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Abstract

In this work, we present a comprehensive study on the use of deep neural networks (DNNs) for automatic language identifica-
tion (LID). Motivated by the recent success of using DNNs in acoustic modeling for speech recognition, we adapt DNNs to the
problem of identifying the language in a given utterance from its short-term acoustic features. We propose two different DNN-
based approaches. In the first one, the DNN acts as an end-to-end LID classifier, receiving as input the speech features and pro-
viding as output the estimated probabilities of the target languages. In the second approach, the DNN is used to extract bottleneck
features that are then used as inputs for a state-of-the-art i-vector system. Experiments are conducted in two different scenarios:
the complete NIST Language Recognition Evaluation dataset 2009 (LRE’09) and a subset of the Voice of America (VOA) data
from LRE’09, in which all languages have the same amount of training data. Results for both datasets demonstrate that the DNN-
based systems significantly outperform a state-of-art i-vector system when dealing with short-duration utterances. Furthermore,
the combination of the DNN-based and the classical i-vector system leads to additional performance improvements (up to 45% of
relative improvement in both EER and Cavg on 3s and 10s conditions, respectively).
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. Introduction

Automatic language identification (LID) refers to the process of automatically determining the language of a given
speech sample (Muthusamy et al., 1994). The need for reliable LID is continuously growing due to a number of factors,
including the technological trend toward increased human interaction using hands-free, voice-operated devices and
the need to facilitate the coexistence of multiple different languages in an increasingly globalized world
(Gonzalez-Dominguez et al., 2014).
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Driven by recent developments in speaker verification, current state-of-the-art technology in acoustic LID systems
involves using i-vector front-end features followed by diverse classification mechanisms that compensate for speaker
and session variabilities (Brummer et al., 2012; Li et al., 2013; Sturim et al., 2011). An i-vector is a compact repre-
sentation (typically from 400 to 600 dimensions) of a whole utterance, derived as a point estimate of the latent vari-
able in a factor analysis model (Dehak et al., 2011; Kenny et al., 2008). While proven to be successful in a variety of
scenarios, i-vector based approaches have two major drawbacks. First, i-vectors are point estimates and their robust-
ness quickly degrades as the duration of the utterance decreases. Note that the shorter the utterance, the larger the
variance of the posterior probability distribution of the latent variable; and thus, the larger the i-vector uncertainty.
Second, in real-time applications, most of the costs associated with i-vector computation occur after completion of
the utterance, which introduces an undesirable latency.

Motivated by the prominence of deep neural networks (DNNs), which surpass the performance of the previous
dominant paradigm, Gaussian mixture models (GMMs), in diverse and challenging machine learning applications –
including acoustic modeling (Hinton et al., 2012; Mohamed et al., 2012), visual object recognition (Ciresan et al.),
and many others (Yu and Deng, 2011) – we previously introduced a successful LID system based on DNNs in
Lopez-Moreno et al.. Unlike previous works on using neural networks for LID (Cole et al., 1989; Leena et al., 2005;
Montavon, 2009), this paper represented, to the best of our knowledge, the first time a DNN scheme was applied at
large scale for LID and was benchmarked against alternative state-of-the-art approaches. Evaluated using two differ-
ent datasets – the NIST LRE’09 (3s task) and Google 5M LID – this scheme demonstrated significantly improved
performance compared to several i-vector-based state-of-the-art systems (Lopez-Moreno et al.). This scheme has also
been successfully applied as a front-end stage for real-time multilingual speech recognition, as described in
(Gonzalez-Dominguez et al., 2014).

This article builds on our previous work by extensively evaluating and comparing the use of DNNs for LID with
an i-vector baseline system in different scenarios. We explore the influence of several factors on the DNN
architecture configuration, such as the number of layers, the importance of including the temporal context and the
duration of test segments. Further, we present a hybrid approach between the DNN and the i-vector system – the
bottleneck system – in an attempt to take the best from both approaches. In this hybrid system, a DNN with a
bottleneck hidden layer (40 dimensions) acts as a new step in the feature extraction before the i-vector modeling
strategy is implemented. Bottleneck features have recently been used in the context of LID (Jiang et al., 2014;
Matĕjka et al., 2014; Richardson et al.). In these previous works, the DNN models were optimized to classify the
phonetic units of a specific language, following the standard approach of an acoustic model for automatic speech
recognition. Unlike in these previous works, here we propose using the bottleneck features from a DNN directly
optimized for language recognition. In this new approach, i) the DNN optimization criterion is coherent with the
LID evaluation criterion, and ii) the DNN training process does not require using transcribed audio, which is
typically much harder to acquire than language labels. Note that the transcription process involves handwork from
experts that are familiarized with specific guidelines (e.g. transcriptions provided in the written domain, or the
spoken domain); it is slow, as each utterance typically contains about 2 words/sec and moreover, word level
transcriptions needs to be mapped into frame level alignments before a DNN such as the one used in previous works
can be trained. That requires bootstrapping from another pre-existing ASR system, typically a GMM-based acoustic
model iteratively trained from scratch. Instead, in the process of training lang-id networks, no previous alignments
are needed, only one label per utterance is required and annotation guidelines are significantly simpler. Overall, that
facilitates the adoption of a bottleneck lang-id system, which has the additional advantage that targets language
discrimination in all its intermediate stages.

For this study, we conducted experiments using two different datasets: i) a subset of LRE’09 (8 languages) that
comprises equal quantities of data for each target language, and ii) the full LRE’09 evaluation dataset (23
languages), which contains significantly different amounts of available data for each target language. This approach
enabled us to assess the performance of all the proposed systems in cases of both controlled and uncontrolled
conditions.

The rest of this paper is organized as follows: Sections 2 and 3 present the i-vector baseline system and the archi-
tecture of the DNN-based system. In Section 4, we describe the proposed bottleneck scheme. In Sections 5 and 6, we
outline fusion and calibration, and the datasets used during experimentation. Results are then presented in Section 7.
Finally, Section 8 summarizes final conclusions and potential future lines of this work.
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2. The baseline I-vector based system

2.1. Feature extraction

The input audio to our system is segmented into windows of 25ms with 10ms overlap. 7 Mel-frequency cepstral
coefficients (MFCCs), including C0, are computed on each frame (Davis and Mermelstein, 1980). Vocal tract length
normalization (VTLN) (Welling et al., 1999), cepstral mean and variance normalization, and RASTA filtering (Hermansky
and Morgan, 1994) are applied on the MFCCs. Finally, shifted delta cepstra (SDC) features are computed in a 7-1-
3-7 configuration (Torres-Carrasquillo et al., 2002), and a 56-dimensional vector is obtained every 10 ms by stacking
the MFCCs and the SDC of the current frame. The feature sequence of each utterance is converted into a single i-vector
with the i-vector system described next.

2.2. I-vector extraction

I–vectors (Dehak et al., 2011) have become a standard approach for speaker identification, and have grown in pop-
ularity also for language recognition (Brummer et al., 2012; Dehak et al., 2011; Martinez et al., 2011; McCree, 2014).
Apart from language and speaker identification, i–vectors have been shown to be useful also for several different clas-
sification problems including emotion recognition (Xia and Liu, 2012), and intelligibility assessment (Martínez et al.,
2013). An i–vector is a compact representation of a Gaussian Mixture Model (GMM) supervector (Reynolds et al.,
2000), which captures most of the GMM supervectors variability. It is obtained by a Maximum–A–Posteriori (MAP)
estimate of the mean of a posterior distribution (Kenny, 2007). In the i–vector framework, we model the utterance-
specific supervector m as:

m u Tw= + , (1)

where u is the UBM GMM mean supervector and T is a low-rank rectangular matrix representing the bases spanning
the sub-space, which contains most of the variability in the supervector space. The i–vector is then a MAP estimate
of the low-dimensional latent variable w. In our experiments, we have used a GMM containing 2048 Gaussian com-
ponents with diagonal covariance matrices and the dimensionality of i-vectors was set to 600.

2.3. Classification backends

For classification, the i-vectors of each language are used to estimate a single Gaussian distribution via maximum
likelihood, where the covariance matrix is shared among languages and is equal to the within-class covariance matrix
of the training data. During evaluation, every new utterance is evaluated against the models of all the languages. Further
details can be found in (Martinez et al., 2011).

3. The DNN-based LID system

Recent findings in the field of speech recognition have shown that significant accuracy improvements over clas-
sical GMM schemes can be achieved through the use of DNNs. DNNs can be used to generate new feature repre-
sentations or as final classifiers that directly estimate class posterior scores. Among the most important advantages of
DNNs is their multilevel distributed representation of the model’s input data (Hinton et al., 2012). This fact makes
the DNN an exponentially more compact model than GMMs. Further, DNNs do not impose assumptions on the input
data distribution (Mohamed et al., 2012) and have proven successful in exploiting large amounts of data, achieving
more robust models without lapsing into overtraining. All of these factors motivate the use of DNNs in language iden-
tification. The rest of this section describes the architecture and practical application of our DNN system.

3.1. Architecture

The DNN system used in this work is a fully-connected feed-forward neural network with rectified linear units (ReLU)
(Zeiler et al., 2013). Thus, an input at level j, xj, is mapped to its corresponding activation yj (input of the layer above) as:
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y ReLU x xj j j= ( ) = ( )max ,0 (2)

x b w yj j ij i
i

= +∑ (3)

where i is an index over the units of the layer below and bj is the bias of the unit j.
The output layer is then configured as a softmax, where hidden units map input yj to a class probability pj in the

form:
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where l is an index over all of the target classes (languages, Fig. 2).
As a cost function for backpropagating gradients in the training stage, we use the cross-entropy function defined

as:

C t pj j
j

= −∑ log (5)

where tj represents the target probability of the class j for the current evaluated example, taking a value of either 1
(true class) or 0 (false class).

3.2. Implementing DNNs for language identification

From the conceptual architecture explained above, we built a language identification system to work at the frame
level as follows:

As the input of the net, we used the same features as the i-vector baseline system (56 MFCC-SDC). Specifically,
the input layer was fed with 21 frames formed by stacking the current processed frame and its ±10 left/right neigh-
bors. Thus, the input layer comprised a total number of 1176 (21 × 56) visible units, v.

On top of the input layer, we stacked a total number of Nhl (4) hidden layers, each containing h (2560) units. Then,
we added the softmax layer, whose dimension (s) corresponds to the number of target languages (NL), plus one extra
output for the out-of-set (OOS) languages. This OOS class, devoted to unknown test languages, could later allow us
to use the system in open-set identification scenarios.

Overall, the net was defined by a total of w free parameters (weights + bias), w v h N h h h shl= +( ) + −( ) +( ) + +( )1 1 1 1
(~23M). The complete topology of the network is depicted in Fig. 1.

In terms of the training procedure, we used asynchronous stochastic gradient descent within the DistBelief frame-
work (Dean et al., 2012), which uses computing clusters with thousands of machines to train large models. The learn-
ing rate and minibatch size were fixed to 0.001 and 200 samples.1

Note that the presented architecture works at the frame level, meaning that each single frame (plus its correspond-
ing context) is fed-forward through the network, obtaining a class posterior probability for all of the target lan-
guages. This fact makes the DNNs particularly suitable for real-time applications because, unlike other approaches
(i.e. i-vectors), we can potentially make a decision about the language at each new frame. Indeed, at each frame, we
can combine the evidence from past frames to get a single similarity score between the test utterance and the target

1 We define sample as the input of the DNN: the feature representation of a single frame besides those from its adjacent frames forming the
context.
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languages. A simple way of doing this combination is to assume that frames are independent and multiply the pos-
terior estimates of the last layer. The score sl for language l of a given test utterance is computed by multiplying the
output probabilities pl obtained for all of its frames; or equivalently, accumulating the logs as:

s
N

p L xl l t
t

N

= ( )
=
∑1

1

log ,θ (6)

where p L xl t,θ( ) represents the class probability output for the language l corresponding to the input example at time
t, xt by using the DNN defined by parameters θ.

4. Bottleneck features: A hybrid approach

Another interesting way to leverage the discriminative power of a DNN is through the use of bottleneck features
(Fontaine et al., 1997; Grézl et al., 2009). Typically, in speech recognition, bottleneck features are extracted from a
DNN trained to predict phonetic targets, by either using the estimated output probabilities (Hermansky et al., 2000)
or the activations of a narrow hidden layer (Grézl et al., 2007), the so-called bottleneck layer. The bottleneck features
represent a low-dimensional non-linear transformation of the input features, ready to use for further classification.

Utilizing this approach, we extracted bottleneck features from the DNN directly trained for LID, as explained in
Section 3, and replaced the last complete hidden layer with a bottleneck layer of 40 dimensions. Then, we modeled

Fig. 1. Pipeline process from the waveform to the final score (left). DNN topology (middle). DNN description (right).

Fig. 2. Frame level probabilities of a DNN-based LID system (8 languages selected) evaluated over an English-USA (4s) test utterance.
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those new bottleneck features by using an i-vector strategy. That is, we replaced the standard MFCC-SDC features
with bottleneck features as the input of our i-vector baseline system.

The underlying motivation of this hybrid architecture is to take the best from both the DNN and the i-vector system
approaches. On one hand, we make use of the discriminative power of the DNN model and its capability to learn
better feature representations; on the other, we are still able to leverage the generative modeling introduced by the
i-vector system.

5. Fusion and calibration

We used multiclass logistic regression in order to combine and calibrate the outputs of individual LID systems
(Brümmer and van Leeuwen, 2006). Let s xkL i( ) be the log-likelihood score for the recognizer k and language L for
utterance xi. We derive combined scores as

ŝ x s xL i k kL i
k

K

L( ) = ( ) +
=
∑α β

1

(7)

Note that this is just a generic version of the product rule combination, parameterized by α and β. Defining a multiclass
logistic regression model for the class posterior as

P L s x
s x

s x
L i

L i

l il

ˆ
exp ˆ

exp ˆ
( )( ) = ( )( )

( )( )∑ (8)

we found α and β to maximize the global log-posterior in a held-out dataset of I utterances
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(10)

where wl ( l NL= 1, ,… ) is a weight vector that normalizes the number of samples for every language in the develop-
ment set (typically, wL = 1 if an equal number of samples per language is used). This fusion and calibration proce-
dure was conducted using the FoCal (Multi-class) toolkit (Brümmer).

6. Databases and evaluation metrics

6.1. Databases

We evaluate all proposed systems in the framework of the NIST LRE 2009 (LRE’09) evaluation. The LRE’09 in-
cludes data from two different audio sources: Conversational Telephone Speech (CTS) and, unlike previous LRE evalu-
ations, telephone speech from broadcast news, which was used for both training and test purposes. Broadcast data
were obtained via an automatic acquisition system from “Voice of America” news (VOA) that mixed telephone and
non-telephone speech. Up to 2TB of 8kHz raw data containing radio broadcast speech, with corresponding language
and audio source labels, were distributed to participants, and a total of 40 languages (23 target and 17 out of set) were
included. While the VOA corpus contains over 2000 hours of labeled audio, only the labels from a fraction of about
200 hours were manually verified by the Linguistic Data Consortium (LDC).

Due to the large disparity in the amounts of available training material by language and type of audio source, we
created two different evaluation sets from LRE’09: LRE09_FULL and LRE09_BDS. LRE09_FULL corresponds to
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the original LRE’09 evaluation, which includes the original test files and all development training files for each language.2

LRE09_BDS, on the other hand, is a balanced subset of 8 languages from automatically labeled VOA audio data.
While the LRE09_FULL set uses data from the manually annotated part of the VOA corpus, the LRE09_BDS con-
tains audio from both automatically and manually annotated parts. This dual evaluation approach served two pur-
poses: i) LRE09_FULL, which is a standard benchmark, allowed us to generate results that could be compared with
those of other research groups, and ii) LRE09_BDS allowed us to conduct new experiments using a controlled and
balanced dataset with more hours of data for each target language. This approach may also help identify a potentially
detrimental effect on the LRE09_FULL DNN-based systems due to the lack of data in some target languages. This is
important because we previously found that the relative performance of a DNN versus an i-vector system is largely
dependent on the amount of available data (Lopez-Moreno et al.).

Table 1 summarizes the specific training and evaluation data per language used in each dataset.

6.2. Evaluation metrics

Two different metrics were used to assess the performance of the proposed techniques. As the main error measure
to evaluate the capabilities of one-vs.-all language detection, we used Cavg (average detection cost), as defined in the
LRE 2009 (Brummer, 2010; NIST, 2009) evaluation plan. Cavg is a measure of the cost of making incorrect decisions
and, therefore, considers not only the discrimination capabilities of the system, but also the ability of setting optimal
thresholds (i. e., calibration). Further, the well-known metric Equal Error Rate (EER) is a calibration-insensitive metric
that indicates the error rate at the operating point where the number of false alarms and the number of false rejections

2 We used the training dataset defined by the I3A research group (University of Zaragoza) in its participation in the LRE’11 evaluation (Martínez
et al., 2011).

Table 1
Distribution of training hours per languages and eval files in used datasets LRE09_BDS and LRE09_FULL.

LRE09_BDS LRE09_FULL

Train (#hours) Eval (#files) Train (#hours) Eval (#files)

– 03s 10s 30s – 03s 10s 30s

amha – – – – 6h 411 391 379
bosn – – – – 2h 371 359 331
cant – – – – 39h 349 347 375
creo – – – – 6h 347 312 307
croa – – – – 1.5h 390 369 364
dari – – – – 6h 397 382 369
engi – – – – 18h 511 533 580
engl 200h 383 369 373 127h 866 836 913
fars 200h 338 338 338 38h 385 383 391
fren 200h 395 395 395 35.5h 401 394 388
geor – – – – 5h 403 396 398
haus – – – – 6h 430 382 345
hind – – – – 69h 640 614 668
kore – – – – 77.5h 460 450 453
mand 200h 404 390 387 244h 977 971 1028
pash 200h 406 391 388 6h 404 391 388
port – – – – 6h 457 377 339
russ 200h 257 253 254 66h 484 479 523
span 200h 402 383 370 114h 398 383 370
turk – – – – 6h 396 394 392
ukra – – – – 1h 403 383 375
urdu 200h 358 344 339 13h 386 372 371
viet – – – – 56h 282 279 315
OOS 200h – – – 2510h – – –
TOTAL 1800h 2943 2863 2844 3458.5h 10548 10177 10362
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are equal. Since our problem is a detection task where a binary classification is performed for each language, the final
EER is the average of the EERs obtained for each language.

7. Results

In this section, we present a comprehensive set of experiments that compare and assess the two systems of inter-
est, as well as a combined version of the two. Besides the i-vector-based baseline system, we evaluate the following
three family of systems:

• DNN refers to the end-to-end deep neural network based system presented in Section 3, which is used as a final
classifier to predict language posteriors.

• DNN_BN: refers to an end-to-end DNN system where the last hidden layer is replaced by a bottleneck layer. This
DNN is used as a final classifier to predict language posteriors.

• BN refers to the i-vector system where the inputs are bottleneck features, as explained in Section 4.

Individual systems vary in the number of layers used (4 or 8 layers) and the size of their input context (0, 5 or 10
left/right frames). Hereafter, we will use the family name to refer a specific system {DNN, DNN_BN, BN}, fol-
lowed by a set of suffixes {4L, 8L} and the {0-0C, 5-5C, 10-10C} to denote the number of layers and input context,
respectively. For instance, the system name DNN_BN_4L_5-5C refers to a DNN system with 4 layers where the last
hidden layer is a bottleneck layer, which uses an input of 11 concatenated frames (5 to the left and 5 to the right of
the central frame). Note that the difference between DNN_BN and BN is that in the first, the DNN with a bottleneck
layer is used directly as an end-to-end classifier, while in the second the DNN is used to extract bottleneck features
which are used as input to an i-vector system.

7.1. Results using LRE09_BDS

7.1.1. DNN vs i-vector system
As the starting point of this study, we compare the performance of the proposed DNN architecture (with 4 layers

and input context of ±10 frames) and the i-vector baseline system. Fig. 3 shows the difference in performance using
test segments with a duration of 3s, 10s and 30s. The trend of the lines in the figure illustrates one of the main con-
clusions of this work: the DNN system significantly outperforms the i-vector system for short duration utterances (3s),
while the i-vector system is more robust for test utterance over 10s.

Unlike i-vectors, the DNN system does not process the complete test utterance at once. Instead, posterior scores
are computed at each individual frame and combined as if each frame was independent (Eq. 6). This is a frame-by-
frame strategy that allows for providing continuous labels for a data stream, which may be beneficial in real time
applications (Gonzalez-Dominguez et al., 2014).

Fig. 3. DNN versus i-vector system performance (average EER) in function of test utterance segment duration (LRE09_BDS corpus).
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7.1.2. Bottlenecks
Next, we explore the use of bottleneck features in the bottleneck system. As previously stated, it is a hybrid DNN/

i-vector system where the DNN model acts as a feature extractor, whose features are used by the i-vector model instead
of the standard MFCC-SDC. Specifically, we present the results of a bottleneck system that uses a DNN model with
4 layers, where the last hidden layer was replaced by a 40 dimensional bottleneck layer. Table 2 compares the results
from the hybrid bottleneck system with those of the standalone alternative approaches presented previously. Results
show significantly improved performance for 10s and 30s utterances when using the bottleneck system (BN), as com-
pared with the DNN system without bottleneck (DNN) (28% and 54% relative improvement in EER, respectively),
while results for 3s utterances are similar. With respect to the i-vector, results obtained with the BN system are better
in 3s and 10s (20% and 34% relative improvement in EER, respectively), whereas in 30s i-vectors still obtain better
performance. Again, these results demonstrate the robustness of the i-vector system when evaluating longer test seg-
ments. They also suggest that further research into this area could lead to improved results when combining the strengths
of DNN and i-vector systems.

We also analyze the loss in performance of our standalone neural network system when reducing the number of
nodes in the last hidden layer from 2560 (DNN system) to 40 nodes used by the DNN_BN system. That is, the DNN_BN
system uses the same network that extracts the BN features, but is used as an end-to-end classifier. Results collected
in Table 2 show that there is not a significant difference in performance when reducing the number of nodes in the
last hidden layer. This result demonstrates that bottleneck features are an accurate representation of the frame-level
information; at least, comparable to that presented in the complete last hidden layer of the conventional DNN architecture.

7.1.3. Temporal context and number of layers
Another important aspect in the DNN system configuration is the temporal context of the spectral features used as

the input to the DNN. Until now, we have used a fixed right/left context of ±10 frames respectively. That is, the input
of our network, as mentioned in Section 3, is formed by stacking the features of every frame with its corresponding
10 adjacent frames to the left and right. The motivation behind using temporal contexts with a large number of frames
lies in the idea of incorporating additional high-level information into our system (i.e. phonetic, phonotactic and pro-
sodic information). This idea has been widely and successfully implemented in language identification in the past,
using long-term phonotactic/prosodic tokenizations (Ferrer et al., 2010; Reynolds et al., 2003) or, in acoustic ap-
proaches, by using shifted-delta-cepstral features (Torres-Carrasquillo et al., 2002).

Table 3 presents the performance for contextual windows of size 0, ± 5 and ± 10 frames. Unlike the results we
presented in Gonzalez-Dominguez et al. (2015), where we found that the window size was critical to model the con-
textual information, here just small and non-uniform gains were found. This result can be explained by the fact that,
unlike the PLP features used in Gonzalez-Dominguez et al. (2015), the MFCC-SDC features in this paper already
include some degree of temporal information.

In addition, we evaluate the effect of increasing the number of layers to eight, doubling the number of weights in
the network from 22.7M to 48.9M. The results of this evaluation are summarized in Table 3. The 8 layers topology
achieved only small gains for DNN and DNN_BN in 3s segments, so we opted to keep the original 4-layer DNN as
our reference DNN system.

Table 2
Performance for individual and fusion systems – average EER in % and Cavg ×100 – on the balanced LRE BDS09_ dataset by test duration. All
DNN family systems {DNN, DNN_BN and BN} come from a DNN with 4 layers and context of ±10 frames.

Equal error rate (%)/ Cavg (×100)

LRE09_BDS

3s 10s 30s

i-vector 10.20/10.39 1.45/1.54 0.21/0.28
DNN 6.42/6.79 1.62/1.72 0.94/0.94
DNN_BN 6.43/6.61 1.65/1.68 0.97/0.98
BN 6.73/7.03 1.16/1.20 0.43/0.56
i-vector + DNN 5.86/6.17 0.92/1.03 0.20/0.28
i-vector + DNN_BN 5.87/6.02 0.91/1.06 0.19/0.27
i-vector + BN 5.82/6.16 0.81/0.85 0.18/0.20
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7.1.4. Fusion and results per language
The different optimization strategies of DNN and i-vector systems (discriminative vs. generative) and the differ-

ent results observed in the evaluated tasks have demonstrated the complementarity of these two approaches. Such
complementarity suggests that further gains may be achieved through a score level combination of the systems pre-
sented above, the results of which are presented in the last three rows of Table 2. We performed a score-level com-
bination of the baseline i-vector system and various neural network-based systems by means of multiclass logistic
regression (Section 5). The fusion of the i-vector and bottleneck systems achieves the best performance, with relative
improvements over the standalone i-vector system of 42%/40%, 44%/44% and 14%/28% in terms of EER/ Cavg for
the 3s, 10s and 30s evaluated conditions, respectively. Moreover, results are consistent across all the languages and
test duration conditions as shown in Fig. 4. These results confirm that when bottleneck and i-vector systems are com-
bined, they consistently outperform the baseline i-vector system, although the relative improvement diminishes as the
test duration increases (Fig. 5).

7.2. Results using LRE09_FULL

To properly train a DNN system, we ideally need large and balanced amounts of data for each language. In this
section, we evaluate the implications of having an unbalanced training dataset. Specifically, we mirror the experi-
ments in the above section, instead using the entire LRE09_FULL dataset (see Table 1 for the distribution of this dataset).
One of the possible approaches for dealing with an unbalanced dataset is to build a bottleneck system in the follow-
ing way: First, generate a balanced subset of utterances from the most represented languages to train a network that

Table 3
Performance of DNN-based systems as a function of the number of layers and temporal context used. Results on LRE09_BDS are reported as
average EER on the 8 languages (%).

Equal error rate (%)

4 Layers 8 Layers

0C-0C 5C-5C 10C-10C 0C-0C 5C-5C 10C-10C

3s 10s 30s 3s 10s 30s 3s 10s 30s 3s 10s 30s 3s 10s 30s 3s 10s 30

DNN 6.8 2.00 1.07 6.66 1.64 0.95 6.42 1.62 0.94 6.90 1.94 0.98 6.40 1.72 0.92 6.23 1.61 0.94
DNN_BN 7.21 2.17 1.16 6.77 1.83 1.04 6.43 1.65 0.97 6.87 1.91 0.96 6.17 1.71 0.98 6.36 1.58 0.85
BN 7.43 1.32 0.41 7.07 1.13 0.38 6.73 1.16 0.43 9.36 2.01 0.68 8.74 1.43 0.59 9.17 1.84 0.76

Fig. 4. i-vector, BN and fusion system performance comparison (average EER) per language on LRE09_BDS dataset. Errors bars for 30s, 10s
and 3s are superimposed, and therefore, representing the actual error for every condition.
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includes a bottleneck layer. This network may or may not contain all of the target languages. Then, using the previ-
ous network, compute the bottleneck features from the original unbalanced dataset to optimize the remaining stages
involved in the i-vector system. We simulated the unbalanced data scenario by using the eight-language DNN from
Section 7.1 to compute bottleneck features over our LRE09_FULL training set. While one could consider using
non-overlapping sets for the DNN and i-vector optimization to avoid overfitting, we opted to use the entire unbal-
anced dataset due to data scarcity in our training material for LRE09_FULL.

Fig. 6 depicts the performance of the bottleneck system trained as explained above, the i-vector system, and their
fusion, for each of the 3 conditions (3s, 10s, 30s) and the 23 target languages. The vertical line separates the perfor-
mance for the languages included (left) and excluded (right) during the DNN optimization process. The results show
that, despite overall good performance, the bottleneck system performs much better for the languages involved in the
DNN training.

The second approach used was to train a new DNN model using all the target languages in the LRE09_FULL eval-
uation. Note that, in this case, unequal amounts of training data were used to optimize each of the 23 DNN outputs.
The results of this second approach are shown in Fig. 7. By comparing Figs. 7 and 6, in which the only underlying
difference is the training data used for the DNN model, we see that data imbalance may be an issue in the stand-
alone DNN system, but it is not an issue when using the bottleneck system. Moreover, the bottleneck system seems
to benefit from matching the target classes of the underlying DNN model with the target languages in the language
recognition evaluation (see, for instance, the performance improvements on Georgian, Korean or Ukranian).

Fig. 5. DNN vs i-vector system performance (EER) in function of test utterance segment duration (LRE09_FULL corpus).

Fig. 6. i-vector, BN and fusion system performance comparison (average EER) per language on LRE09_FULL dataset. The DNN used to extract
bottleneck features was trained just with the 8 target languages of LRE09_BDS (on the left of the vertical dashed line). Errors bars for 30s, 10s
and 3s are superimposed, and therefore, representing the actual error for every condition.
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Finally, the results for the LRE09_FULL dataset for all the individual systems proposed, including fusions with
the baseline i-vector system, are summarized in Table 4. Note that all DNNs shown in this table were trained using
data of the 23 target languages. The conclusion remains the same as in the case of the LRE09_BDS dataset (Table 2),
but with modest performance improvements. Specifically, when fusing the i-vector and the bottleneck systems, we
achieved improvements of 29%/27%, 32%/34% and 21%/24% in terms of EER/ Cavg for the 3s, 10s and 30s evalu-
ated conditions.

8. Summary

In this work, we presented an extensive study of the use of deep neural networks for LID. Guided by the success
of DNNs for acoustic modeling, we explored their capability to learn discriminative language information from speech
signals.

First, we showed how a DNN directly trained to discern languages obtains significantly improved results with respect
to our best i-vector system when dealing with short-duration utterances. This proposed DNN architecture is able to
generate a local decision about the language spoken in every single frame. These local decisions can then be com-
bined into a final decision at any point during the utterance, which makes this approach particularly suitable for real-
time applications.

Next, we introduced the LID optimized bottleneck system as a hybrid approach between the proposed DNN and
i-vector systems. Here, a DNN optimized to classify languages is seen as a front-end that extracts a more suitable

Fig. 7. i-vector, BN and fusion systems performance comparison (average EER) per language on LRE09_FULL dataset. The DNN used to extract
bottleneck features was trained with all the 23 target languages. Errors bars for 30s, 10s and 3s are superimposed, and therefore, representing the
actual error for every condition.

Table 4
Performance for individual and fusion systems – average EER in % and Cavg × 100 – on full
LRE FULL09_ dataset by test duration. All DNN family systems {DNN, DNN_BN and BN}
come from a DNN with 4 layers and context of ±10 frames.

Equal error rate (%)/Cavg (×100)

LRE09_FULL

03s 10s 30s

i-vector 15.74/16.37 5.30/6.24 2.33/2.90
DNN_BN 13.49/14.21 6.38/7.11 4.37/4.88
BN 13.52/14.19 5.58/6.21 3.24/3.77
i-vector + DNN_BN 11.93/12.76 3.80/4.59 1.94/2.28
i-vector + BN 11.19/11.87 3.61/4.13 1.85/2.21
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representation (in terms of discrimination) of feature vectors. On contrary to previous bottleneck approaches for LID,
where the DNN was trained to recognize the phonetic units of a given language, in this work, the DNN optimization
criterion is coherent with the LID objective. Moreover, the DNN model requires only language labels which are much
easier to obtain than the speech transcriptions.

We observed that the most desirable scenario is to train the DNN with a balanced dataset that includes all the target
languages. In the case of not being able to fulfill this requirement, it is preferable to include data from all target lan-
guages during the DNN optimization stage, even if some languages contain more training hours than others. In ad-
dition, fusion results show that DNN-based systems provide complementary information to the baseline i-vector system.
In particular, the combination of the i-vector and bottleneck systems result in a relative improvement of up to 42%/
40%, 44%/44% and 14%/28% and 29%/27%, 32%/34% and 21%/24% for the balanced dataset LRE09_BDS and the
whole LRE’09 evaluation respectively, in terms of EER/C_avg and for the 3s, 10s, and 30s test conditions.

We believe that the performance of the DNN could be improved further. In the future, we plan to experiment with
other topologies/activation functions and other input features, such as filterbank energies. Further, for the sake of com-
parison, in this work we chose i-vector modeling as the strategy to model the bottleneck features. It is a future line of
this work to experiment with different modeling schemes that might fit better for those bottleneck features .
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