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Abstract
In this paper, we summarize our efforts in the NIST Lan-

guage Recognition (LRE) 2015 Evaluations which resulted in
systems providing very competitive performance. We provide
both the descriptions and the analysis of the systems that we
included in our submission. We start by detailed description of
the datasets that we used for training and development, and we
follow by describing the models and methods that were used to
produce the final scores. These include the front-end (i.e., the
voice activity detection and feature extraction), the back-end
(i.e., the final classifier), and the calibration and fusion stages.
Apart from the techniques commonly used in the field (such as
i-vectors, DNN Bottle-Neck features, NN classifiers, Gaussian
Back-ends, etc.), we present less-common methods, such as Se-
quence Summarizing Neural Networks (SSNN), and Automatic
Unit Discovery. We present the performance of the systems
both on the Fixed condition (where participants are required to
use predefined data sets only), and the Open condition (where
participants are allowed to use any publicly available resource)
of the NIST LRE 2015.

1. Introduction
Four years have passed since the last NIST LRE in 2011 and
researchers in the field have been developing and advancing
language recognition technology, often utilizing the data re-
leased by NIST and LDC as well as other data from various
sources. As the test sets of NIST LREs usually serve as a
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common benchmark in scientific publications, researchers of-
ten tune their systems to perform well on these tasks and one of
the key elements in the system design is definitely a good train-
ing and calibration set. The large influence of the data on sys-
tem performance is the reason that almost every research group
has eventually developed its own database for training language
recognition systems.

Composition of the training data can certainly have a pos-
itive or negative effect on the performance of any particular
method for language identification (LID) and it is therefore very
important to keep this in mind when comparing different sys-
tems for LID. One can certainly achieve impressive improve-
ments with a small training dataset given a common baseline
system and a particular method, while other may not be able to
replicate his success while using his own much larger dataset.

We believe that the problem of data engineering was one of
the reasons for a new scheme in NIST LRE 2015 [1]. We wel-
come the introduction of the Fixed condition where participants
are required to use only predefined datasets for system develop-
ment, which partially eliminates one of the differentiating fac-
tor between the published research systems. At the same time
we want to be able to quantify the effect of various datasets on
the performance, and this is where we also welcome the Open
condition which is in line with the previous LRE’s, where the
participants could use any public resources. As we have partic-
ipated in various language and speaker recognition evaluations,
we are in a position to build a rather large database for LRE and
present an analysis with its composition and use.

In comparison to LRE11 [2], the state-of-the-art has changed
especially in the front-end. Instead of relying on standard acous-
tic features (such as MFCC) or outputs from various phoneme
recognizers, bottleneck features (BN) [3, 4], extracted from Deep
Neural Networks (DNN) trained to classify phoneme states, are
used with great success. The core research regarding BN-DNNs
is happening mainly in the field of Automatic Speech Recogni-
tion (ASR), where recently, a variant with multilingual train-
ing – that literally calls for being used in LRE [5] – has been
developed [6]. It is obvious that we need annotated data for
training of such DNNs and we show that utilizing the data from
multiple languages to train a multilingual DNN can bring sub-
stantial improvements.
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Having participated in both Fixed and Open conditions al-
lows us to present not only the newly established state-of-the-art
feature extraction for LID, but also the analysis of using differ-
ent data and architectures for training both the feature extractors
and the whole systems.

As the change in preferred feature extraction has been sub-
stantial since the last evaluation, the general system architec-
ture has not changed much. Most of the systems being pre-
sented in this work are based on the i-vectors [7], which have
de-facto became a standard for speaker recognition and have
grown in popularity also for language recognition [8, 9, 10, 11].
As a classifier on top of the i-vectors, we use mainly generative
Gaussian models [9, 11] that have been shown to provide re-
sults that are similar or better than those of discriminative clas-
sifiers based on Support Vector Machines (SVM) or multiclass
logistic regression [9]. To compensate for poor i-vector esti-
mates given very short test segments, we extend the Gaussian
linear model from [9] by taking into account an i-vector uncer-
tainty [12, 13, 14].

Given the nature of LRE15 and the division of the data into
clusters of close languages, we were also experimenting with
the architecture based on the average of cluster-dependent sys-
tems. We show that such approach turned out to be beneficial.

We also briefly present methods that can be seen as less
conventional given the dominance of i-vectors in the field. We
have experimented with Sequence summarizing DNNs, train-
ing them to directly classify language given the sequence of
spectral-based features. Another technique that is briefly intro-
duced is the system for automatic unit discovery in the acoustic
data. The motivation behind this system was to train a bottleneck-
based system without the need of any data transcriptions and
train it directly on the LRE15 data. This system is in fact used
as a source for automatic data tokenization and the units them-
selves were used as targets for training the BN-DNN.

2. Data
We have utilized all supplied training data for primary condi-
tion.

The annotated Switchboard database was used to train the
bottleneck NN. This database was provided for all participants
to allow the use of techniques requiring annotated speech cor-
pora for system development.

The LRE15 training data were then split into two parts,
where the first part was used to train both classifiers and parts
of the i-vector system (UBM, i-vector extractor) and the second
part was used as a held-out set for calibration and fusion. We
denote LRE15 training data as Fixed set later in this document.

For the open condition, we tried to design an auxiliary dataset
with an emphasis on large channel variability and amount of
data. We used data from previous evaluations and other pub-
licly available sources. We denote this as Open set later in this
document.

2.1. Primary Data

For the primary condition, we split the LRE15 training data into
two parts – train and development (dev). We have coordinated
our split with MIT team to keep the possibility to experiment
with cross-site combinations later in the post-evaluation period.
MIT defined the split of all available data in such a way that
60% belonged to the train part and 40% to the dev. The seg-
ments belonging to the dev were further split into short cuts that
contain from 3 to 30 seconds of speech. These cuts were de-

fined by MIT as well. At this point it should be pointed out that
our Voice Activity Detection (VAD) system was giving approx-
imately 20% less speech frames than the one used by MIT for
the cuts definitions.

After splitting the data and dividing the dev segments into
cuts, we ended up with 3042 segments (248 hours of speech) in
train set and 42295 segments (146 hours of speech) in dev set.

2.2. Data for Open condition

We designed an independent dataset for the open-data condi-
tion, where we concentrated on obtaining a large diversity in
channels and a large amount of training data. We have reused
data from previous NIST evaluations and part of the LRE15
training data which we believed was coming from new data col-
lections. We have also added part of KALAKA-3 database [15]
(British English, European Spanish) and human annotated part
of Al Jazeera Dialectal Speech Corpus for the Arabic dialects [16].

The train part of the auxiliary data reached the size of 55142
segments (1398 hours of speech). For the dev part of this dataset,
we kept the design from previous evaluations which means we
were creating clusters of 3 s, 10 s and 30 s cuts from longer seg-
ments. The size of the auxiliary dev set reached 64539 segments
(200 hours of speech).

Table 1: Sources of data used for open training data condition
(referred as Open dataset) and their statistics. Rows are sorted
according to amounts of clean speech in Train part.

Train Dev
Database #files hours #files hours

OGI 22 languages 2270 3.5 2077 6.0
unknown broadcast news 64 3.9 72 0.2
OGI multilingual 1640 8.8 - -
KALAKA-3 409 9.9 4774 10.7
Radio Free Europe 476 11.2 705 2.3
Foreign Accented English 4913 15.6 - -
HKUST Mandarin 276 17.2 - -
SpeechDat-East 6202 30.6 200 1.1
NIST LREs 1124 38.2 36391 119.2
Al Jazeera Dialectal
Speech Corpus

9306 55.2 2200 7.2

NIST SREs 3657 96.0 - -
Callfriend 838 144 4257 11.5
Callhome - - 1819 5.8
Levantine Arabic
and Iraqi CTS1

3606 168 7299 26.1

Fisher English, Arabic 5804 337 1393 4.5
VOA broadcasts 14555 458 3280 5.8

Total 55142 1398 64539 200

2.3. Additional Data

We used also transcribed data from the IARPA BABEL pro-
gram2 for multilingual training of bottleneck features and Re-
gion Dependent Transform (RDT) features used in the open
training data condition.

This database simulates a case of what one could collect
in limited time from a completely new language. It consists

1LDC2007S01, LDC2006S45, LDC2005S14, LDC2005S07
2The IARPA Babel Program (http://www.iarpa.gov/index.php/research-

programs/babel)
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mainly of telephone conversational speech, but scripted record-
ings as well as far field recordings are present too. The data
are available only to the project participants, but are released
also within the Open KWS evaluations3 organized by NIST. We
used 17 languages from this program for multilingual bottle-
neck neural network training and first 11 languages (Year1 and
Year2) for RDT features and VAD neural network training.

3. Voice Activity Detection
Our multi-lingual VAD was originally developed for the IARPA
BABEL program and consists of two carefully designed parts:
a neural network (NN) which produces per-frame scores, and a
post-processing stage which builds the segments based on the
scores. By the term “multi-lingual”, we mean splitting the last
softmax layer of NN into several blocks, where each block ac-
commodates training targets from one language [6].

The NN was trained on the Year1+Year2 Full Language
Pack train-sets (11 languages), which results in 842 hours of au-
dio. The input dimension is 288, while there are 2 hidden layers,
each of 400 sigmoid neurons, and the final softmax layer has 2
outputs, corresponding to the classes: speech, non-speech. The
NN has 277k parameters. The training targets were prepared by
mapping from the mono-lingual forced-alignments (generated
with GMM/HMM model).

The input features for the NN consist of 15 log-Mel filter-
bank outputs and 3 Kaldi-pitch features [17]. We apply per-
speaker mean and variance normalization estimated on the whole
unsegmented recordings. Then we apply frame splicing with 31
frame-long context, where the temporal trajectory of each fea-
ture is scaled by a Hamming window and reduced to 16 dimen-
sions by Discrete Cosine Transform. The final 288-dimensional
features are globally mean and variance normalized on the NN
input.

In the post-processing, we bypass the NN output softmax
function (allowing us to interpret the outputs as log-likelihoods),
then we convert the two outputs to logit-posteriors, and then we
smooth the score by averaging over consecutive 31 frames. In
the final step, the speech segments were extracted by threshold-
ing the posterior at the value of -0.5.

4. Feature extraction
Majority of the feature extraction methods in our work are well-
known and described in other literature, however, we have also
used some novel approaches. If not stated otherwise, only parts
of utterances labeled as speech (according to the VAD as de-
scribed above) were selected for further processing.

4.1. Stacked Bottleneck Features (SBN)

A bottleneck feature vector is generally understood as a by-
product of forwarding a primary input feature vector through
a NN and reading off the vector of values at the bottleneck
layer. We have used a cascade of two such NNs for our ex-
periments. The output of the first network is stacked in time,
defining context-dependent input features for the second NN,
hence the term Stacked Bottleneck Features (SBN). The NN in-
put features are 24 log Mel-scale filter bank outputs augmented
with fundamental frequency features from 4 different f0 esti-
mators (Kaldi, Snack, and other two according to [18, 19]). To-
gether, we have 13 f0-related features, see [5] for details. In

3http://www.nist.gov/itl/iad/mig/openkws.cfm

summary, 24 log filter bank outputs and 13 fundamental fre-
quency features form 37-dimensional feature vectors.

Mean subtraction is applied at the utterance level. Ham-
ming window followed by DCT consisting of 0th to 5th base
are applied on the time trajectory of each parameter resulting in
(24 + 13)× 6 = 222 coefficients on the first stage NN input.

The dimensionality of the bottleneck layer was set to 80.
The dimensionality of the other hidden layers was set to 1500.
The bottleneck outputs from the first NN are sampled at times
t−10, t−5, t, t+5 and t+10, where t is the index of the current
frame. The resulting 400-dimensional features are inputs to the
second stage NN with the same topology as first stage. The 80
bottleneck outputs from the second NN (referred as SBN) are
the final features.

The NN in both stages were trained on Switchboard database
(audio and transcriptions). We denote these features either as
SBN-SWB1 (our in-house NN training toolkit was used) or SBN-
SWB1-KALDI (NN trained using the Kaldi toolkit).

4.1.1. Multilingual training for open data condition

For the open training data condition, we were not limited by
a requirement to use only Switchboard data to train bottleneck
NN. Thus we were allowed to use additional corpora with tran-
scriptions to train bottleneck features multilingually. This was
proven to be superior to monolingually trained features [5]. We
used all 17 languages from the IARPA Babel project to train
multilingual stacked bottleneck NN, see Section 2.3. We de-
note these features as SBN-ML17.

For the Open set condition we also used another flavor of
multi-lingual bottleneck features denoted as MultilangRDT.
These features were directly borrowed from ASR domain [20].
They are based on feature level fusion of two feature streams:
30 dimensional SBN features trained on 10 languages from BA-
BEL data and PLP+D+A+T projected to 39 dimensions using
HLDA. This feature stream is fed to Region Dependent Trans-
form (RDT) [21] transform performing dimensionality reduc-
tion to 69 dimensions. RDT is trained on 11 languages from
BABEL data.

We adopted the multilingual training scheme with block-
softmax, which divides the output layer into parts according to
individual languages. During training, only the part of the out-
put layer corresponding to the language the given target belongs
to, is activated. Detailed description of multilingual training can
be found in [6].

Note that we could not have used this approach for primary
condition (utilizing the data for 20 languages from the training
part of LRE15) because of missing transcriptions. Alternate ap-
proach, where we tried to automatically discover language inde-
pendent speech units for these languages and train monolingual
bottleneck NN on top of them is described in the next section.

4.2. Automatic unit discovery

The acoustic unit discovery is based on a non-parametric Baye-
sian approach. The acoustic units are assumed to be generated
by a mixture of HMM/GMM and the mixture itself is assumed
to be a realization of Dirichlet process, with a HMM/GMM as
a base distribution. A similar model has been described in [22].
The set of HMMs is embedded into a phone loop where the
transition probabilities are the weights of the infinite mixture
model. The training procedure can be seen as simultaneously
fitting a phone loop model to the data and estimating the num-
ber of phones in the looping. The training of the model was
done with the Variational Bayes (VB) approach using the stan-
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dard mean-field approximation and truncating the infinite mix-
ture model by putting a hard limit on the maximum number of
components. Number of units was set to 600 and they were esti-
mated on pooled training data. Bottleneck NN was then trained
on top of them using the Kaldi toolkit. We denote these bottle-
neck features as SBN80-AUTO-KALDI.

4.3. Shifted Delta Cepstra (MFCCSDC)

We computed 56-dimensional feature vectors from frames of
size 25 ms with 10 ms shift. The feature vector is a concatena-
tion of SDC-7-1-3-7 vector and 7 MFCC coefficients (including
C0). Cepstral mean and variance normalization and RASTA fil-
tering were applied before SDC stacking.

4.4. Phone Log-Likelihood Ratio features (PLLR)

PLLRs [23] are frame-level features, computed from the frame-
by-frame phone posterior probabilities provided by the Neural
Network. NN was trained on Switchboard to produce phoneme
state posterior probabilities - there were 40 phonemes, each
with 3 states, which gives us 120 outputs. We take logit on these
posteriors and PCA to reduce dimensionality to 80 dimensions.

We did not use PLLR on its own but we performed a feature-
level fusion (concatenation) with MFCCSDC features. This is
further denoted as MFCCSDC+PLLR features.

5. i-vector model
If not stated otherwise, all the i-vector based system we used are
using UBM with 2048 diagonal-covariance components trained
on the balanced training set (up to 15 h of randomly selected
training utterances per language). The total variability matrix
for i-vector extraction was trained in 5 iterations and its rank
was set to 600.

Let us briefly recall the definition of i-vectors. The i-vector
model constrains the GMM super-vector, representing the char-
acteristics of a given speech segment, to live in a single small-
dimensional subspace according to:

s = u + Tw , (1)

where u is the super-vector stacking the means of the Univer-
sal Background Model (UBM), composed of C components of
dimension F . T is a low-rank matrix spanning the i-vector sub-
space, and w is a realization of a latent variable W, of size
M , having a standard normal prior distribution. Given T and a
set of τ feature vectors X = {x1, x2, . . . , xτ}, the posterior
distribution of W given X can be computed as:

W|X ∼ N
(
µX ,Γ

−1
X
)
, (2)

where

ΓX = I +
C∑

c=1

N
(c)
X T(c)T

Σ(c)−1
T(c)

µX = Γ−1
X TTΣ−1fX .

In these equations, N (c)
X are the zero–order statistics estimated

on the c-th Gaussian component of the UBM for the set of fea-
ture vectors in X , T(c) is the F ×M sub-matrix of T corre-
sponding to the c–th mixture component such that

T =
(
T(1)T, . . . ,T(C)T

)T
,

and fX is the super-vector stacking the first–order statistics f
(c)
X ,

centered around the corresponding UBM means:

f
(c)
X =

∑

t

(
γ
(c)
t xt

)
−N (c)

X m(c) , (3)

Σ(c) is the UBM c–th covariance matrix, Σ is a block diago-
nal matrix with matrices Σ(c) as its entries, and γ(c)

t is the oc-
cupation probability of feature vector xt for the c-th Gaussian
component.

In the i-vector paradigm, an utterance is represented as the
MAP point–estimate µX of the i-vector posterior distribution,
and the term i-vector usually refers to this point–estimate. We
are however also interested in exploiting the additional infor-
mation conveyed by the uncertainty in the i-vector extraction
process, represented by the i-vector posterior covariance Γ−1

X .
Thus, we will explicitly refer to µX as the “i-vector point–
estimate”, to avoid confusion with the i-vector posterior distri-
bution. In order to increase readability, in the following we will
also drop the reference to the feature set X from µX and ΓX .

5.1. Gaussian models for language recognition

Generative modeling of i-vector point–estimates for language
recognition has proven to be an effective alternative to discrim-
inative classifiers based on Logistic Regression or Support Vec-
tor Machines. In [9], we have proposed a simple linear classifier
based on Gaussian distributions which provides accuracies sim-
ilar to those of linear discriminative approaches. The model as-
sumes that, for each language, the corresponding i-vector point–
estimates µi are generated according to:

µi = m` + εi , (4)

where m` is a language–dependent mean vector and

εi ∼ N
(
0,Λ−1) (5)

represents a (language–independent) residual. The model pa-
rameters can be easily obtained by Maximum–Likelihood esti-
mation. The class–conditional log–likelihood for µi given lan-
guage ` can be computed as:

logP (µi|`) =
1

2
log |Λ| − 1

2
(µi −m`)

TΛ(µi −m`) + k ,

(6)
where k is a data–independent constant. We denote this classi-
fier as GLC.

5.2. Gaussian models and i-vector uncertainty

In [12], we have shown that a Gaussian model employed for
closed-set LID can be interpreted as an approximation of the
PLDA model. This allows us to account for i-vector uncer-
tainty following exactly the same approach that has been used
for speaker recognition [13, 14]. In particular, the i-vector un-
certainty can be taken into account through the modified PLDA
model:

µi = m + Uy + εi , (7)

where the residual term εi has been replaced by the term εi,
with an utterance–dependent distribution given by:

εi ∼ N
(
0,Λ−1

eq,i

)
,

Λ−1
eq,i =

(
Λ−1 + Γ−1

i

)
, (8)

169



where Γi is the i-vector posterior precision. Model parame-
ters can be estimated through Expectation–Maximization fol-
lowing the approach in [24]. For long training utterances, how-
ever, i-vector covariances can be safely neglected during train-
ing. Moreover, we are interested only in closed–set detection in
LRE15, and training utterances are sufficiently long, therefore
model can be simplified as:

µi = m` + εi . (9)

The class–conditional log–likelihoods logP (µi|`) for a test i-
vector mean µi, with associated i-vector posterior covariance
Γ−1
i , given language `, can be computed as:

logP (µi|`) =−
1

2
(µi −m`)

T (Λ−1 + Γ−1
i

)−1
(µi −m`)

− 1

2
log
∣∣Λ−1 + Γ−1

i

∣∣+ k , (10)

where k is a data–independent constant. We denote this classi-
fier as FPGLC.

6. NN classifiers
6.1. Neural Network Back-end

In [25, 4], we have shown that Neural network (NN) classi-
fier significantly outperforms Logistic Regression on noisy data.
We used the Python Theano library to train NNs to map i-vectors
to language posteriors. We configured all our NNs as 3-layered
(input, hidden, and output), with the input layer taking the i-
vectors, and with softmax activation function in the output layer,
generating posteriors for all 20 language classes. Historically,
we trained 3 NNs with the number of hidden nodes set to 300,
400, 500. We adopted this approach to increase robustness, ac-
curacy, and to avoid the over fitting problem. We can see this
as a variant of bootstrap aggregating (model bagging). Finally,
we take the log of the arithmetic average posterior as the final
score.

6.2. Sequence Summarizing Neural Network

For Sequence Summarizing setup, we use 40 Mel filter-bank
features, with frame context of±15 frames. Stacked frames are
filtered with 16 Hamming-weighted DCT bases, which gives us
a vector of 496 dimensions. Utterance based CMVN is applied
before input to the NN.

General form of the experimental setup is shown in Fig. 1.
We were experimenting with various positions of summarizing
layer. For training we further divided training set into two sub-
sets. 2729 utterances for training and 313 utterances for cross-
validation with the same proportions of languages in both sub-
sets.

6.2.1. Training

We used two approaches for training the system for LRE15.
The first, per-cluster method, exploits the way how the NIST
LRE15 was evaluated. We trained six cluster-dependent sys-
tems and afterwards concatenated their outputs to obtain final
score matrix. The second approach was traditional and system
was trained for all languages in one network.

We can see that in case of per-cluster training, each net-
work sees only a small fraction of the whole training set. This
situation brought in the concern of over-fitting of per-cluster
systems.

Final system consists of per-cluster trained system with one
hidden layer of size 1024 and tanh non-linearity. The summa-
rizing layer which computes an average of the whole utterance
is placed after the hidden layer. After the summarizing layer
follows a linear layer connected to a softmax output.

7. Calibration and fusion
After the first stage, where we performed reduction from i-
vectors or sequences of acoustic features to scores, we contin-
ued with other two stages that do pre-calibration and fusion in
score-space and are both trained on the dev subset of either the
Fixed or Open dataset. Both stages are implemented by multi-
class logistic regression [26].

Our logistic regression solutions to calibration and fusion
were simple, to avoid over-training. For pre-calibration, an in-
dividual system has a trainable scale factor and an offset vector.
In fusion, every system gets a single trainable scale factor, while
every language gets a trainable score offset. The parameters are
trained via optimizing prior-weighted multiclass cross-entropy.

We used two kinds of priors: Uniform prior (flat) over all
20 languages for pre-calibration, and a Cluster prior for fusion.
For the data of each cluster, we used a cluster-specific prior,
with zero probabilities for out-of-cluster languages and equal
weights within the cluster. As an implementation, we used a
modified version of the toolkit in [27].

After the fusion, the scores belonging to individual lan-
guage clusters were used as language log-likelihoods to make
minimum-expected-cost Bayes decisions for the cost function
as prescribed by the LRE15 evaluation plan.

Later on in this document we report starred versions of the
development or evaluation set scores (dev∗ and eval∗). This
means that instead of being trained on separate heldout cali-
bration set, the calibration parameters were trained on that set
itself.

7.1. Cluster-dependent system fusion

Some of our systems use cluster dependent subsystems [4] fused
into one system by means of a simple average of their scores,
which simplifies the development and provides sufficient ro-
bustness. Such system is then denoted by ”-CD” at the end of
the system name.

Basically it is a simple fusion of 6 (as there are 6 language
clusters) i-vector based systems, where the individual UBMs
are trained only on data belonging only to the particular clus-
ter. In this architecture, a UBM with diagonal covariance ma-
trices performs better than its full covariance variant due to lim-
ited training data that is available per cluster. The training data
for T-matrix were however common for all individual cluster-
dependent subsystems.

8. Results (Fixed Data Condition)
Looking at the results in Table 2, we observe that systems based
on i-vectors and the two variants of Gaussian linear classifier
form the base of our submission. The best performing sys-
tems (1,2,7) are based on the state-of-the-art SBN feature ex-
traction. In fact a single system (1) is better than the whole
primary fusion. The effect of using i-vector uncertainty can be
seen by comparing systems (1) and (7). System (1) which uses
the uncertainty performs better on evaluation data. This may be
caused by the system obtaining better calibration.

Alternative i-vector systems (3,4) perform much worse, but
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Figure 1: Structure of Sequence Summarizing Neural Network.

we believed that they can contribute to the fusion by bringing
more diversity compared to the three very similar bottleneck-
based systems. System (3) is fairly standard and is based on a
feature level fusion of phonetic features with MFCC-SDC that
were both shown to achieve very good results in the past. Sys-
tem (4) on the other hand is an attempt to bring another bottle-
neck system into the fixed training condition. Unfortunately we
must conclude that at this point this approach is not even close
to the classical bottleneck system and in practice, where we can
usually use annotated database for DNN training, it does not
have much practical use.

The NN-based systems (5,6) also provide some fresh blood
into our fusion mix and especially the variant with extracting the
hidden layers-related super-vectors and Gaussian linear classi-
fier looks promising. The direct approach of classifying the lan-
guage right away from the sequence of acoustic features how-
ever performs by far worse.

Analyzing the fusions in the fixed condition, we can see a
different behavior on our development set than on actual eval.
Clearly, we had problems with over-training to our development
data and then obtaining poor results in fusion.

Table 2: Results of individual systems taken to fusion for fixed
training data condition. Last rows show the performances of
our primary and alternate fused systems.

Cavg × 100

System / Classifier dev∗ eval

1 SBN80-SWB1-KALDI-CD / FPGLC 2.41 16.9
2 SBN80-SWB1-CD / NN 2.80 19.9
3 MFCCSDC+PLLR-CD / GLC 4.72 22.0
4 SBN80-AUTO-KALDI / FPGLC 5.46 27.0
5 SSNN (alt. 2) 10.5 35.0
6 SSNN-layersPCA / GLC 3.41 30.4
7 SBN80-SWB1-KALDI-CD / GLC (alt. 3) 2.31 18.5

1+2+3+4 (primary) 1.90 18.1
1+2+3+4+5+6 (alt. 1) 1.24 19.4

8.1. Comparison of different features

In Table 3 we compare different features by training an i-vector
based systems with identical parameters varying only these in-
put features. The comparison is performed with 2048-dimensional
full-covariance UBM, 600-dimensional i-vectors and Gaussian
linear classifier.

On the development set, we can clearly see the power of
SBN-based systems and a shift from the last LRE state-of-the-

art. The dominance of bottlenecks is not that clear on the eval-
uation set, but if we compare the results considering the best
calibration that we can get (eval*), then the difference is still
substantial. We can also observe another step-down in error-
rate when utilizing the multilingual bottleneck features.

If we look at per-cluster results of all systems (not shown
here), we can clearly see that NN-based features (like PLLR and
monolingual bottlenecks) perform suspiciously well on English
language cluster. This is obviously caused by the fact, that they
all were trained using Switchboard English database.

Table 3: Performance of different features. Comparison was
done using i-vector system (2048 full-covariance components,
600 dim. i-vectors and GLC classifier). (+) means that this sys-
tem violates fixed training data condition (post-eval analysis).

Cavg × 100

Features dev∗ eval eval∗

SBN80-AUTO-KALDI 5.4 28.9 24.1
MFCCSDC 6.3 23.8 21.5
MFCCSDC+PLLR 4.5 22.1 19.1
MultilangRDT+ 2.9 20.1 16.4
SBN80-SWB1-KALDI 2.9 20.1 16.2
SBN80-ML17+ 2.2 16.1 12.3

8.2. Analysis of cluster dependent system fusion

Here we will analyze a different scheme of building a LID sys-
tem on top of i-vectors while taking into account presumably
acoustically similar clusters of data. We train cluster-dependent
UBMs to cover in detail the acoustic space of individual clus-
ters. The baseline is the first row of Table 4, which is a single
system without any cluster dependent architecture. Then we
continue with the same system, just the UBM is diagonal in-
stead of full-covariance. With this system we achieve almost
the same result on development set, while getting some im-
provement on the evaluation data. This can be caused by less
over-training on the development set given the fact that we have
much less parameters in the diagonal UBM.

The last two systems are already cluster dependent. First
is using a full-covariance UBM, which is again worse than the
diagonal, but this time also on the development set. Here, we
believe this is caused by a low amount of data for training indi-
vidual UBMs.
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Table 4: Results for single and cluster-dependent versions of i-
vector system with either full or diagonal covariance UBM. All
systems use SBN80-SWB1-KALDI features.

Cavg × 100

Cluster dep. system UBM dev∗ eval eval∗

no full 2.87 20.09 16.21
no diag 2.89 19.29 15.74
yes full 2.48 19.67 15.39
yes diag 2.31 18.48 14.86

9. Results (Open Data Condition)
There were just a few teams which participated in open training
data condition. Our motivation was two-fold. Firstly, we were
able to take all data from previous evaluations and plug it in.
We were also aware of two new databases: KALAKA-3 and
Al Jazeera Dialectal Speech Corpus, that contain some of the
target languages. And secondly, besides using more data for
system training, we could have used our multi-lingually trained
bottleneck features (see Section 2.3).

Here we show the analysis of the gains we obtained by us-
ing additional data. Please, see Section 2.2 for detailed descrip-
tion of the Open training dataset.

The results of our submissions are in Table 5. As we can
see, systems trained on Open set show higher error-rates on dev,
but give better eval performance compared to what we have seen
for the fixed data condition. We attribute this to the increased
difficulty of the Open development set. It is probably closer to
the LRE15 evaluation data and because of that the calibration
and fusion stages work as we would expect.

The difference between our primary and alternate submis-
sion (last two rows of Table 5) is in the inclusion of the SSNN
system in the fusion. The SSNN system was beneficial in fu-
sion in preliminary experiments, so we included it in our pri-
mary submission (although these experiments have shown to be
misleading later).

Table 5: Results of individual systems present in the fusion for
open training data condition. Last two rows show the perfor-
mance of our primary and alternate fusions.

Cavg × 100

System / Classifier dev∗ eval

1 ML17-SBN-CD / GLC (alt. 3) 8.8 13.9
2 MultilangRDT / GLC 10.4 13.6
3 SBN80-SWB1-KALDI-CD / GLC 10.3 17.6
4 MFCCSDC+PLLR-CD / NN 12.7 21.4
5 SNB80-AUTO-KALDI / NN 15.6 25.0
6 SSNN (alt. 2) 30.0 41.3

1+2+3+4+5+6 (primary) 7.1 14.1
1+2+3+4+5 (alternate 1) 7.1 14.1

9.1. Effects of additional training data

After the evaluation key was released, we have done some ad-
ditional experiments to see in more detail the gains from using
the Open dataset.

Because of the lack of time, we did not train the cluster de-
pendent systems (i.e. systems 1, 3 and 4 from Table 5) properly

from scratch on the Open set. Instead, we reused the frontend
parts (UBM and total variability matrix) from the Fixed con-
dition and retrained only the backend on the Open dataset. So
these systems use the Open data collection only in the backend
stage.

For this reason, we show in Table 6 the results of two i-
vector systems trained completely (i.e. both frontend and back-
end) on either Fixed or Open dataset with our best bottleneck
features. It is important to see the per-cluster results. For some
clusters, there is improvement, while for other clusters there is
a degradation. Unexpectedly, we can see a degradation for the
Arabic and English cluster, while we originally thought it will
perform better thanks to extra data from Al Jazeera Dialectal
Speech Corpus and KALAKA-3 database. We will need to do
further analysis to explain this surprise.

On the other hand, we are no longer getting almost random
performance for French cluster. This shows nicely how much
the state-of-the-art technology suffers in mismatched scenario.
Note also the fact, that this improvement on French cluster ac-
counts for the main part of the difference between the average
Cavg for the two systems from Table 6: 10.5% (Fixed set train-
ing without considering French) vs. 9.9% (Open set training
without considering French).

Table 6: Effects of additional data sources for open training
data condition. See Section 2.2 for detailed information about
the Open training set. Comparison was performed using i-
vector system (2048 full-covariance components, 600 dim. i-
vectors and GLC classifier) on top of SBN-ML17 features.

eval Cavg × 100

Training set avg ara chi eng fre ibe sla

Fixed 16.1 15.4 8.7 8.9 43.7 17.5 2.2
Open 11.9 15.9 4.8 9.2 21.7 17.0 2.6

10. Conclusions
In this work, we have described our efforts in the NIST LRE
2015. The most difficult part of this evaluation was to deal with
limited amount of data and the results show that the proper anal-
ysis in this direction is necessary.

We have built over 20 systems for this evaluation. We have
experimented with de-noising NN, automatic unit discovery,
different flavors of phonotactic systems, backends, sizes of i-
vector systems, feature sets, BN features or frame level lan-
guage classifiers. We used up to 6 systems in the fusion. The
performance of our best system reached Cavg of 16.9% on the
fixed training data condition and 13.9% (11.9% after
post-evaluation analysis) on the open training data condition.

11. References
[1] “The 2015 NIST Language Recognition Evaluation

Plan (LRE15),” http://www.nist.gov/itl/iad/mig/upload/
LRE15 EvalPlan v23.pdf.

[2] “The 2011 NIST Language Recognition Evaluation Plan
(LRE11),” http://www.nist.gov/itl/iad/mig/upload/LRE11
EvalPlan releasev1.pdf.

[3] Song et al., “I-vector representation based on bottle neck
feature for language identification,” in IEEE Electronics
Letters, 2013.

172
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