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ABSTRACT

In this paper we present a design of a DNN-based autoencoder for
speech enhancement and its use for speaker recognition systems for
distant microphones and noisy data. We started with augmenting
the Fisher database with artificially noised and reverberated data and
trained the autoencoder to map noisy and reverberated speech to its
clean version. We use the autoencoder as a preprocessing step in
the later stage of modelling in state-of-the-art text-dependent and
text-independent speaker recognition systems. We report relative
improvements up to 50% for the text-dependent system and up to
48% for the text-independent one. With text-independent system,
we present a more detailed analysis on various conditions of NIST
SRE 2010 and PRISM suggesting that the proposed preprocessig is
a promising and efficient way to build a robust speaker recognition
system for distant microphone and noisy data.
Index Terms: speaker recognition, denoising, de-reverberation,
neural networks, DNN

1. INTRODUCTION

The last years have seen a great growth in the market with vari-
ous portable devices that are equipped with microphone to process a
speech input in various environments and applications. Such devices
include smartphones, tablets, gaming consoles, voice-controlled
navigation devices and other voice-controlled systems. The pres-
ence of various environmental noises and reverberation in the input
speech signal has a significant negative impact on the performance
of most applications that deal with speech.

Various techniques for speech and signal processing have been
introduced to cope with the distortions caused by noise and rever-
beration in distant microphone data. One way to tackle this problem
at the very beginning is to use multiple microphones that allow for
effective use of techniques such as active speaker tracking, active
noise cancelling, beamforming and filtering [1]. While using smart
microphone arrays is effective, their use is still limited to larger and
non-portable devices. For single microphone systems, front-ends
utilize signal pre-processing methods such as Wiener filtering, adap-
tive voice activity detection (VAD), gain control, etc. [2]. In the later
stages, various designs of robust features [3] are used in combination
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with normalization techniques such as cepstral mean and variance
normalization or short-time gaussianization [4].

All above referenced techniques work on a signal or acoustic-
feature level and can be combined with speech enhancement tech-
niques such as denoising or dereverberation. In the last years, we
have seen several application of speech enhancement based on neu-
ral networks (NN): for example, in [5], a classical approach of re-
moving the room impulse response is proposed, but the filter is es-
timated using a NN. NNs have also been used for speech separa-
tion [6] instead of popular computational auditory scene analysis
(CASA) techniques. NN-based autoencoder for speech enhance-
ment was proposed in [7] with optimization in [8] and finally, re-
verberant speech recognition with signal enhancement by a deep au-
toencoder was tested in the Chime Challenge and presented in [9].

In this paper, we investigate the use of a DNN autoencoder as
an audio preprocesing front-end for speaker recognition. The au-
toencoder is trained to learn a mapping from noisy and reverberated
speech to clean speech. The frame-by-frame aligned examples for
DNN training are artificially created by adding noise and reverber-
ation to the Fisher speech corpus. We have developed and success-
fully applied this preprocessing scheme for automatic speech recog-
nition (ASR) in our system for the IARPA Automatic Speech recog-
nition In Reverberant Environments (ASpIRE) challenge1.

Here, we demonstrate that the proposed method increases the
performance of two state-of-the-art systems for text-dependent and
text-independent speaker recognition. The text-dependent system
is based on GMM-NAP framework [11], while text-independent
system is based on i-vectors and Probabilistic Linear Discriminant
Analysis (PLDA) [12, 13]. By design, both systems already include
compensation for the unwanted variability caused by noise or rever-
beration and serve as good baselines for our experiments. As it was
already shown that performing multi-condition training with added
noisy and reverberated data helps significantly for both ASR [10, 14]
and speaker recognition [15, 16], we also explore this scenario for
text-independent system in section 4.

2. AUTOENCODER TRAINING AND DATASET DESIGN

Fisher English database parts 1 and 2 were used for training the au-
toencoder. It contains over 20,000 telephone conversational sides or
approximately 1800 hours of audio.

2.1. Adding noise

Our training data were processed by artificially adding different
types of noises from the following two categories: stationary noises

1https://www.innocentive.com/ar/challenge/
9933624 [10]
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and transient noises. Stationary noises contain 285 samples (4 min-
utes long) taken from the Freesound library2 and include record-
ings of the following categories: real fan, HVAC, street, city, shop,
crowd, library, office and workshop. Their character is mainly sta-
tionary, with minor portions of transient noises and babbling. Ad-
ditionally, we use 7 samples (4 minutes long) of artificially gener-
ated noises: various spectral modifications of white noise + 50 and
100 Hz hum. Transient noises contain 60 samples (4 minutes long)
from Freesound and include recordings of the following categories:
dishes, motor, workshop, doors, city, keyboard, library, office. The
character is mainly transient, with some minor portion of station-
ary noises. Additionally we created 25 samples (4 minutes long) of
babbling noises by merging speech from 100 random speakers from
Fisher database using speech activity detector.

2.2. Reverberation

We generated artificial room impulse responses (IR) using “Room
Impulse Response Generator” tool from E. Habets [17]. The tool
can model the size of room (3 dimensions), reflectivity of each wall,
type of microphone, position of source and microphone, orientation
of microphone towards the audio source, and number of bounces
(reflections) of the signal. Each room model consists of a pair of IR.
One is used to reverberate (convolution with IR) the speech signal
and the other is used to reverberate the noise signal. These signals
are then mixed into a single recording. Just coordinates of audio
sources (speech/noise) differ for each of the IRs in such pair. We
randomly set all parameters of the room for each room model.

2.3. Composition of the training set

We used fant tool [18] to mix reverberated speech and reverberated
noise at given SNR. Speech signal was compensated for the delay
caused by the reverberation.

The autoencoder training dataset consists of 1800 hours of clean
Fisher data augmented with another three copies of artificially cor-
rupted Fisher data. IRs were generated for rooms where each dimen-
sion was limited to the range of 2 − 5 meters. Noises were added
at SNRs ranging from 0 dB to 27 dB. Two noises were always added
into each recording: one random stationary noise and one random
transient noise.

2.4. Audio enhancement by DNN autoencoder

The role of the autoencoder is to enhance (de-noise and de-
reverberate) the speech signal. It is trained on the artificially cre-
ated parallel clean-noisy Fisher corpora as described in the previous
section. The inputs of the NN are 129 dimensional vectors of log
magnitude spectrum stacked over 31 frames (e.g. 3999 dimensional
vector). The desired outputs are 129 dimensional vectors (again log
spectrum) corresponding to the clean version of the central input
frame. A standard feed-forward architecture is used: 3999 inputs,
3 hidden layers with 1500 neurons, 129 outputs, tanh nonlinearities
in the hidden layers. The NN is initialized in such a way that it
(approximately) passes its input to the output and it is trained us-
ing conventional stochastic gradient descent to minimize the MSE
objective.

We have experimented with different strategies of normalizing
NN input and output. To achieve a good performance, utterance level
mean and variance normalization is applied to both the NN input
and the desired NN output. To synthesize the cleaned-up speech log

2http://www.freesound.org

spectrum, the NN output is de-normalized based on the global mean
and variance of clean speech. The cleaned-up log magnitude spec-
trum is further converted to speech signal by using an overlap-add
algorithm. The information about phase is taken from the original
noisy spectrum.

3. SPEAKER RECOGNITION SYSTEMS

3.1. Text dependent system

The proposed deep audio enhancement method is evaluated on a
common passphrase authentication task. The speaker recognition
system is based on the GMM-NAP framework, as i-vector-based
systems have shown to be inferior for the common passphrase task
when a small-to-medium sized text matched development set is
available [11].

In the GMM-NAP framework a UBM is MAP adapted to each
session (enrollment, test and development). The resulting session-
dependent GMM is transformed into a mean supervector. A linear
projection named NAP (Nuisance Attribute Projection) is estimated
from the development set and is used to compensate intra-speaker
intersession variability in the evaluation data. Scores are computed
as a dot product between supervectors. Finally, scores are normal-
ized using ZT-norm. A detailed system description of the system can
be found in [19].

Note that all trainable components (UBM, NAP and score nor-
malization parameters) are trained solely on the common passphrase
utterances from the development set. In this paper, we report results
for two front-ends. The first is based on plain Mel frequency cep-
tral coefficients (MFCC) and the second is based on a variant of the
noise robust PNCC features [20]. For the first system, we take 12
MFCCs together with zero-th coefficient and their delta. Both fea-
tures are transformed by means of feature warping on a 3 s sliding
window [4]. We used an energy-based voice activity detection to
remove non-speech frames.

3.1.1. Datasets

The data were collected internally at IBM as part of a multi-modal
data collection effort described in detail in [21]. Subjects were
recorded by a smartphone or a tablet held at arm-length, which de-
grades the quality of the audio signal significantly.

The data were collected in two separate phases with disjoint sets
of subjects. First, the development/tuning data (using iPad 2 and
iPhone 4, and then the evaluation dataset (using iPad 2 and iPhone
5) were collected. The development data were collected in a rel-
atively quiet room (denoted by clean). For the evaluation set, two
sessions were recorded (per subject and per device) in clean condi-
tion, and a third session was recorded (per speaker and per device)
in a noisy cafeteria (denoted by noisy). The distribution of signal-to-
noise ratios (SNR) in the evaluation set is given in Figure 1.

3.2. Text independent system

Our systems are based on i-vectors [12, 13]. To train i-vector extrac-
tors, we always used 2048-component diagonal-covariance Univer-
sal Background Model (GMM-UBM) and we set the dimensionality
of i-vectors to 600.

Before using the i-vectors, we apply LDA to reduce the dimen-
sionality to 200. Such processed i-vectors are then transformed by
global mean normalization and length-normalization [12, 22].

A speaker verification score is produced by comparing two i-
vectors corresponding to the segments in the verification trial by
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Fig. 1. SNR distribution for the clean and noisy environments on
iPhone5 and iPad2.

means of PLDA [13] —a generative model that models i-vector dis-
tributions allowing for direct evaluation of the desired log-likelihood
ratio verification score.

In our experiments, we used cepstral features, extracted using
a 25 ms Hamming window. We used 24 Mel-filter banks and we
limited the bandwidth to the 120–3800Hz range. 19 MFCCs to-
gether with zero-th coefficient were calculated every 10 ms. This
20-dimensional feature vector was subjected to short time mean- and
variance-normalization using a 3 s sliding window. Delta and dou-
ble delta coefficients were then calculated using a five-frame window
giving a 60-dimensional feature vector.

After feature extraction, voice activity detection (VAD) was per-
formed by the BUT Czech phoneme recognizer [23], dropping all
frames that are labeled as silence or noise. The recognizer was
trained on the Czech CTS data, but we have added noise with varying
SNR to 30% of the database.

3.2.1. Datasets

We used the PRISM [24] training dataset definition without added
noise or reverb to train UBM and i-vector transformation. Two vari-
ants of gender independent PLDA were trained: one only on the
same training data without added noise and second included also ar-
tificially added cocktail noise and reverb. Artificially added noise
and reverb segments totaled approximately eleven thousand seg-
ments or 10% of total number of segments for PLDA training. The
PRISM set comprises the Fisher 1 and 2, Switchboard phase 2 and 3
and Switchboard cellphone phases 1 and 2, along with a set of Mixer
speakers. This includes the 66 held out speakers from SRE10 (see
Section III-B5 of [24]), and 965, 980, 485 and 310 speakers from
SRE08, SRE06, SRE05 and SRE04, respectively. A total of 13,916
speakers are available in Fisher data and 1,991 in Switchboard data.

We evaluated our systems on the female portions of the follow-
ing conditions in NIST SRE 2010 [25] and PRISM [24]:

• tel-tel: SRE 2010 extended telephone condition involving
normal vocal effort conversational telephone speech in en-
rollment and test (known as condition 5).

• int-int: SRE 2010 extended interview condition involving in-
terview speech from different microphones in enrollment and
test (known as condition 2).

• int-mic: SRE 2010 extended interview-microphone condi-
tion involving interview enrollment speech and normal vo-
cal effort conversational telephone test speech recorded over
a room microphone channel (known as condition 4).

• prism,noi: Clean and artificially created noisy waveforms
from both interview and telephone conversations recorded
over lavalier microphones. Noise was added with different
SNR levels and recordings tested against each other.

• prism,rev: Clean and artificially created reverberated wave-
forms from both interview and telephone conversations
recorded over lavalier microphones. Reverberation was
added with different RTs and recordings tested against each
other.

• prism,chn: English telephone speech with normal vocal ef-
fort recorded over different microphones from both SRE2008
and 2010 tested against each other.

The recognition performance is evaluated in terms of the equal error
rate (EER) and the normalized minimum detection cost functions
(DCF) as defined in both the NIST 2010 SRE task (DCFmin

new) and
the previous SRE 2005, 2006, 2008 evaluations (DCFmin

old ).

4. EXPERIMENTS AND DISCUSSION

4.1. Text dependent speaker recognition

Table 1 reports the performance of the proposed audio enhancing
method for the MFCC-based frontend, and Table 2 reports the re-
sults for the PNCC-inspired fronted. For the experiments denoted as
enhanced, only the evaluation data are processed with our autoen-
coder. The PNCC-inspired frontend proves to be superior for noisy
and mixed data. The proposed method improves significantly the
clean-clean condition. It is important to note that this condition still
contains reverb as the data are recorded over a distant microphone.
For noisy data, enhancing improves significantly the MFCC-based
system and less significantly the PNCC-inspired system. In this case,
the error is probably dominated by noise for which our enhancement
is not that effective.

Table 1. Results using MFCC based frontend.
Condition Baseline Enhanced Relative
(dev-eval) EER [%] EER [%] improv. [%]

iPad
clean-clean 1.01 0.60 41

clean-noisy 8.89 7.50 16

all-all 7.68 6.16 20

iPhone
clean-clean 1.50 1.45 3

clean-noisy 4.24 3.45 19

al–all 3.82 3.55 7

4.2. Text independent speaker recognition
Table 3 reports the performance of our speaker recognition systems
under four different training scenarios. First, we study the effect
of multi-condition training, when we add noise and reverberation
into part of the PLDA training data, against the situation when only
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Table 3. Results obtained with text-independent system in four scenarios. The first two blocks correspond to a system trained only with
clean data without enhancing and to the same system, but trained with enhancing. The last two blocks correspond to a system trained in a
multi-condition fashion (with noise and reverberated data in PLDA) and to the same system but with enhancing.

PLDA trained on clean data PLDA trained on multi-condition data

Original data Enhanced data Original data Enhanced data

Condition DCFmin
new DCFmin

old EER DCFmin
new DCFmin

old EER DCFmin
new DCFmin

old EER DCFmin
new DCFmin

old EER

tel-tel 0.372 0.108 2.07 0.370 0.109 2.18 0.382 0.109 2.14 0.392 0.111 2.24

prism,noi 0.415 0.126 2.94 0.364 0.099 2.28 0.316 0.078 1.88 0.316 0.076 1.73

prism,rev 0.408 0.108 2.07 0.224 0.059 1.37 0.303 0.079 1.62 0.206 0.053 1.28

int-int 0.310 0.077 1.74 0.251 0.064 1.68 0.270 0.071 1.69 0.230 0.062 1.58

int-mic 0.244 0.053 1.09 0.216 0.046 1.04 0.243 0.046 0.90 0.207 0.044 0.89

prism,chn 0.307 0.048 0.79 0.178 0.021 0.47 0.282 0.039 0.59 0.175 0.020 0.40

Table 2. Results using a PNCC inspired frontend.
Condition Baseline Enhanced Relative
(dev-eval) EER [%] EER [%] improv. [%]

iPad
clean-clean 1.07 0.53 50

clean-noisy 5.13 4.86 5

all-all 4.66 4.22 9

iPhone
clean-clean 1.91 1.27 34

clean-noisy 2.82 2.72 4

all-all 2.98 2.69 10

relatively clean data are available for PLDA training. We can see
that multi-condition training is effective for all conditions with the
exception of tel-tel condition, which probably does not contain re-
verberation or high levels of noise. It is interesting to observe that
multi-condition training helped also in relatively clean int-int and
int-mic conditions.

After establishing the baselines with clean and multi-condition
training, we study the effect of the proposed audio enhancement. In
the experiments denoted as enhanced test data in Table 3, we pass all
PLDA training data together with enrollment and test data through
our DNN autoencoder and synthesize new audio. We keep the UBM
and i-vector extractor trained on original data. With the exception of
tel-tel condition, we can see improvements everywhere and in both
clean and multi-condition scenarios. In both cases we can observe
large relative improvements for prism,rev (artificially added rever-
beration) and prism,chn (real reverberation) conditions indicating,
that our autoencoder is compensating mainly the effect of reverbera-
tion. The relative gains from audio enhancing are larger when train-
ing on clean data (26% average relative improvement) compared to
multi-condition training (18% average relative improvement).

At this point, it is interesting to analyze the results obtained on
the prism,noi condition containing artificially added additive noise.
We can observe that most of the improvement is achieved with multi-
condition training and further audio enhancing does not bring addi-
tional significant performance boost. This behavior is in line with
other noise robust modelling techniques such as extracting noise-
compensated i-vectors [15]. In this work, nice improvement was also
achieved with PLDA trained only on clean data, but multi-condition
training already solved most of the problems and the proposed tech-
nique was not very effective under this scenario.

To complete the analysis of presented results, we can also study
the effect of enhancing and multi-condition training against enhanc-
ing and training on clean data (comparing columns five to seven
with columns eleven to thirteen of Table 3). Again, we see improve-
ments with the exception for tel-tel condition where we observe up
to 6% relative degradation. The average improvement for all con-
ditions except tel-tel is 10%. These results suggest that both multi-
condition training and audio enhancing can be successfully used si-
multaneously, especially for data containing reverberation and addi-
tive noise.

Finally, after conducting these experiments and being encour-
aged by a good performance, we enhanced all of our data and re-
trained the whole system including UBM and i-vector extractor,
which were trained only on unprocessed data so far. We observed
a small relative improvement or degradation for all conditions. An
average relative improvement across all presented conditions was
1.1%. This result suggests, that enhancing is important in the later
stage of modelling when we are dealing with an unwanted variabil-
ity in the data. Our DNN indeed removes some of the variability in
the data or normalizes them into a common domain which helps our
generative model. It is important to note that this processing also
introduces some variability and therefore it is important to always
enhance also the PLDA training data. When we trained the PLDA
on the original data and enhanced only enrollment and test data, we
were observing degradation w.r.t. testing on the original data.

5. CONCLUSIONS

We have presented our approach towards building a robust speaker
recognition system. We concentrated on improving the performance
on noisy and reverberant data by means of a DNN autoencoder,
which is trained to remove both additive noise and reverberation
from audio. We showed that our method significantly improves
the performance of both state-of-the-art text-dependent and text-
independent speaker recognition systems in the domain of distant
microphone recordings. We analyzed and discussed the effect of the
proposed method both on real-world data as well as on artificially
created data. The artificially created data allowed us to measure
the effect of enhancing separately for distortions caused by addi-
tive noise or reverberation. From these experiments, we conclude
that the proposed audio enhancing method compensates well for the
distortions caused by reverberation, while distortions caused by ad-
ditive noise can be very well dealt with by means of multi-condition
training.
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