists

only of training data transcription. Dictionaries coming with the

language pack were used. The forced alignments were created in

the same way as for English data including the silence handling.

Statistics for target languages are given in Tab. 2. The baseline sys-

tem (described below) results, where all parts are trained on target

language data only, are on the last line of the table.

3. SYSTEM DESCRIPTION

The evaluation system is a tandem system where the features for

the final GMM-HMM classifier are the Bottle-Neck (BN) features

obtained by Stacked Bottle-Neck (SBN) Neural Network hierarchy.

3.1. SBN neural network hierarchy

The SBN is a two-stage structure of 6-layer NNs as described in [20].

Both NNs have Bottle-Neck layer with linear activation function as

the 3rd hidden layer. The first stage NN has 80 units in its BN layer

the second stage NN uses 30 units. The 1st, 2nd and 4th hidden

layers have 1500 units with sigmoid activation function.

The BN layer outputs of the first stage NN are stacked (hence

Stacked Bottle-Neck) over 21 frames and downsampled by factor of

five before entering the second stage NN.

The NN input features are composed of critical band energy

(CRBE) and fundamental frequency features. As critical band en-

ergy features, we use logarithmized outputs of 24 Mel-scaled filters
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Fig. 1. Average relative WER change over five target languages as

a function of training data amount and number of NN targets. The

reference are language specific BN features. Red bars connect mini-

mum and maximum for given setting.

applied on squared FFT magnitudes. The fundamental frequency

features consist of F0 and probability of voicing estimated accord-

ing to [25] and smoothed by dynamic programming, F0 estimates

obtained by Snack tool2 function getf0 and seven coefficients of Fun-

damental Frequency Variations spectrum [26, 27]. Together, there

are 10 F0 related coefficients.

Conversation-side based mean subtraction is applied on the

whole feature vector and 11 frames are stacked together. Hamming

window followed by DCT consisting of 0th to 5th base are applied on

the time trajectory of each parameter resulting in (24+10)×6 = 204
coefficients on the first stage NN input. Global mean and variance

normalization is applied on this 204 coefficients vector.

3.2. GMM-HMM decoder

GMM-HMM acoustic model is a simple maximum-likelihood

trained model without any speaker adaptation obtained by single-

pass retraining from PLP-based model used for forced alignment.

The acoustic features are formed by BN outputs of the SBN hi-

erarchy transformed by Maximum Likelihood Linear Transform

(MLLT). For the MLLT computation, each HMM state is considered

as class.

The number of Gaussian components per state found sufficient

for MLLT-BN features is 12. There are 12 iterations of maximum

likelihood training to settle the GMMs in the MLLT-BN feature

space.

The final word transcriptions are decoded using 3gram LM

trained only on the transcriptions of LLP training data.

4. EXPERIMENTS AND ANALYSIS

One of the goals is to analyze the significance of source language

data amount and alignment detailness for ported system perfor-

mance. For this purpose, subsets with 125, 250, 500, 1000 hours

of English training data were created. The selection of data was

done randomly on a segment level. To alter the detailness of forced

alignment, the decision tree was climbed up to create clusterings

with different numbers of states. The clusterings containing 75%,

2www.speech.kth.se/snack/
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Fig. 2. Comparison of different porting strategies. Average rela-

tive WER change over five target languages as a function of training

data amount and number of NN targets. The reference are language

specific BN features.

50%, 25% and 10% of original triphone tied states were created and

phoneme state clustering was added. Thus the number of targets

for NN training is 9824 for the full triphone tied states, 7326, 4886,

2423, and 1151 for the reduced triphone states and (39+1)x3=120

for phoneme states.

For the training sets with 125, 250 and 500 hours, NNs for each

clustering were trained. For larger training sets, the clusterings using

phoneme states and 25% and 75% of original triphone tied states

were used. This grid should provide solid insight in the implications

of the data amount and triphone-state detailness.

4.1. Monolingual SBN features

In case of the multilingual SBN hierarchy, provided multilingual BN

features (i.e. NNs without any porting) lead to better performance

than the language specific features obtained from NNs trained on the

LLP data only [23, 28]. In case of English as the only source lan-

guage, the chances of “monolingual” BN features being better than

the language-specific ones are much smaller. Figure 1 shows rela-

tive WER change averaged over all five test languages. The baseline

results are those obtained by language-specific SBN shown in Tab.2.

The positive change means worse results, the negative change means

improvements. The red bars connect the minimal and maximal rela-

tive change.

It can be seen that the wort performance is obtained by the mini-

mal setting - 125 hours of training data and phoneme states as targets.

The results improve with increasing both the amount of data and the

number of NN targets, the second having larger effect. On average,

results obtained by features generated using English NNs are worse

than from language specific NNs. The worst performing language

is Lao with the smallest relative change 3,6%, on the other side are

Zulu with only 0.6% relative degradation and Lithuanian with 0.3%

relative improvement in the best scenario.

4.2. SBN porting revisited

First, let us shortly review the two-step NN porting procedure:

1. Training of the last layer. The last layer of trained NN is dropped

and a new one is initialized randomly with number of outputs given

by the number of tied states in the target language. Only this layer is
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trained keeping the rest of the NN fixed.

2. Retraining of the whole NN. The whole NN is retrained, starting

learning rate value is one tenth of the usual one.

The porting of multilingual SBN hierarchy was thoroughly eval-

uated in [23]. The following approaches are reevaluated for single

language case:

adapt-adapt – port the first and also the second NN. This scenario

worked the best for multilingual NNs.

adapt-LLP – port the first NN, train the second one on the LLP

data. This was the second best scenario. The detailed analysis

of the results revealed advantages of this scenario in case the

phoneme set of target language is far from phoneme sets of

source languages.

multi-LLP – keep the first NN multilingual, train the second one

on LLP data only. This scenario gives information about the

ability of the first stage NN to extract relevant acoustic infor-

mation from the inputs for the second stage NN. Since the

second NN is trained only on LLP data, the results will di-

rectly reflect this ability.

The results in form of averaged relative WER change for all

three porting strategies are shown in Fig. 2(only subsed of all com-

binations reported in Fig. 1). We can see that the average relative

WER reduction is between 1% and 5%. The best results are mostly

achieved by adapt-LLP porting strategy. Adapt-LLP strategy ports

the first NN from English SBN to target language. This ported NN

thus knows about target language acoustics but the exact phoneme

classification is not important because the second NN follows. The

second NN in this strategy is trained on LLP data of target language

only, thus not being tied to any pretrained weights.

The limitation of the second source NN trained on single lan-

guage is evident from the adapt-adapt scenario. Unless there are

enough triphone targets trained on enough data, the porting proce-

dure is not able to shift source weights to classify well phonemes

of the target language. The “enough” is apriori not known and it is

possible that for some target languages, it is not reachable.

The third porting strategy – multi-LLP – shows that the first NN

trained on a different language can provide better inputs than the one

trained on the same target language. The differences between this

porting strategy and Adapt-LLP one show us how much improve-

ment is reachable by porting the first NN and thus exposing it to

target language acoustic. Comparison with adapt-adapt for settings

with 125 and 250 hours of training data and triphone state targets

exposes further the limitation of the second NN porting – here the

second NN trained on small data performs better on outputs of the

first NN which did not sees any of the target language data.

For the best setting (1710 hours, 9824 targets), the relative WER

change per language are shown in Fig. 3. The first thing that can be

spotted is that the poor performance with BN features from English

SBN hierarchy does not mean poor performance after porting and

vice versa. Lao, which has biggest performance degradation by us-

ing features from English SBN, achieved the second best relative

improvements after SBN porting. On the other hand Zulu, with mi-

nor degradation caused by English SBN feature extraction, did not

improve much after porting.

The second thing is that the adapt-adapt porting scheme is not

always the best choice. For Zulu and Telugu, the adapt-LLP porting

strategy is preferable.
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4.3. Changing NN topology

We have recently shown that simple modifying NN topology leads

to system improvement [24]. The modification lies in removing the

large hidden layer between bottle-neck layer and final softmax layer

in the ported NN. This can be achieved by two ways:

1. Removing the layer during NN porting. Having the source

NN with hidden layer between bottle-neck and output ones

the porting procedure is altered so that all layers after bottle-

neck one are removed and direct bottle-neck–to–output layer

is initialized. The rest of the porting is unchanged. The NNs

after porting will have just two hidden layers between input

and bottle-neck one, and then the output layer (IN-hl-hl-BN-

OUT or 2+0 NN structure).

2. Training source NN with modified topology – direct bottle-

neck–to–output layer. Here, the left-out hidden layer can be

moved in front of the bottle-neck layer. The porting proce-

dure is unchanged. The source NN and the ported NN will

both have three hidden layers between input and bottle-neck

one, and then the output layer (IN-hl-hl-hl-BN-OUT or 3+0

NN structure).

Both ways have theirs advantages: the first one provides better

632



-6

120125h

-5

-4

BN features obtained by adapt-LLP ported SBN

1151

re
la

tiv
e 

W
E

R
 c

ha
ng

e 
[%

]

250h

-3

-2

2423

number of targetsamount of data

500h 4886
1000h 7326

98241710h

2+1 NN -- original
2+0 -- modified porting
3+0 -- new NN

Fig. 5. Average relative WER change over five target languages as

a function of training data amount and number of NN targets for

adapt-LLP porting and different final NN structures. The reference

are language specific BN features.

performance when phoneme state targets are used for multilingual

training, the second one is necessary when tied-state triphone targets

are used as multilingual NN targets.

It is unclear how these two ways of final NN structure modifi-

cation will work in combination with different porting strategies on

a single language source NN. We decided to run two most efficient

porting strategies over both modification ways. For this purpose, an-

other set of English SBN hierarchies was trained. In this set, both

NNs have three hidden layers between input and bottle-neck one,

each with 1500 units. The bottle-neck layer is directly connected to

output softmax layer.

First, the performance of BN features obtained from English

SBN hierarchies with different versions of NN structures is com-

pared in Fig 4. The averaged relative WER change shows that the

NNs with modified structure (denoted as IN-hl-hl-hl-BN-OUT) per-

forms much worse than the original structure (IN-hl-hl-BN-hl-OUT).

The average degradation over all experiments is 2% relative.

The per language behavior of modified NN structure results is

similar to the original structure. For the best setting, the worst per-

forming language is Lao with 6.1% relative degradation, the least

degrading languages are Zulu and Lithuanian both with 2.4% rela-

tive degradation.

Next, the porting strategies are compared for both ways of ob-

taining the final NN structure with direct bottle-neck–to–output layer

connection.

Figure 5 compares the adapt-LLP porting strategy over original

source NN structure and porting procedure (2+1 target NN struc-

ture), original source NN structure and modified porting (2+0 tar-

get NN structure) and modified source NN structure and original

porting (3+0 target NN structure). It can be seen that the modified

porting improves over the original one in all settings. The small-

est improvements are seen for low number of targets and large data

used for source NN training. The results improve more with increas-

ing number of targets and for decreasing training data. The modi-

fied NN structure seems to exhibit different pattern over the source

NN amount-of-data – number-of-targets settings. The improvements

for smaller amount of data and number of outputs used for training

source NNs are smaller than for the original NN structure. However,

with increasing the number of source language targets, the ported

NN improves well over the original 2+1 target NN.
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Since the second NN in the SBN hierarchy is trained on LLP

data only and the behavior of BN features from original and modi-

fied NN structure from English SBNs are similar (similar shape of

the plane over the various settings), the difference in behavior can be

ascribed to the porting of the first NN. In case of modified NN port-

ing, it seems that the retraining process finds it easier to move the

weights towards target language acoustics. More targets in source

language allow easier mapping to new targets. Skipping hidden layer

after the bottle-neck one puts the new language targets closer to the

bottle-neck, thus influencing directly its outputs.

When the source NN is trained with direct bottle-neck–to–output

layer connection, the bottle-neck outputs are directly influenced by

the source language targets. New language targets thus need to be

closer to some existing targets to be able to efficiently influence the

weights during retraining. This can be seen from the smaller im-

provements achieved for low number of source language targets.

The results obtained from adapt-adapt porting scheme are sum-

marized in Fig. 6. The modified porting again improves over the

original one. The lowest improvement (only 0.01%) is achieved for

source NN being trained with 1710 hours of data and phoneme state

targets. The biggest difference, 1.88% is achieved for the smallest

training set with full triphone clustering (125 hours, 9824 targets).

The observation from adapt-LLP porting results thus can be con-

firmed – removing the hidden layer between bottle-neck and output

ones makes influencing the weights by new language acoustic eas-

ier. When the modified NN structure is used for source NN training,

the porting procedure is not as efficient. Still there is an advantage

over the original NN structure and porting, specially for the source

NN being trained with more targets. But it does not reach the per-

formance of original source NN with modified porting.

An interesting observation is that the performance of system

ported from source NNs trained on full data with phoneme state tar-

gets is about the same over different NNs topologies. It shows that

the well trained weights from source NN are equally hard to move

towards new language acoustic no matter if the output layer is closer

or farther from the bottle-neck layer.

The per language results for both porting strategies and all three

NN structure combinations are shown in Fig. 7. Comparing adapt-

LLP and adapt-adapt porting strategies on the original (2+1) and

modified (3+0) NN topologies, we see that the trends are the same
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– if adapt-adapt porting performed better for 2+1 NNs, it performs

better also for 3+0 NNs. However, if the trend is opposite, the gap

between adapt-LLP and adapt-adapt porting is bigger for the modi-

fied 3+0 NN topology. The difficulty of diverse NN targets in source

and target language is amplified when NN with direct bottle-neck–

to–output connection is used. Since the second NN does the final

classification (even though in hybrid system it “only” provides fea-

tures for final classification done by GMMs) the errors made here

matter much more. In fact, the positive effect from the first NN

ported, which can be seen from adapt-LLP porting results, is com-

pletely lost in attempt to port also the second NN. Thus for very

distinct phoneme sets such is in Zulu, the adapt-adapt porting on

NN with modified structure leads to the worst of ported results.

Comparing the modified porting strategies on the original NN

structure, the adapt-adapt porting is in all cases better than the

adapt-LLP one. It is not always the best, but it is never the worst,

thus presents optimal porting strategy for unknown language.

5. CONCLUSIONS

In this paper, we have evaluated the multilingual techniques for sin-

gle source-language scenario. Since it is hard to obtain coherent

multilingual corpora usable for multilingual training, using single,

well resourced, language instead is quite attractive.

The English Fisher database, containing about 2000 hours of au-

dio, was used for our analysis. It was aligned on the level of context

dependent triphone states. Climbing up the decision tree, several

sets of tied triphones were created to study the porting efficiency as

function of the “detailness” of source language data alignment. To

see the effect of the amount of source language training data, several

training sets were created as well.

For the majority of number-of-triphones – data-amount pairs,

source Stacked Bottle-Neck NN hierarchy was trained and subse-

quently ported to five languages. We have used the limited language

packs of Haiti, Lao, Zulu, Telugu and Lithuanian distributed through

the IARPA BABEL program. The ported SBN hierarchy was used

to generate BN features for simple GMM-HMM decoder. The per-

formance of ported systems was compared to the SBN trained on the

target language data only.

First, the non-ported English NNs were used to generate fea-

tures for target languages. Opposed to the multilingual SBN, this

leads to performance degradation. Next, three porting strategies

(adapt-LLP, adapt-adapt, multi-LLP), proposed earlier for multilin-

gual SBN, were evaluated. In average, the adapt-adapt porting strat-

egy performed the best, but for some really distinct languages, such

Language TE LI HA LA ZU

baseline – language specific SBN 78.7 60.3 65.9 63.6 74.2

EN modified adapt-adapt porting 75.9 55.7 60.9 58.0 71.3

Mult 5L adapt-adapt porting 76.2 57.9 62.4 58.7 71.8

Multil 7L adapt-adapt porting 75.5 57.3 61.0 57.7 70.5

modif Mult 5L adapt-adapt porting 75.1 56.2 60.8 57.1 70.8

modif Mult 7L adapt-adapt porting 74.5 56.0 59.9 56.6 70.5

Table 2. WER resutls on test languages

as Zulu and Telugu, adapt-LLP strategy worked better.

The modified NN structure, which was found to be beneficial for

multilingual NNs, was evaluated next. Here, we have two options

to achieve the desired NN topology for target language: to modify

the porting procedure or to train the source NN with desired struc-

ture. Both options were evaluated exhibiting different patterns when

ported.

The observed effect of porting individual NNs with different

structures is the following:

Porting the first NN is always beneficial. Since it provides fea-

tures for the second NN in hierarchy, it does not have to do pre-

cise classification. Thus the source NN with modified structure can

be safely used. Adaptation of the second stage NN is more deli-

cate since it provides features for the HMM. For successful porting,

the target language triphones should be close to some source lan-

guage triphones. The modified porting process, when the hidden

layer between bottle-neck and the output one is omitted is easing

the retraining to target language. In this case, the error from target

layer is propagated directly to bottle-neck layer, affecting directly

its outputs. Training the second stage NN on target language only

might also be an option, especially for languages with distinct acous-

tic characteristic such as Zulu.

The effect of increasing amount of source language data and

number of triphones on ported language is mostly positive. The gen-

eral recommendation should be to use number of triphones appro-

priate for the available training data.

Over all, the modified adapt-adapt porting strategy is recom-

mended a as safe option, giving in average the best results for the

best performing combination of source data amount and number of

triphone states. It was also better than adapt-LLP version on all of

our test languages. The average relative improvement achieved was

6.2% spanning from 3.5% for Telugu to 8.8% for Lao.

The achieved WERs are given in Tab. 5. The first line shows

the baseline results where features are generated using SBN trained

on target language data only. Second line results were obtained with

features from English NN trained on 1710 hours towards 9824 tar-

gets ported using the modified adapt-adapt porting (2+0) to target

language. The results on the following lines are from [24]: the Mult

5L and Mult 7L are multilingual networks with original NN struc-

ture (2+1) and phoneme state targets. The last two lines, modif Mult

5L and modif Mult 7L are multilingual networks with modified NN

structure (3+0) and tied triphone state targets. All multilingual net-

works were ported using adapt-adapt scheme to the target language.

The results obtained from just one well resourced source lan-

guage are better than having multilingual system trained on 5 lan-

guages, and are close to 7 language system. The modified NN struc-

ture trained on 7 languages gives an additional 1% absolute WER

reduction, but training such multilingual NN with triphone targets

is computationally demanding. We have thus shown that single lan-

guage can be successfully used for multilingual techniques.
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