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ABSTRACT

This paper provides an extensive summary of BUT 2016 system for
the last IARPA Babel evaluations. It concentrates on multi-lingual
training of both deep neural network (DNN)-based feature extraction
and acoustic models including multilingual training of bidirectional
Long Short Term memory networks. Next, two low-dimensional
vector approaches to speaker adaptation are investigated: i-vectors
and sequence-summarizing neural networks (SSNN). The results
provided on three Babel Year 4 languages show clear advantage of
both approaches in case limited amount of training data is avail-
able. The time necessary for the development of a new system is
addressed too, as some of the investigated techniques do not require
extensive re-training of the whole system.

Index Terms— Automatic speech recognition, Multilingual
neural networks, Bidirectional Long Short Term Memory, i-vectors,
Sequence Summarizing Neural Networks.

1. INTRODUCTION

Quick delivery of an automatic speech recognition (ASR) system
for a new language is one of the challenges in the community. Such
scenarios call not only for automated construction of systems, that
have been carefully designed and crafted “by hand” so far, but also
for effective use of available resources, as, without any question,
the data collection and annotation are the most time- and money-
consuming procedures.

The IARPA Babel program that is nearing its end aims at fast
development of ASR systems with decreasing amounts of target lan-
guage data. This paper describes our system built for the final, 2016,
Babel evaluations and concentrates on two main issues:

Multi-lingual experiments for feature extraction and acoustic
modeling. For humans, borrowing the information from other
sources when trying to learn a new language is very natural. We
all share the same vocal tract architecture and phonetic systems of
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languages overlap, therefore automatic systems should be able to
have the low-level components (feature extraction and partially also
acoustic models) built and trained on various sources of data. In
past, we have verified [1] that multilingual pre-training for feature
extraction is an important technique especially if not-enough training
data is available. We have also performed an analysis of combining
semi-supervised training and multilingual approaches in feature do-
main [2], and a recent work on multilingual DNN acoustics models
also shows significant gains with adding more languages into acous-
tic model training [3]. We are extending this work into currently
very popular Long-Short Term Memory Recurrent Neural Networks
(LSTM-RNN) including their bi-directional variant (BLSTM). Our
work includes also multi-lingual training of feature transformations,
namely Region Dependent Transforms (RDT) [4].

New approaches to environment and speaker adaptation. The
environment adaptation addressing the mismatch between telephone
and far-field data was done by Weighted Prediction Error (WPE)
[5, 6] that has been recently shown to greatly improve ASR in re-
verberant conditions for several tasks [7, 8]. As far as we know, this
is the first successful use of this technique in Babel framework. In
speaker adaptation, we are not neglecting classical approaches, such
as Constrained Maximum Likelihood Linear Regression (CMLLR)
[9] adapted for the NN-based features, but our focus is on speaker
adaptation based on low-dimensional vectors. We have investigated
into i-vectors [10] popular in the speaker recognition community
and compared them with recently introduced sequence-summarizing
NNs [11].

The paper is structured as follows: section 2 provides an
overview of the data. Section 3 and 4 discusses the existing methods
for multilingual feature extraction and domain or speaker adapta-
tion. In section 5, ASR systems based on GMM, DNN, LSTM
and BLSTM are described, Section 6 experimentally analyses the
multi-lingual approaches to feature extraction and acoustic model
training. In section 7.2, we present the results of domain and speaker
adaptation techniques and conclude in section 8.

2. DATA

The IARPA Babel program data simulates a case of what one could
collect in limited time from a completely new language. The data
consists mainly of conversational telephone speech (CTS) but some
scripted recordings and far field recordings are present too. Table 1
presents the details of languages used in this work sorted by years
of BABEL program. The amounts of data can be found in table 2.
Note, that the data sizes are summarized after limiting the silence in
all audio files to 150 ms on the edges of voice segments by forced
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Year 1 (Y1)
Cantonese IARPA-babel101-v0.4c CA
Pashto IARPA-babel104b-v0.4aY PA
Turkish IARPA-babel105-v0.6 TU
Tagalog IARPA-babel106-v0.2g TA
Vietnamese IARPA-babel107b-v0.7 VI
Year 2 (Y2)
Assamese IARPA-babel102b-v0.5a AS
Bengali IARPA-babel103b-v0.4b BE
Haitian Creole IARPA-babel201b-v0.2b HA
Lao IARPA-babel203b-v3.1a LA
Zulu IARPA-babel206b-v0.1e ZU
Tamil IARPA-babel204b-v1.1b Tam
Year 3 (Y3)
Kurdish IARPA-babel205b-v1.0a KU
Cebuano IARPA-babel301b-v2.0b CE
Kazach IARPA-babel302b-v1.0a KA
Telugu IARPA-babel303b-v1.0a TE
Lithuanian IARPA-babel304b-v1.0b LI
TokPisin IARPA-babel207b-v1.0c TP
Swahili IARPA-babel202b-v1.0d SW
Year 4 (Y4)
Pashto see Year 1 – progress set PA2
Javanese IARPA-babel402b-v1.0b JA
Igbo IARPA-babel306b-v2.0c IG
Mongolian IARPA-babel401b-v2.0b MO
Dholuo IARPA-babel403b-v1.0b DH
Guarani IARPA-babel305b-v1.0b GU
Amharic IARPA-babel307b-v1.0b AM
Non-Babel
Levantine Arabic QT training data set 5 LEV
Fisher English training speech part

1,2 limited to 250 hours FSH
Mandarin HKUST + Mandarin CallHome/CallFriend MAN
Spanish Fisher + Spanish CallHome/CallFriend SPA

Table 1. Languages used.

alignment. More details about Year 1–3 languages can be found
in [1].

On contrary to the previous Babel evaluations, where all devel-
opment for given language was restricted to the language pack of
that particular language (for full language pack condition). In Year
4, multilingual training and web text data collection were allowed.
We have not worked on the language models (LM) and limited their
training data to the respective language packs. Pronunciation dictio-
naries were not provided and participants had to rely on graphemes
in all conditions. However, for multilingual acoustic models and fea-
ture extractor training, several data-sets based on packs from table 2
were generated, simulating a real situation with the data “growing”
over time. As the target languages, Year’s 4 Javanese, Pashto and
Amharic were chosen.

3. MULTILINGUAL FEATURE EXTRACTION

3.1. Stacked Bottle-Neck feature extraction

The original idea of Stacked Bottle-Neck feature extraction is de-
scribed in [12]. The scheme (see Fig. 1) consists of two NN stages:
The first one is reading short temporal context, its output is stacked,
down-sampled, and fed into the second NN reading longer temporal

Y1 Langs. CA PA TU TA VI
Hours 65 65 57 44 53
Y2 Langs. AS BE HA LA ZU Tam
Hours 47 54 55 57 58 56
Y3 Langs. KU CE KA TE LI TP SW
Hours 37 38 40 38 41 26 34
Y4 Langs. PA2 JA IG MO DH GU AM
Hours 32 40 39 39 38 39 39
Non-Babel LEV FSH MAN SPA
Hours 136 239 153 199

Table 2. Amount of data used for the training.
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Fig. 1. Stacked Bottle-Neck Neural Network feature extraction.

information.
The first stage bottle-neck NN input features are 24 log Mel fil-

ter bank outputs concatenated with different fundamental frequency
features: “BUT F0” has 2 coefficients (F0 and probability of voic-
ing), “snack F0” is just a single F0 estimate and “Kaldi F0” has 3
coefficients (Normalized F0 across sliding window, probability of
voicing and delta). Fundamental frequency variation (FFV) pro-
duces a 7 dimensional vector. Therefore, the whole feature vector
has 24+2+1+3+7=37 coefficients (see [12] for details on fundamen-
tal frequency features).

Conversation-side based mean subtraction is applied and 11 con-
secutive frames are stacked. Hamming window followed by discrete
cosine transform (DCT) retaining 0th to 5th coefficients are applied
on the time trajectory of each parameter resulting in 37×6=222 coef-
ficients at the first-stage NN input. These features are later also used
independently for DNN systems (section 6.3), and will be called
“11FBank F0”.

In this work, the first-stage NN has 4 hidden layers with 1500
units in each except the bottle-neck (BN) one. The BN layer has
80 neurons. The neurons in the BN layer have linear activations as
found optimal in [13]. 21 consecutive frames from the first-stage NN
are stacked, down-sampled (each 5 frame is taken) and fed into the
second-stage NN with an architecture similar to the first-stage NN,
except of BN layer with only 30 neurons. Both neural networks were
trained jointly as suggested in [13] in CNTK toolkit [14].

3.2. Multi-lingual Region-Dependent Transforms (RDT)

RDT [15] is a popular transform allowing for non-linear warping of
the acoustic space to suit better GMM-HMM acoustic models. In our
recent work [4], we investigated ways to train RDT in multi-lingual
fashion — the statistics necessary to update the RDT model are col-
lected on all target languages, averaged, and a single RDT transform
can then serve to transform features for all languages, including un-
seen ones.

Here, multilingual RDT was used to fuse PLP features with
multi-lingual BN features trained on 17 languages (see the next sec-
tion). The multilingual RDT was trained on Y1-Y3 data (containing
17 languages excluding Pashto due to duplicity with Y4 data). These
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will be later referred as “MultRDT” features.

4. DOMAIN AND SPEAKER ADAPTATIONS

4.1. WPE-based de-reverberation

Most of Babel data is CTS, but about 10% in Year 3-4 was acquired
by far-field microphones. For these, reverberation is responsible for
non-stationary distortions that are correlated with the speech signal.
Reverberation cannot be suppressed using conventional noise reduc-
tion approaches. Therefore, we used the weighted-prediction error
(WPE) de-reverberation method [5, 6] that was shown to greatly im-
prove ASR in reverberant conditions for several tasks [7, 8].

WPE is based on long-term multi-channel linear prediction (LP),
but introduces modifications to conventional LP to make it effective
for de-reverberation: speech is modeled with a short-term Gaussian
distribution with time-varying variance [16], and a short time de-
lay is introduced in the LP filters to prevent the equalization of the
speech production [17]. Note that the WPE algorithm does not re-
quire a pre-trained model of speech. The ASR system (feature ex-
traction and acoustic modeling) does not need to be re-trained.

4.2. Speaker adaptation techniques

4.2.1. i-vectors

The i-vectors provide an elegant way of reducing large-dimensional
sequential input data to a small- and fixed-dimensional feature vector
while retaining most of the information relevant for speaker recog-
nition [10].

We used 19 Mel-frequency cepstral coefficients (MFCC) +
energy augmented with their delta and double delta coefficients,
resulting in 60-dimensional feature vectors. The silence frames
were removed according to VAD, after which we applied short-
time (300 frames) cepstral mean and variance normalization. The
MFCC features were augmented with SBN features trained on
Y1+Y2 languages. A gender-independent UBM was represented
as diagonal-covariance 512-component GMM and it was trained
on target language data. The variance flooring was used in each
iteration of EM algorithm during the UBM training.

Finally, gender-independent i-vector extractor was trained (in 10
iterations of a joint Expectation Maximization and Minimum Diver-
gence steps) on the same data set as the UBM. More details on i-
vector extraction can be found in [18]. The results are reported with
100-dimensional i-vectors.

4.2.2. Sequence summarizing neural network

SSNN is a new DNN adaptation technique [11], producing a fixed-
length ‘summary vector’ per speaker or per-utterance. The “sum-
mary vector” is obtained by enclosing a sequence-averaging opera-
tion into the last component of the SSNN. The “summary vector” is
then appended to the input of the main network (acoustic model), and
both networks are trained together, while the gradients for SSNN are
calculated by back-propagating through the main network, see fig-
ure 2. Both networks are trained to optimize a single loss function.

The SSNN can be either initialized randomly (as we did in [11]),
or it can be pre-trained as per-frame classifier of speakers (as was
done in [19, 20]). After the network learns to classify speakers, we
can extract the ‘summary vectors’ by averaging the signals from the
last hidden layer over time.
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Fig. 2. Topology of the main-network with “sequence summary”
input. The summary is computed by SSNN with sentence-averaging
on the output.
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Fig. 3. DNN model with speaker adaptation.

5. ASR SYSTEMS

Our systems were built with a variety of software and tools:
STK/HTK [21] toolkit1 was used for feature extraction and CM-
LLR adaptation. Kaldi [22] was used for maximum likelihood (ML)
Gaussian mixture model (GMM) training and baseline DNN acous-
tic model training. CNTK [14] served for most of the advanced NN
training (SBN, LSTM and BLSTM).

5.1. GMM system

The GMM acoustic models based on cross-word tied-states were
trained from scratch using standard ML algorithm. Initial base-
line models were trained on 13-dimensional PLP (including C0) ex-
tended with 3-dimensional Kaldi pitch features [23]. We applied
per-speaker mean/variance normalization, spliced vectors by +/- 4
frames and then projected down to 40 dimensions using Linear Dis-
criminant Analysis (LDA). Finally, the features were rotated by sin-
gle feature-space maximum likelihood linear regression (fMLLR)
[25] transform estimated per speaker. The baseline GMM system
with 4000 cross-word triphone tied states and 7 Gaussians per state
was used to prepare baseline HLDA+fMLLR features. The state-
alignments obtained with GMM systems were further used for DNN
training.

5.2. DNN system

The baseline DNN system is described in detail in [12]. The first
stage is identical to the SBN feature extraction described in sec-
tion 3.1, with the second stage NN replaced directly with the DNN
acoustic model, see figure 3. Note, in the past we also experimented
with using second stage NN features but not gain was observed.

The SBN feature extractor was trained first and the features only
from the first stage NN were generated. For such architecture, we
have shown in [9] that CMLLR adaptation improves the system per-
formance. These features will be further called “BN-CMLLR”

The BN-CMLLR features are spliced in sequence (-10,-5:5,10)
and mean normalized. For the experiments, we used DNNs with
6 hidden layers each containing 2048 sigmoidal neurons. The

1STK is BUT’s variant of HTK, however not properly docu-
mented, see http://speech.fit.vutbr.cz/software/
hmm-toolkit-stk with care.
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DNN system is pre-trained using restricted Boltzmann machine
(RBM) [26]. This is followed by frame classification training
(cross-entropy) using stochastic gradient descent algorithm. The
learning rate scheduling is based on relative improvement of the
training objective (frame cross-entropy) on 10% held-out set. The
input frames are randomized and grouped into mini-batches, each of
size 256.

5.3. LSTM and BLSTM systems

“Highway” Long-Short Term Memory system is built according to
recipes presented in [28]. We did not observe any significant gain
by using highway architecture in contrast to the original one, but we
found this architecture more stable to train.

The LSTM architecture contains 3 layers with 1024 memory
units and a projection layer with 512 neurons as suggested in [29].
The training employs the truncated back-propagation through time
(BPTT) to update the model parameters [30]. We use a fixed
time step Tbptt (e.g. 20) to forward-propagate the activations and
backward-propagate the gradients.

The latency-controlled BLSTM [28] architecture contains 3 hid-
den layers in both directions each with 512 memory units and 300
neurons in the projection layer.

5.4. Results of mono-lingual baselines

The results of purely mono-lingual GMM and DNN systems are in
the left columns of Tables 3 and 4. All results are given as word error
rates (WER) in %. In the DNN systems, both networks were trained
on the target language only.

6. MULTI-LINGUAL EXPERIMENTS

6.1. Analysis of multilingual RDT features

This section showcases the experiments on GMM and DNN systems
using MultRDT (see section 3.2) features. Table 3 shows about 10%
absolute gain by training simple GMM systems on MultRDT fea-
tures — note that these performances almost reach the ones obtained
by DNNs. Although looking similar, table 4 with results of DNN

Language PLP MultRDT
Javanese 66.4 55.9
Amharic 56.2 46.2
Pashto 61.1 51.2

Table 3. GMM systems - PLP vs. MultRDT features.

systems presents very different results: here, both neural networks
are still trained on the target language only with standard architec-
ture (11FBANK F0→SBN→CMLLR→DNN); the only thing that
changes is the initial alignment of frames obtained with a GMM sys-
tem with either plain PLPs (left column) or MultRDT features (right
column). Although DNN systems are not particularly sensitive to
this initial alignment, there is still about 1% absolute improvement
we can obtain by providing the best initial alignment. Note, that we
also experimented with training of DNN on top of MultRDT features
but no gain over multilingual SBN was observed.

6.2. Analysis of multilingual SBN features

All multilingual architectures in this work were trained with the final
softmax layer – – split into several blocks. Each block accommo-

Language Mono-ling. SBN Mono-ling. SBN
Initial GMM alignment PLP MultRDT
Javanese 56.1 54.9
Amharic 45.0 43.7
Pashto 50.7 49.5

Table 4. Comparison of % word error rate (WER) for Mono-lingual
DNNs trained using GMM alignment: obtained with PLP vs. Mul-
tRDT features. Note that on contrary to table 3, the features are
mono-lingual SBN, only the initial alignment differs.

Mono(1) Y1(5) Y1-2(11) Y1-3(17) Y1-4(24) Y1-4+NB(28)
52.0

52.5

53.0

53.5

54.0

54.5

55.0 DNN systems based on multilingual NN features
Javanese
Javanese (fine-tuned)

Mono(1) Y1(5) Y1-2(11) Y1-3(17) Y1-4(24) Y1-4+NB(28)
47.5

48.0

48.5

49.0

49.5

%
 W

ER

Pashto
Pashto (fine-tuned)

Mono(1) Y1(5) Y1-2(11) Y1-3(17) Y1-4(24) Y1-4+NB(28)
41.5

42.0

42.5

43.0

43.5

44.0
Amharic
Amharic (fine-tuned)

Fig. 4. DNN systems based on various multilingual NN features.

dates training targets from one language [31]. Context-independent
phoneme states were used as the training targets for the feature-
extraction NN, otherwise the size of the final layer would be pro-
hibitive.

The feature-extraction NNs were trained on data from various
languages: in figure 4, the sets are denoted as “Mono” (target lan-
guage only), “Y1” (all languages from Year 1), “Y1-2” (languages
from Years 1 and 2) and so one. Note that we excluded Pashto from
Y1, Y1-2 and Y1-3 in order to simulate a scenario where no target
data is available for training of the feature extraction. On contrary,
Y1-4 contains all Pashto, Amharic and Javanese. In addition, Y1-
4+nonBabel set contains also large non-Babel resources (Levantine
Arabic, US English, Mandarin and Spanish).

The acoustic-model NN was trained in the standard mono-
lingual fashion and its last layer produced posterior probabilities of
tied-states for HMM models.

Figure 4 shows the important effect of number of languages for
multilingual feature extraction. Here, the feature extraction was not
tuned towards a particular target language and all Pashto, Javanese
and Amharic systems use exactly the same feature extraction net-
work. The CMLLR (see Fig. 3) is used. The gains after adding
more than 11 languages are minimal; probably the language variety
is already sufficient. Adding of non-Babel data almost does not help
although the amount of data is almost twice compared to Y1-4. We
have made a similar observation in our previous work [32] where we
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found the language diversity was more important than the amount of
data.

Figure 4 also presents the results in case of fine-tuning of
feature-extraction towards the particular target language. First, the
last layer of multi-lingual NN is removed, initialized randomly and
trained to discriminate the phonemes of the target language (the rest
of the NN is fixed). Then, the whole NN is re-trained with a small
learning rate (0.1 of the original one). Such fine-tuning brings only
small gain for DNN systems although in GMM systems, we found it
crucial [1, 32]. It seems than a DNN acoustic model can cope with
this language mismatch as the feature extraction is also done by NN.
CMLLR was also employed here. The final features obtained on
all 28 languages — “Mult28 CMLLR” — were performing the best
(in figure 4), therefore they were used for experiments with other
architectures.

6.2.1. LSTM and BLSTM

Table 5 presents the results for all architectures built on top of
“Mult28 CMLLR” features. The acoustic models were still trained
on the target language only. The BLSTMs provide the best results as
expected. In all experiments, we also tested the features with CM-
LLR off (as it is often claimed that more powerful acoustic models
can work with simpler and less adapted features), however, CMLLR
was found useful even for the most powerful BLSTM, providing 1%
absolute improvement.

Language CMLLR DNN LSTM BLSTM
Javanese no 53.6 53.1 51.4
Javanese yes 52.2 52.1 50.5
Amharic no 43.4 43.8 41.8
Amharic yes 41.8 42.1 40.4
Pashto no 49.0 49.3 47.5
Pashto yes 47.6 47.7 46.5

Table 5. Comparison of %WER of monolingual DNN, LSTM and
BLSTM based system on top of multilingual features.

Language Features DNN LSTM BLSTM
Javanese 11FBANK F0 60.1 55.1 54.4
Javanese SBN Mono 57.4 56.9 55.4
Amharic 11FBANK F0 48.4 44.9 44.0
Amharic SBN Mono 46.5 46.1 45.2
Pashto 11FBANK F0 53.7 50.7 49.3
Pashto SBN Mono 52.0 52.4 51.3

Table 6. Comparison of %WER of monolingual DNN, LSTM and
BLSTM based system on top of monolingual non-adapted features.

6.3. Analysis of multilingual acoustic models

Next, we were interested in training not only the feature extraction,
but the whole architecture in multilingual fashion. The input of all
architectures were the 11FBank F0 features defined in section 3.1 —
direct filter bank outputs, normalized, stacked and post-processed by
DCT plus f0 features. The output layer of acoustic model NN was
based on multilingual softmax the same way as for feature extractor
training. The following architectures were built and tested:

• DNN is similar to feature extractor + acoustic model: the first
NN has 3 layers with 1500 neurons followed by a bottle-neck

Language DNN LSTM BLSTM
Javanese 53.6 51.8 49.2
Amharic 43.4 42.1 39.8
Pashto 49.3 47.8 46.0

Table 7. DNN systems: Multilingual architectures %WER.

layer with 80 neurons. The BN features are stacked in context
[-10, -5:5, 10] and followed by 6 layers with 2048 neurons
each. The first NN (BN part) was initialized from Y1-Y3
feature extraction, the rest was RBM initialized.

• LSTM is the same as above (3 LSTM layers with 1024 mem-
ory units) but the system is trained directly on 11FBank F0
features as the BN features were not found advantageous, see
table 6.

• BLSTM - is the same as above (3 BLSTM layers with
512 memory units) but the system is trained directly on
11FBank F0 features as simmilarly to LSTM, BN features
did not help.

The multilingual acoustic models were built on all 28 languages,
except of BLSTM where only 24 Babel languages (Y1-4) were used
in order to save computation time with expected tiny loss of perfor-
mance (predicted from figure 4). To train the target language system,
the procedure was similar to crafting the multilingual features (sec-
tion 6.2):

1. the final multilingual layer (context-independent phones for
all languages) was stripped and replaced with target-language
specific layer (tied-state triphones) with random initialization.

2. This new layer was trained with standard learning rate by 8
epochs while the rest of the NN was fixed.

3. Finally, 10 epochs of fine-tuning the whole NN to the target
language were run, with 0.1 of the original learning rate (resp.
0.5 for BLSTM) used as the starting point for learning rate
scheduler.

Table 7 shows 0.4-0.7% absolute improvement of multilingual
BLSTM systems over the same architecture trained on CMLLR-
adapted multilingual BN features (table 5). The outcome is quite
interesting and in our opinion, it is related to the impossibility to pre-
train complex LSTM/BLSTM systems. When trained on only 50 h
of training data, their performances are not as good as when they are
initialized on huge amount of data from many languages. Another
advantage is the simplicity of such systems and the speed of train-
ing - only fine-tuning needs to be done into the target language, with
standard feature extraction.

7. EXPERIMENTS ON ADAPTATION TECHNIQUES

7.1. Analysis of WPE speech enhancement

We have investigated the impact of WPE on far-field data in Javanese
and Amharic with the best performing BLSTM system. Pashto was
not included as it did not contain far-field data. Table 8 presents over
2.5% absolute improvement by application of WPE on this data. As
this type covers only small portion of the development set (about
10%), the overall improvement is only 0.4%. Application of WPE
also on training far-field data helps only on Amharic but in general
we found it useful on other languages not reported in this paper,
therefore we stick with using this technique in further experiments.

641



Language WPE Overall WER[%] Far-field WER[%]
Javanese no 49.2 66.9
Javanese dev 48.8 64.5
Javanese train+dev 49.1 66.0
Amharic no 39.8 57.1
Amharic dev 39.4 53.6
Amharic train+dev 39.3 53.1

Table 8. DNN systems: Effect of WPE de-reverberation on far-field
channels %WER.

No adapt Adapt 2L
Language 1L 2L ivec d-vec ivec+dvec
Javanese 49.1 48.8 48.3 48.6 48.3
Amharic 39.3 39.3 39.0 39.3 39.1
Pashto 46.0 45.7 45.5 45.2 45.3

Table 9. Multilingual BLSTM systems: adaptation by speaker-
specific vectors %WER.

7.2. Analysis of speaker adaptation for Multilingual BLSTM

Until now, our best system has been based on Multilingual BLSTM
without any speaker-adaptation. As classical speaker adaptation ap-
proaches such as CMLLR are difficult with BLSTMs, we were inter-
ested injecting this architecture with speaker-specific vectors. Two
techniques were investigated: i-vectors well known from speaker
recognition, and newly introduced sequence-summarizing neural
networks (SSNN).

Typically, the low-dimensional vector-based adaptation involves
concatenating input feature vectors with speaker-specific vector that
is constant across whole utterance, see [33] for an example of i-
vector-adapted GMM system and [34] for DNN one. This approach
was however not feasible in fine-tuning of multilingual NNs to tar-
get languages, as re-training the whole multi-lingual structure would
be too prohibitive. Therefore, only the input of the final, target
language-specific layer, was extended by the speaker-specific vector.
In further experiments, we found that adding another layer before
the final single softmax one and extending the input to this next-to-
last layer by the speaker-specific vector provides even better perfor-
mance. The adapted results in table 9 were obtained with this ar-
chitecture. For comparison, collumns ”No Adapt - 1L/2L” compare
results given by adding another layer before the final single softmax
into non-adapted system.

In our work, we trained SSNN on top of “Mult28 CMLLR”
features. The SSNN output was appended to input layer of the
main DNN. Next, the SSNN was cut out and used for generation
of speaker specific vectors - ‘d-vectors’ (an acronym introduced in
[19]).

Table 9 shows the results of BLSTM system adapted with i-
vectors only, d-vectors only or both. Additional layer was inserted
before the final single softmax one and the adaptation took place
in this next-to-last layer. It is evident that both methods work and
provide 0.3-0.5% absolute improvement. Their combination usually
reaches an improvement close to the better of the two techniques.

8. CONCLUSION

This paper provides an extensive summary of BUT 2016 system for
the last Babel evaluations. It concentrates on multi-lingual training
of both DNN-based features and acoustic models and on the low-
dimensional vector approaches to speaker adaptation.

We have shown clear advantage of multi-lingual training both
for feature-extraction and for acoustic models for low-resource sce-
narios. SBN feature extraction trained in multi-lingual way is an
elegant way to produce high-quality features and obtain a good sys-
tem trained on target data only. However, BLSTM acoustic models
trained in multi-lingual way and fine-tuned towards the target lan-
guage provide better performance with “raw” features at the input.

WPE is a “cheap” technique to improve results on far-field
speech and it does not deteriorate results on CTS data. Speaker-
specific vector adaptations have shown a great potential and capabil-
ity of integration with complex DNN and RNN architectures. Here,
we will investigate into a scheme that would be directly trainable
with the most powerful acoustic model - the BLSTM.
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Babel system: Analysis of adaptation in NN based systems,” in
Proceedings of Interspeech 2014, Singapure, September 2014,
IEEE.
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