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ABSTRACT

This paper analyzes the behavior of our state-of-the-art Deep
Neural Network/i-vector/PLDA-based speaker recognition systems
in multi-language conditions. On the “Language Pack” of the
PRISM set, we evaluate the systems’ performance using the NIST’s
standard metrics. We show that not only the gain from using DNNs
vanishes, nor using dedicated DNNs for target conditions helps, but
also the DNN-based systems tend to produce de-calibrated scores
under the studied conditions. This work gives suggestions for direc-
tions of future research rather than any particular solutions to these
issues.

Index Terms— DNN, Multi-Language, Speaker Recognition

1. INTRODUCTION

During the last decade, neural networks have experienced a renais-
sance as a powerful machine learning tool. Deep Neural Networks
(DNN) have been also successfully applied to the field of speech
processing. After their great success in automatic speech recogni-
tion (ASR) [1], DNNs were also found very useful in other fields
of speech processing such as speaker [2, 3, 4] or language recog-
nition [5, 6, 7]. In speech recognition, DNNs are often directly
trained for the ”target” task of frame-by-frame classification of
speech sounds (e.g. tied tri-phone states). Similarly, a DNN directly
trained for frame-by-frame classification of languages was success-
fully used for language recognition in [7]. However, this system
provided competitive performance only for speech utterances of
short durations.

In the field of speaker recognition, DNNs are usually used in
more elaborate and indirect way: One approach is to use DNNs for
extracting frame-by-frame speech features. Such features are then
used in the usual way (e.g. input to i-vector based system [8]).

This work was supported by the DARPA RATS Program under Contract
No. HR0011-15-C-0038. The views expressed are those of the author and do
not reflect the official policy or position of the Department of Defense or the
U.S. Government.

This work was also supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Defense US Army Research
Laboratory contract number W911NF-12-C-0013. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoD/ARL, or the U.S. Government.

The work was also supported by Czech Ministry of Interior project
No. VI20152020025 ”DRAPAK” and European Union’s Horizon 2020 pro-
gramme under grant agreement No. 645523 BISON.

These features can be directly derived from the DNN output pos-
terior probabilities [9] and combined with the conventional features
(PLP or MFCC) [10]. More commonly, however, bottleneck (BN)
DNNs are trained for a specific task, and the features are taken from
a narrow hidden layer compressing the relevant information into low
dimensional feature vectors [6, 5, 11]. Alternatively, standard DNN
(with no bottleneck) can be used, where the high-dimensional out-
puts of one of the hidden layers can be converted to features using a
dimensionality reduction technique such as PCA [12].

In [13], we analyzed various DNN approaches to speaker recog-
nition (and similar studies were conducted e.g. in [14, 15]). We used
two different DNN’s (a mono-lingual DNN—trained on the Fisher
English data corpus—and a multi-lingual DNN—trained on 11 lan-
guages of the Babel data collection). The rest of the system was
trained on the PRISM set, i.e. mainly on the English data. We re-
ported our results only on the NIST SRE 2010 telephone condition
(i.e. only on English speech) via the Equal Error Rates (EERs) and
the minimum DCF NIST metrics.

However, when tested on non-English test sets, we observed that
the benefit of using the DNNs degraded dramatically. We used the
“lan” Language Pack of the PRISM set (described later in the paper),
and its Chinese subset—the “chn” pack in comparison with the orig-
inally used NIST SRE 2010 telephone condition. Not only we saw
performance degradation in terms of EER and the minimum DCFs,
but more so in terms of the actual DCFs, i.e. the systems produce
heavily de-calibrated scores.

Our hypothesis was that when we use the DNN trained for the
target language, the error rates would decrease. To match the sre10,
“lan”, and “chn” test conditions, we chose three DNNs, trained on: i)
the Fisher English, the ii) Multilingual set, and iii) the Mandarin, re-
spectively. However, it turned out that, apart from the Fisher English
being optimal for the NIST SRE 2010 test, there was no clear corre-
lation between the test language and the DNN training language.

This paper analyzes the problems that emerged when applying
the current state-of-the-art SRE systems to non-English domains,
and provides directions for future research. This work is an exten-
sion of our previous analysis, available as a technical report [16].

2. THEORETICAL BACKGROUND

2.1. i-vector Systems

The i-vectors [8] provide an elegant way of reducing large-dimensional
input data to a small-dimensional feature vector while retaining
most of the relevant information. The main principle is that the
utterance-dependent Gaussian Mixture Model (GMM) supervector
of concatenated mean vectors s is modeled as

s = m + Tw, (1)
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where m = [µ(1)′ , . . . ,µ(C)′ ]′ is the Universal Background
Model (UBM) GMM mean supervector (of C components), T =

[T(1)′ , . . . ,T(C)′ ]′ is a low-rank matrix representing M bases
spanning subspace with important variability in the mean supervec-
tor space, and w is a latent variable of size M with standard normal
distribution.

The i-vector φ is the Maximum a Posteriori (MAP) point esti-
mate of the variable w. It maps most of the relevant information
from a variable-length observation X to a fixed- (small-) dimen-
sional vector. LX is the precision of the posterior distribution.

The closed-form solution for computing the i-vector can be ex-
pressed as a function of the zero- and first-order statistics: nX =

[N
(1)
X , . . . , N

(C)
X ]′ and fX = [f

(1)′

X , . . . , f
(C)′
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where γ
(c)
t is the posterior (or occupation) probability of frame

t being generated by the mixture component c. The tuple γt =

(γ
(1)
t , . . . , γ

(C)
t ) is usually referred to as frame alignment. Note

that this variable can be computed either using the GMM UBM or
using a completely different model [2, 14, 15]. We will refer to
this approach as a DNN alignment approach later in this paper. The
i-vector is then expressed as

φX = L−1
X T̄′ f̄X (4)

where LX is the precision matrix of the posterior distribution, com-
puted as:

LX = I +
C∑

c=1

N
(c)
X T̄(c)′T̄(c), (5)

with c being the GMM UBM component index, and the ‘bar’ sym-
bols denote normalized variables:

f̄
(c)
X = Σ(c)− 1

2

(
f
(c)
X −N

(c)
X µ(c)

)
(6)

T̄(c) = Σ(c)− 1
2 T(c), (7)

where Σ(c)− 1
2 is a symmetrical decomposition (such as Cholesky

decomposition) of an inverse of the GMM UBM covariance matrix
Σ(c).

2.2. Stacked Bottleneck Features (SBN)

Bottleneck Neural-Network (BN-NN) refers to such topology of a
NN, one of whose hidden layers has significantly lower dimension-
ality than the surrounding layers. A bottleneck feature vector is gen-
erally understood as a by-product of forwarding a primary input fea-
ture vector through the BN-NN and reading off the vector of values
at the bottleneck layer. We have used a cascade of two such NNs for
our experiments. The output of the first network is stacked in time,
defining context-dependent input features for the second NN, hence
the term Stacked Bottleneck Features.

The NN input features are 24 log Mel-scale filter bank outputs
augmented with fundamental frequency features from 4 different f0
estimators (Kaldi, Snack1, and two other according to [17] and [18]).
Together, we have 13 f0 related features, see [19] for more de-
tails. The conversation-side based mean subtraction is applied on the

1http://kaldi.sourceforge.net, www.speech.kth.se/snack/

whole feature vector. 11 frames of log filter bank outputs and funda-
mental frequency features are stacked together. Hamming window
followed by DCT consisting of 0th to 5th base are applied on the
time trajectory of each parameter resulting in (24 + 13)× 6 = 222
coefficients on the first stage NN input.

The configuration for the first NN is 222×DH×DH×DBN ×
DH ×K, where K is the number of targets. The dimensionality of
the bottleneck layer, DBN was fixed to 80. This was shown as op-
timal in [6]. The dimensionality of the “regular” hidden layers DH

was set to 1500. The bottleneck outputs from the first NN are sam-
pled at times t−10, t−5, t, t+5 and t+10, where t is the index of
the current frame. The resulting 80 × 5 = 400-dimensional fea-
tures are input to the second stage NN with the same topology as
first stage. The 80 bottleneck outputs from the second NN (referred
as SBN) are taken as features for the conventional GMM/UBM i-
vector based SID system.

We experimented with monolingual (English and Mandarin) and
multilingual BN features. In the case of multilingual training, we
adopted training scheme with block-softmax, which divides the out-
put layer into parts according to individual languages. During train-
ing, only the part of the output layer is activated that corresponds
to the language that the given target belongs to. See [20, 21] for
detailed description.

2.3. DNN Alignment

The true frame alignment is a hidden variable in GMM modeling.
Traditionally, it is computed using the GMM UBM (as used in the
“baseline” and “SBN” experiments further in the paper). However,
it was shown that DNNs can be used directly for posterior computa-
tion [2] .

For completeness, we report the performance of the DNN align-
ment systems, where the posteriors of the SBN-NNs from the pre-
vious section were used. In other words, we show the utility of the
trained DNNs as both feature- and posterior-extractors.

Note that the output activation function of the Multilingual SBN
is a block-softmax, giving a set of posterior probabilities (one set
per training language). Therefore, we cannot utilize the Multilingual
SBN for this purpose in a straightforward way.

Note also that the normalization GMM UBM (i.e. the µ(c) and
Σ(c) parameters) should be computed via the same DNN alignment
as used in eq. (2) and (3).

3. EXPERIMENTS

3.1. DNN Training Data

For training the Multilingual neural networks, the IARPA Babel Pro-
gram data2 were mainly used. This data set simulates the scenario of
what one could collect in a limited time from a completely new lan-
guage. It consists mainly of conversational telephone speech (CTS),
but scripted recordings, as well as far field recordings, are present.
We used 11 languages to train our multilingual SBN feature extrac-
tor. The language list (as referred to later in this paragraph) consists
of Cantonese, Assamese, Bengali, Pashtu, Turkish, Tagalog, Viet-
namese, Haiti, Lao, Tamil, and Zulu. More details about the char-
acteristics of the languages can be found in [22]. The phone-state
target labels were obtained using forced-alignment with our BABEL
ASR system [23], with 471 + 141 + 147 + 216 + 126 + 252 +
303 + 99 + 411 + 102 + 219 = 2487 phone states, respectfully to
the language list.

2Collected by Appen, http://www.appenbutlerhill.com
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Table 1. Comparison of the systems under the PRISM “lan” and “chn”, and the SRE2010-condition 5 (tel-tel) tests. We expected (without
result) the Multilang SBN to perform best in the “lan” condition, and a variant of Mandarin to perform best in the “chn” condition.

Test set System DCFmin
new DCFmin

old EER [%]

male female male female male female

chn Baseline 0.1834 0.3019 0.0621 0.0894 1.44 2.27
English SBN 0.1491 0.2251 0.0418 0.0838 1.00 1.99
Mandarin SBN 0.1480 0.2368 0.0511 0.0755 1.45 2.47
Multilang SBN 0.2121 0.1907 0.0439 0.0670 1.16 1.93
English DNN 0.1373 0.3621 0.0616 0.1192 1.29 3.05
Mandarin DNN 0.1688 0.2574 0.0516 0.1018 1.17 2.70

lan Baseline 0.2979 0.9836 0.1021 0.2007 2.60 5.05
English SBN 0.2963 0.9848 0.0979 0.2305 2.45 4.93
Mandarin SBN 0.2734 0.9787 0.0685 0.2282 1.69 4.11
Multilang SBN 0.4008 0.9854 0.0898 0.2997 2.16 5.03
English DNN 0.2963 0.9463 0.0914 0.2228 2.70 5.68
Mandarin DNN 0.3705 0.9234 0.1450 0.3255 3.57 7.14

sre10 Baseline 0.3577 0.3387 0.0967 0.1013 1.84 1.94
English SBN 0.1295 0.1679 0.0387 0.0471 1.17 1.11
Mandarin SBN 0.1459 0.2087 0.0440 0.0604 1.20 1.11
Multilang SBN 0.1280 0.1696 0.0416 0.0544 1.21 1.16
English DNN 0.1200 0.2212 0.0352 0.0449 0.71 0.93
Mandarin DNN 0.2732 0.3356 0.0702 0.0856 1.60 1.83

For the monolingual English DNN variant, we have used a se-
lection of 250 hours of data derived from the Fisher English Part 1
and 2 with 2423 tied tri-phone states.

For the monolingual Mandaring DNN, we have used total of
153 hours from the Mandarin HKUST, and the Mandarin Call-
Home/CallFriend collections [24], with 4941 tied tri-phone states.

3.2. Test Set and Evaluation Metric

We report our results on the “Language Set” pack of the PRISM
set [25], referred to as “lan” later in the results. It was crafted from
the NIST SRE 2005–2008 datasets by selecting 500 speakers for
which there exists at least one session in a language other than En-
glish. Additional 300 speakers (that appear only in English con-
versations) were added from the NIST SRE 2010. The trials were
created as a Cartesian product of all sessions sessions, resulting in
3590/130880 male, and 6304/297683 female target/non-target trials,
respectively. Note that half of the trials are still English.

Moreover, results on the Chinese subset of the “lan” condition,
referred to as “chn” are reported. The set comprises of 1027/59004
male, and 1555/113405 female target/non-target trials, respectively.

To provide a contrastive view, we also report the results on the
NIST SRE 2010 data extended core condition (telephone-telephone,
“condition-5”), referred to as “sre10”, with 3465/175873 male, and
3704/233077 female target/non-target trials, respectively.

The detection cost function (DCF) is used as a primary evalu-
ation metric. We report two numbers: DCFmin

old and DCFmin
new, cor-

responding to the primary evaluation metric for the NIST speaker
recognition evaluation in 2008 and 2010, respectively. We also re-
port their actual variants DCFact

oldand DCFact
new. Equal Error Rate

(EER) is also reported. For more details, see the evaluation plans of

NIST SRE 3.

3.3. System Description

Voice Activity Detection (VAD) was performed using Neural Net-
work speech/non-speech classifier. The NN was trained on Czech
CTS data where we artificially added noise with different levels of
SNR to 30% of the database. The NN had two hidden layers each
comprising of 300 neurons. We used a vectorized block of 31 frames
of 15 Mel filter bank energies as input features. For the interview
data, we removed the interviewer based on the ASR transcripts pro-
vided by NIST.

As the baseline features, we used 19 MFCC coefficients + en-
ergy augmented with their delta and double delta coefficients, re-
sulting in 60-dimensional feature vectors. The analysis window was
20 ms long with the shift of 10 ms. First, we removed silence frames
according to VAD, after which we applied short-time (300 frames)
cepstral mean and variance normalization.

The PRISM set [25] was chosen as the principal training dataset
platform. It contains the following telephone data: NIST SRE 2004,
2005, 2006, 2008, 2010 Switchboard II Phases 2 and 3, Switchboard
Cellular Parts 1 and 2, Fisher English Parts 1 and 2 giving 9670
female speakers. We have not included any noisy or reverberated
data.

A gender-independent UBM was represented as a full or diag-
onal covariance 2048-component GMM. It was trained on a subset
of the PRISM training set: 15602 files equally distributed between
telephone and microphone conditions, and male and female portions.
The variance flooring was used in each iteration of EM algorithm
during the UBM training. Gender-independent i-vector extractor
was trained (in 10 iterations of a joint Expectation Maximization and

3www.itl.nist.gov/iad/mig/tests/sre/

201



Table 2. Analysis of the actual DCF’s under the PRISM “lan” and “chn”, and the SRE2010-condition 5 (tel-tel) tests. Note the system
de-calibration on the “lan” and “chn” conditions. Also note that de-calibration is more emphasized for the female conditions. (Due to the
dynamic range of the values, we prefer to report a table of numbers rather than a graph plot.)

Test System
DCFnew DCFold

actual min actual min

male female male female male female male female

chn Baseline 5.7461 16.0798 0.1834 0.3019 0.1206 0.2785 0.0621 0.0894
English SBN 1.5201 10.4024 0.1491 0.2251 0.0515 0.1857 0.0418 0.0838
Mandarin SBN 8.4710 25.2394 0.1480 0.2368 0.1536 0.4003 0.0511 0.0755
Multilang SBN 3.9156 12.3843 0.2121 0.1907 0.0863 0.2189 0.0439 0.0670
English DNN 10.2419 46.4058 0.1373 0.3621 0.1856 0.6857 0.0616 0.1192
Mandarin DNN 30.4309 75.9809 0.1688 0.2574 0.4683 0.9842 0.0516 0.1018

lan Baseline 3.5369 14.0482 0.2979 0.9836 0.1142 0.2812 0.1021 0.2007
English SBN 2.1503 24.4566 0.2963 0.9848 0.0702 0.3476 0.0979 0.2305
Mandarin SBN 5.8890 30.2647 0.2734 0.9787 0.1333 0.4363 0.0685 0.2282
Multilang SBN 5.2089 38.1320 0.4008 0.9854 0.1121 0.4855 0.0898 0.2997
English DNN 6.6261 36.8887 0.2963 0.9463 0.1427 0.5451 0.0914 0.2228
Mandarin DNN 16.0119 58.9831 0.3705 0.9234 0.2856 0.7746 0.1450 0.3255

sre10 Baseline 0.4323 0.3442 0.3577 0.3387 0.1587 0.2171 0.0967 0.1013
English SBN 0.1472 0.1750 0.1295 0.1679 0.0976 0.1098 0.0387 0.0471
Mandarin SBN 0.1815 0.2139 0.1459 0.2087 0.1264 0.1428 0.0440 0.0604
Multilang SBN 0.1530 0.1921 0.1280 0.1696 0.1171 0.1339 0.0416 0.0544
English DNN 0.1234 0.2286 0.1200 0.2212 0.0800 0.1204 0.0352 0.0449
Mandarin DNN 0.3320 0.3539 0.2732 0.3356 0.1231 0.1865 0.0702 0.0856

Table 3. The effect of calibration on the actual DCF’s under the
PRISM “lan” and “chn”, and the SRE2010-condition 5 (tel-tel) tests
for the English SBN system.

Test System DCFact
new DCFact

old

male female male female

chn Uncal 1.5201 10.4024 0.0515 0.1857
Cal 0.5278 0.5080 0.0642 0.0859

lan Uncal 2.1503 24.4566 0.0702 0.3476
Cal 0.5519 1.2460 0.0950 0.2311

sre10 Uncal 0.1472 0.1750 0.0976 0.1098
Cal 0.8349 0.8604 0.2087 0.2487

Minimum Divergence steps) using the entire PRISM set. The results
are reported with 600-dimensional i-vectors. Gender-independent
LDA and PLDA was trained on the same data as the i-vector extrac-
tor.

3.4. Results and Discussion

Tab. 1 shows the overall results of all systems in terms of (calibration
insensitive) DCFmin

old , DCFmin
new, and EER. For the “sre10” test, the

best performing system is the DNN-alginment with the DNN trained
on the Fisher English data, as expected. However, when looking at
the “lan” condition, there is no gain from switching from the Base-
line system to English DNN (and only a negligible gain in switching

to English SBN).
Our hypothesis was that this behavior would be fixed by using

a more general DNN, such as the Multilingual DNN (only in the
SBN variant, as explained in Sec. 2.3), since the test comprises of
numerous languages. However, it turned out that Mandarin SBN
suited this condition best.

Looking at the “chn” condition, we again expected the Mandarin
DNN (or SBN) to significantly outperform the English and Multi-
lang DNN’s, but with no result.

Our initial hypothesis was that the English training corpus is the
largest, and therefore had to provide best phone accuracy and thus a
better acoustic space clustering. However, it was observed in many
cases (e.g. in [26]) that better phone accuracy does not necessarily
imply better SRE performance. Therefore, we leave this question
open for future research.

Let us also note that the UBM/i-vector/PLDA training data are
identical—i.e., mainly English—across the different systems. Our
hypothesis is that even if the DNN matches the target language, the
acoustic space clustering does not correspond to the observed data.
Therefore, the first-order statistics (3) for the i-vector extractor com-
putation are “warped”, and the i-vector extractor captures a different
“total” variability than is in fact used for the test. One of the possible
indications for this hypothesis is the fact that the performance on the
“sre10” condition does not vary dramatically across different sys-
tems. Similar hypothesis holds for the PLDA/LDA modeling, where
the within/across variabilities are modeled using these “warped” i-
vectors.

Tab. 2 shows the overall performance summary in terms of the
actual vs. the minimum DCF values, i.e., it directly shows the cal-
ibration loss. We see that the “sre10” condition is well calibrated,
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i.e., the actual values are close enough to the minimum counterparts.
However, looking at the “chn” and “lan” tests, and especially at the
new DCF metric, the calibration losses are extremely high. This ef-
fect is even more pronounced for the female part of the tests.

In Tab. 3, we show the effect of a linear calibration on the En-
glish SBN system. Because of the lack of an independent held-
out set, we performed a cheating (gender-independent) calibration
trained using the “lan” trial set, which contains both English and
Chinese trials.

We see that although not perfect, the new DCFs of the “lan” and
“chn” were fixed, especially in the female case (which could be ex-
plained by having twice as many female trials compared to the male
portion). It seems that even though English trials were in majority
in the “lan” set, the calibration still helped the non-English trials.
The “chn” calibration loss reduction was the most noticeable. The
“sre10” condition got de-calibrated, as expected.

All this behavior indicates a heavy language-dependent score
modality. For the time being, we do not have any solution or deeper
analysis of this problem and again, we keep this issue open for future
research.

4. CONCLUSIONS

In this work, we have studied the behavior of the DNN techniques
in SRE i-vector/PLDA systems, currently considered to be state-of-
the-art, as evaluated on the most common NIST SRE English test
sets, such as the NIST SRE 2010, condition 5. We have shown that
when applied to non-English test sets, these techniques stop being
effective and are susceptible to de-calibration of the scores produced
by the traditional i-vector/PLDA systems. We have also observed
that selecting a DNN to match the test condition does not solve the
issues mentioned above.

This work therefore leaves more questions than answers, and
suggests that we focus on the analysis of the DNN acoustic space
clustering with regard to multiple languages and other types of vari-
ability, and that we study the behavior of clustering with regard to
the available SRE training data.
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