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Abstract

This study investigates the behavior of a feature extraction neural network model trained on a large amount of single language data

(“source language”) on a set of under-resourced target languages. The coverage of the source language acoustic space was changed

in two ways: (1) by changing the amount of training data and (2) by altering the level of detail of acoustic units (by changing

the triphone clustering). We observe the effect of these changes on the performance on target language in two scenarios: (1) the

source-language NNs were used directly, (2) NNs were first ported to target language.

The results show that increasing coverage as well as level of detail on the source language improves the target language system

performance in both scenarios. For the first one, both source language characteristic have about the same effect. For the second

scenario, the amount of data in source language is more important than the level of detail.

The possibility to include large data into multilingual training set was also investigated. Our experiments point out possible

risk of over-weighting the NNs towards the source language with large data. This degrades the performance on part of the target

languages, compared to the setting where the amounts of data per language are balanced.
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1. Introduction

Multilingual resources are of great help in case the data from the target language are not sufficient to train good

acoustic model. In such case, the multilingual model, which is usually trained beforehand, is ported to the target

language. Such multilingual models outperform the model trained only on limited target data1,2,3. The same holds for

neural network model used for feature extraction4,5,6.

It has been shown that increasing the number of languages used to train the multilingual model decrease the WER

after porting to target language5. However, in multilingual training, it is desired to use the languages which are

potentially close to the target one. A study has been carried out to show that careful selection of languages used to
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train the multilingual NN leads to an improvement on target language7. Improvements can carry past the porting

stage, when the NN is retrained on the target language data. The selection does not have to stop on the level of the

language as an atomic unit. It is possible to select only appropriate sentences or even frames.

The disadvantage of such language selection is the necessity to know the target language a-priori and subsequent

training of the multilingual NN on potentially large amount of data. Moreover, the optimal thresholding for data se-

lection may differ depending on the target language. Also, very distinct languages may not benefit from this technique

at all.

Although there is a lot of studies comparing different strategies of multilingual NN training and theirs effect on the

target language e.g.8,9,10,11,12 a detailed analysis of the important issues of training language handling is missing. By

a handling we mean properties, which can be altered. For example, the acoustic characteristic of the language cannot

be changed, but we can change the modeling or labeling granularity of the given acoustic space.

Such study can be better made on a single training language, thus eliminating interaction between training lan-

guages during multilingual NN training. The advantage of multilingual training is a rich phoneme set seen over

several languages, but variety in used recording device, which can be also language dependent as certain locations

may tend to use specific handsets is a clear drawback. There is a danger of conditioning certain phonemes rather on

the audio channel than on the underlying acoustic information. A big collection of one language should provide rather

homogeneous recording conditions.

In this work we study the behavior of NN used for feature extraction trained on a large database corpus – English

Fisher. Although the performance of ported monolingual system would be worse in comparison with the multilingual

one (due to the limited acoustic space coverage and phonemic variability), it still should reveal the trends.

The focus of this study is to find out, how the coverage and partitioning of acoustic space bounded by a single

language phonology will affect the performance in the target language. The limitation to a single language phoneme

set makes it possible to alter the phonetic resolution of the acoustic space by means of triphone clustering. Such

change should reveal if finer resolution of otherwise the same acoustic space will lead to better performance in the

target language. An alternative to the phonetic resolution is acoustic coverage of the units. By changing the amount

of training data – by changing the number of speakers as well as the number of utterances per speaker, the acoustic

variability of given unit will also change.

It would be also interesting to see how the language with large data can be used together with a multilingual set.

The databases used for multilingual model training are usually more or less balanced. If the aim of multilingual

processing is to use any transcribed data, large differences in the amounts of data per language may appear. A case

study can reveal if this might be a problem or if the multilingual training procedure can deal with it.

2. Experimental setup

In this study, we observe the WER obtained from a tandem13 system where the features for the final GMM-

HMM classifier are the Bottle-Neck (BN)14 features obtained from Stacked Bottle-Neck (SBN) Neural Network

(NN) hierarchy15. A simple maximum-likelihood trained model without any speaker adaptation is used.

The GMM-HMM model is trained on the target language which is represented by the limited language pack of the

following data sets release:

Telugu – TE – IARPA-babel303b-v1.0a – is a Dravidian language spoken in the south-eastern part of India. Telugu

phoneme set used for the experiments contains 39 phonemes, vowels showing long/short dichotomy and containing

two diphthongs. Consonant set contains quite a few retroflex phonemes.

Lithuanian – LI – IARPA-babel304b-v1.0b – language belongs to the family of Baltic languages, and the phoneme

set used for the experiments consists of 110 phonemes. On vowels and voiced consonants, it contains markings of

stress and of falling or rising tone where applicable. Apart from that, vowels have long and short versions. Nearly

every consonant in the Lithuanian consonant set has two versions: palatalized and non-palatalized

Haitian Creole – HA – IARPA-babel201b-v0.2b – a French Creole language spoken in Haiti. It is based mainly

on French, but is also influenced by other European languages, such as Spanish and Portuguese, and West African

languages. The phoneme set is relatively simple, with just 32 phonemes, all of them typical to the aforementioned

European languages.
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Table 1. Statistics of the data for target languages.

Language TE LI HA LA ZU

LLP hours 8.6 9.6 7.9 8.1 8.4

LM sentences 11935 10743 9861 11577 10644

LM words 68175 83157 93131 93328 60832

dictionary 14505 12722 5333 3856 14962

# tied states 1370 1763 1257 1453 1379

dev hours 7.8 8.1 7.4 6.6 7.4

# words 59340 77790 81087 81661 50053

OOV rate [%] 16.1 11.4 4.1 1.8 22.4

Lao – LA – IARPA-babel203b-v3.1a – a tonal language from the Tai-Kadai family, which is spoken in Laos and

also in parts of Thailand. With the total of 132 phonemes, Lao has a very complicated vowel system. Apart from tones,

vowels are also distinguished according to their length. Moreover, there are three diphthongs. As for consonants, some

of them can be aspirated.

Zulu – ZU – IARPA-babel206b-v0.1e – a South Africa language belonging to the Niger-Congo language family.

The phonetic set used in our data consists of 66 phonemes and differentiates between stressed and unstressed vowels

and voiced consonants. Apart from this, vowel system is quite simple, whereas consonants pose some problems for

multilingual training, as Zulu has clicks, and they are unique for our set of languages. Moreover, Zulu shows a wide

variety of non-pulmonic consonants and also have aspiration.

Statistics for target languages are given in Tab. 1. The amounts of data refer to the speech segments after chopping

out long portions of silence – only 150 ms of silence were left at the beginning and end of each utterance; when pause

longer than 300 ms was detected, the utterance was split into two. The vocabulary and language model (LM) training

data consist of speech word transcriptions of the training data. 3-gram LM was used for the decoding.

The features for GMM-HMM are transformed BN outputs without any additional features. Thus the system per-

formance will directly reflect the changes made in neural network training. The transformation used is the Maximum

Likelihood Linear Transform (MLLT), which considers HMM states as classes. The GMM models are trained by

single-pass retraining from an HLDA-PLP initial system (described below). 12 Gaussian components per state were

found to be sufficient for MLLT-BN features. 12 maximum likelihood iterations are done to settle HMMs in the BN

feature space.

The initial system is based on PLP coefficients which are together with their first, second and third order derivatives

transformed using HLDA. The HLDA treats every Gaussian component as a class and its output dimensionality is 39.

The conversation side mean and variance normalization is used on top of the transformed features. The HMM states

correspond to cross-word tied-states triphones, each state consists of 18 Gaussian mixture components. The model

is trained from scratch using mix-up maximum likelihood training. This model is used for forced alignment of the

training data and for seeding the final BN features based HMMs.

2.1. SBN neural network hierarchy

The SBN is a two-stage structure of 6-layer NNs as described in15. Both NNs have Bottle-Neck layer with linear

activation function as the 3rd hidden layer. The first stage NN has 80 units in its BN layer the second stage NN uses

30 units. The 1st, 2nd and 4th hidden layers have 1500 units with sigmoid activation function.

The BN layer outputs of the first stage NN are stacked (hence Stacked Bottle-Neck) over 21 frames and downsam-

pled by factor of five before entering the second stage NN.

The NN input features are composed of critical band energy (CRBE) and fundamental frequency features. As crit-

ical band energy features, we use logarithmized outputs of 24 Mel-scaled filters applied on squared FFT magnitudes.

The fundamental frequency features consist of F0 and probability of voicing estimated according to16 and smoothed
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Fig. 1. Average relative WER reduction over five target languages as a function of training data amount and number of NN targets. The reference

point is the NN trained on 250 hours with phoneme state targets. Red bars connect minimum and maximum values for given setting.

by dynamic programming, F0 estimates obtained by Snack tool1 function getf0 and seven coefficients of Fundamental

Frequency Variations spectrum17,18. Together, there are 10 F0 related coefficients.

The conversation-side based mean subtraction is applied on the whole feature vector and 11 frames are stacked

together. Hamming window followed by DCT consisting of 0th to 5th base are applied on the time trajectory of each

parameter resulting in 34 × 6 = 204 coefficients on the first stage NN input. The whole data set is mean and variance

normalized.

1 www.speech.kth.se/snack/
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3. SBN trained on Fisher database

The purpose of these experiments is to address the sensitivity of target language WER on the coverage and parti-

tioning of source language acoustic space. By coverage, we mean meant inter- and intra- speaker variability presented

by the data. Different coverage is simply achieved by using only selection of the data for NN training. The partitioning

is presented by the NN training targets. Generally, the more targets we use, the finer acoustic event can be classified

and the higher is the partitioning.

The source language here is English taken from the Fisher database2. The initial HLDA-PLP models have 9824

tied triphone states. The generated decision tree was climbed up to create clusterings with different number of states.

The clusterings containing 75%, 50%, 25% and 10% of original triphone tied states were created and phoneme state

clustering was added. Thus the number of targets for NN training is 9824 for original triphone tied states, 7326,

4886, 2423, and 1151 for the reduced triphone states and 120 for phoneme states. The amount of data used for NN

training was either 250, 500, 1000 or 1710 hours of data. The 1710 hours set represents whole training data after

removing long portions of silence (see above). The selection of data used for smaller training sets was done randomly

on a segment level. For the 250 hours training set, NNs for each clustering were trained. For larger training sets, the

clusterings using phoneme states and 25% and 75% of original triphone tied states were used.

Two sets of experiments were done:

• The SBN hierarchies trained on Fisher data were directly used to extract BN features for target language.

• The SBN hierarchies were ported to target language and then the BN features were extracted. The porting was

done as follows: The last layer of NN trained on Fisher was trimmed, and new layer with appropriate number

of outputs was initialized randomly. Then only the new layer was trained for six epochs on target language.

Finally, whole network was trained (fine tuned) on target language data for another six to eight epochs. The

learning rate for this fine tuning training is set to 1/10 of the normal training.

To present results in a compact way, the relative WER reduction with respect to system based on features obtained

from SBN trained on 250 hours with phoneme state targets was computed for each target language. Then the relative

WER reductions were averaged over the target languages. The results obtained using original and ported SBN NNs

were kept apart. The minimal and maximal relative WER reduction was found for each training condition. The results

are shown in Fig. 1 where the points connected by black line corresponds to the average WER reduction and the red

bars around it shows the minimal and maximal values.

It can be seen that for features obtained from the original SBN trained on Fisher data only, the gains are achieved

for increased partitioning as well as coverage. Finer clustering is more important to achieve better performance, but

increasing the coverage and partitioning together is far more efficient.

When porting to the target language is done, the partitioning does not play so important role. Moreover, having

bigger partitioning without sufficient coverage may lead to the performance degradation. This is interesting behavior

revealing that fine-tuning of NN is not able to utilize the higher clustering. One could think that porting from NNs

which distinguish between more acoustic units would be easier but for some languages it just might be the opposite.

The only safe way to introduce higher clustering is to increase the coverage too.

4. Fisher as part of multilingual data set

This part of the study focuses on the effect of additional large data for multilingual training. The Fisher data is added

to 11 IARPA BABEL3 languages shown in Tab 2. The speech was force-aligned using our BABEL ASR system19

and long portions of silence were removed (see Sec.2). The phoneme states are used as targets for the multilingual

NN training as it is more practical and was also found more efficient20. More details about the characteristics of the

languages can be found in21.

2 Fisher 1,2; LDC2004S13, LDC2005S13 for speech data; LDC2004T19, LDC2005T19 for transcripts
3 http://www.iarpa.gov/index.php/research-programs/babel
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Fig. 2. Relative WER reduction for Telugu and Lithuanian as a function of additional Fisher data used in multilingual training. The reference point

is for no Fisher data added.

Table 2. Data used for multilingual training of SBN networks.

# phn.

Language Dataset hours states

Cantonese IARPA-babel101-v0.4c 65.0 471

Pashto IARPA-babel104b-v0.4aY 64.7 216

Turkish IARPA-babel105-v0.6 56.6 126

Tagalog IARPA-babel106-v0.2g 44.1 252

Vietnamese IARPA-babel107b-v0.7 53.2 303

Assamese IARPA-babel102b-v0.5a 46.7 141

Bengali IARPA-babel103b-v0.4b 53.6 147

Haitian Creole IARPA-babel201b-v0.2b 55.0 99

Lao IARPA-babel203b-v3.1a 71.6 411

Tamil IARPA-babel204b-v1.1b 72.7 102

Zulu IARPA-babel206b-v0.1e 57.8 219

Total 641.0 2487

Since the Haitian Creole, Lao and Zulu are presented in the multilingual training set, the evaluation is done on the

remaining two languages – Telugu and Lithuanian.

First, the multilingual NN is trained without the Fisher data to have a reference point. Then, 60, 500 and 1000

hours from Fisher are added as another language to the training set. In the first case, the amount of data roughly

corresponds to the size of language pack. This results in a balanced training set in terms of language representation.

In the second case, the size of Fisher data is comparable to the whole multilingual set. The last case, when 1000 hours
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of Fisher are added, the English data forms large majority of all the data. Note, that phoneme states were used as

targets for the Fisher database (120 targets).

Again, two sets of experiments were done: In the first set, the multilingual SBN NNs are used directly for the

feature extraction. In the second set, the NNs are ported to target language prior to feature generation.

The results are shown in Fig. 2. The relative WER reduction for each language is shown. The reference system

is trained on features obtained by multilingual NNs without Fisher data. As can be seen from the curves, the effect

of adding 60 hours of Fisher data is either none (for Telugu) of positive (for Lithuanian) which is the expected result

after adding one more language to the multilingual training set. But with increasing amount of data coming from this

new language, the performance on target languages decreases. The degradation is more distinctive on NNs without

porting as the fine-tuning on target data largely improves performance of the system 5. This results show the potential

danger of over-presenting a language (or a group of languages) in the multilingual training set.

5. Conclusions

In this study we have shown how to use large data from single language in order to create a system well performing

on different target language. It was show, that not only the acoustic space coverage – amount of data, but also acoustic

space partitioning – level of detail, is important for good performance. The results show that these properties are tied

and joint effect of increasing them both is bigger than what would be expected by summing up improvements in each

direction.

The results also reveal possible danger which can be encountered while porting the NN to target language. The

possibly danger setting is to train NN on acoustic space with high partitioning but without sufficient coverage. In such

case, the resulting system can perform worse than one ported from NNs with only basic partitioning – phoneme state

targets.

An interesting phenomenon is the improvement obtained by Fisher SBN with ∼1100 targets. This increase in per-

formance appears across all the languages for purely Fisher trained NNs but disappears after porting. One explanation

might be that the number of targets is close to the number of states used in the target language. The smooth curve

after porting would be then caused by the porting process, which actually sets the number of targets to be the same

for all the SBNs.

The second sets of experiments employed the large data in the multilingual training. The results reveal that having

largely unbalanced amount of data per language in the training set might cause degradation of the final system. For

both of our test languages, the final performance goes down as the amount of used Fisher data increases over the

balanced set. The porting procedure can reduce the negative effect if the target language can benefit from the largely

presented language.

Although this study was based on tandem system, where features generated by NNs are used for GMM-HMM

model, we believe that the findings apply also to hybrid system as the NNs used are virtually the same. But for hybrid,

the porting step is obligatory.

In the future, we would like to investigate what really matters in the acoustic space partitioning. The question

we would like to answer is: Is there an optimal clustering of source language acoustic space? Or is there a strategy

to create well performing clustering? The second track is the challenge of better combination of highly imbalanced

training sets. One way is to scale down the back-propagation error for the over-presented language. This might be

better than simply selecting only a portion of the data but still can be far from optimal.
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