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Abstract. This paper describes several systems for emotion recogni-
tion developed for the AV+EC 2015 Emotion Recognition Challenge.
A complete system, making use of all three modalities (audio, video, and
physiological data), was submitted to the evaluation. The focus of our
work was, however, on the so called Bottle-Neck features used to comple-
ment the audio features. For the recognition of arousal, we improved the
results of the delivered audio features and combined them favorably with
the Bottle-Neck features. For valence, the best results were obtained with
video, but a two-output Bottle-Neck structure is not far behind, which
is especially appealing for applications where only audio is available.
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1 Introduction

The Speech@FIT group at Brno University of Technology and Phonexia are
active and have been successful in multiple aspects of speech data mining.
Recently, mainly with the EC-sponsored projects BISON1 and MixedEmotions2
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grant agreement No. 644632 MixedEmotions and No. 645523 BISON, and by Tech-
nology Agency of the Czech Republic project No. TA04011311 “MINT”. It was also
supported by the Intelligence Advanced Research Projects Activity (IARPA) via
Department of Defense US Army Research Laboratory contract number W911NF-
12-C-0013. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation thereon. Dis-
claimer: The views and conclusions contained herein are those of the authors and
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Thanks to Fabien Ringeval for scoring several other systems after the deadline
of AVEC 2015 which allowed us to make proper analysis for this paper.
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and with an interest both in academia and industry, emotion recognition has
become increasingly important.

This paper presents our systems based on the material provided by Audio–
Visual+Emotion Recognition Challenge (AV+EC 2015)3 [1]. AVEC is an annual
challenge held since 2011. Its main purpose is emotion recognition from multi-
modal data—audio, video, and newly also physiological data. Emotion is under-
stood here as a two-point continuous values on 2D plane according to arousal–
valence model [11].

The data comes with three sets of features for audio, video and physiological
signals. While the latter two were used as-is (the work concentrated on their
post-processing, regressor training and fusion), in audio, we have complemented
the provided material by Bottle-Neck (BN) features generated from a narrow hid-
den layer of a neural network trained toward phonetic targets. BN features were
designed for automatic speech recognition [3] and have been included into most
top-performing ASR systems including their multi-lingual variants [3]. Recently,
BN features (and more general feature extraction schemes based on DNNs) were
found very effective in other areas of speech processing, such as language recog-
nition [4,5] and speaker identification [6,10]. Due to their ability to suppress
nuisance variability in the speech data, we consider them a promising candidate
also for emotion recognition, especially for the AV+EC challenge where very
limited amount of labeled data (only 27 speakers) is available.

The rest of the paper provides a description of experiments leading to our
submission for the AV+EC challenge and concentrates on BN features used for
the audio modality.

2 Provided Material

2.1 Data

The data-set comes from the RECOLA multimodal database [2]. It contains
spontaneous interactions in French. Participants were recorded in dyads during
a video conference while resolving a collaborative task (winter survival task).
Data was collected from 46 participants, but due to consent issues, only 5.5 hours
of fully multimodal recordings from 27 participants are usable. The database is
gender balanced and the mother tongues of speakers are French, Italian and
German. The first 5 min of each recording were annotated by 6 French-speaking
emotion annotators in the continuous arousal–valence space, leading to 135 min
of data with the emotion ground truth. These recordings are divided into train-
ing, development and test sets, where annotations are provided only for training
and development ones. The database is freely available4 and full details are pro-
vided in [1,2].

3 http://sspnet.eu/avec2015/.
4 https://diuf.unifr.ch/diva/recola/.
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2.2 AV+EC Features

Five sets of features were provided by the organizers (please refer to the challenge
summary paper [1] for full description and references):

– Audio 102-dimensional feature set is extended Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS). These features are generated from short fixed
length segments (3 s) shifted by 40 ms.

– Video features include two types of facial descriptors: appearance and geom-
etry based. The former were extracted by Gabor Binary Patterns from Three
Orthogonal Planes (LGBP-TOP) leading to total vector size of 84, the latter
are facial landmarks leading to vector size of 316. Again, overlapping 3 s seg-
ments with 40 ms shift were used. The problem with video features was that
for parts of the data, the face was not recognized and no information was pro-
vided. For certain recordings, the amounts of unrecognized frames were up to
40 %.

– Physiological sets include Electrocardiogram (ECG, 54 parameters) derived
features, based on heart rate, its measure of variability, and derived parameters
and statistics, and Electrodermal activity (EDA, 60 parameters) including
skin conductance response (SCR), skin conductance level (SCL), as well as
a number of derived parameters.

2.3 Evaluation and Baselines

The results were evaluated using the concordance correlation coefficient (CCC)
to measure the correlation between the prediction and the reference. CCC com-
bines the Pearson correlation coefficient of two time series ρ with mean square
error:

CCC =
2ρσxσy

σ2
xσ

2
y + (μx − μx)2

. (1)

CCC produces values from −1 to 1. The value of 1 means that the two variables
are identical, −1 means that they are opposite, and 0 means that they are totally
uncorrelated.

The organizers experimented with several emotion recognition schemes and
provided the best obtained values in [1]. These serve as baselines for our work
and are mentioned in the tables.

3 Bottle-Neck Features

We used Stacked Bottle-Neck (SBN) features as our additional feature set. The
architecture for this kind of feature extraction consists of two NNs trained
towards phonetic targets. The output of the first network is stacked in time,
defining context-dependent input features for the second NN, hence the term
Stacked Bottleneck Features [4].

The NN input features are filter-bank energies concatenated with funda-
mental frequency (F0) features produced by four different estimators: BUT F0
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detector produces 2 coefficients (F0 and probability of voicing), Snack F0 gives
a single F0, and Kaldi F0 estimator outputs 3 coefficients (Normalized F0 across
sliding window, probability of voicing and F0 delta). Fundamental frequency
variation (FFV) estimator [7] produces a 7-dimensional vector. Therefore, the
whole feature vector has 24 + 2 + 1 + 3 + 7 = 37 coefficients [8].

The conversation-side based mean subtraction is applied on the whole feature
vector. 11 frames of log filter bank outputs and fundamental frequency features
are stacked together. Hamming window followed by DCT consisting of 0th to 5th

base are applied on the time trajectory of each parameter resulting in (24+13)×
6 = 222 coefficients on the first-stage NN input [5].

The first-stage NN has four hidden layers with 1500 units each except the
BN layer. BN layer’s size is 80 neurons and it is the third hidden layer. Its
outputs are stacked over 21 frames and downsampled (every 5th is taken) before
they enter the second-stage NN, which has the same structure as the first-stage
NN. The outputs from 80 neurons in BN layer are the final BN features for the
recognition system [8].

For training the neural networks, the IARPA Babel Program data5 were
used. 11 languages were used to train the multilingual SBN feature extractor [3]:
Cantonese, Pashto, Turkish, Tagalog, Vietnamese, Assamese, Bengali, Haitian,
Lao, Tamil, Zulu. Details about the characteristics of the languages can be found
in [9]. The training speech was force-aligned using our BABEL ASR system [8].

4 Systems and Experiments

The general scheme of our system is shown in Fig. 1. The following subsec-
tions deal with individual building blocks and results of experiments therewith
in detail. The regressor producing arousal and/or valence values is linear, except
for indicated cases, where a neural network is used.

First, a number of single systems was built: for each feature set (5 sup-
plied ones + bottlenecks) and each dimension of emotion (arousal vs. valence),
making up 12 systems in total. Each of them was investigated for optimum pre-
processing, regressor training, and post-processing. All systems were trained on
the training set and evaluated on the development set.

Fig. 1. Emotion recognition system scheme

5 Collected by Appen, http://www.appenbutlerhill.com.

http://www.appenbutlerhill.com
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Fig. 2. Dependency of CCC on the number of stacked frames.

4.1 Pre-processing

The data-set from RECOLA includes 27 recordings from 27 different subjects.
To prepare the data for the following regression, the whole set was globally mean-
and variance-normalized.

We tried to use Voice Activity Detection (VAD) on the training data: frames
with detected silence were dropped, and the system was trained only on the
remaining speech frames. However, in video, there is always an indication of
emotion even in case of silence, therefore, we tested on whole test recordings
without silence removal. It is also necessary to note that the recordings are
dialogues and the result of the emotion recognition of the observed person could
be disturbed by speech of the second person, whose emotions we do not want to
recognize. For these two reasons, the VAD does not help to improve our results,
and was not used in our final systems.

Principal Component Analysis (PCA) was tested for dimensionality reduc-
tion of the feature sets, and had good results in experiments with sup-
plied audio features for arousal. Reduction from the baseline dimensionality
of 102 to 13 dimensions performed the best. On contrary, no or only very little
reduction helps for both video features, which are used mainly for valence.

In our experiments, we train regression models for valence and arousal val-
ues for each frame (every 40 ms). In many other classification and recognition
tasks, we have seen the need of adding larger temporal context to make a good
prediction. The results with changing context size are shown in Fig. 2. The con-
text of 141 stacked frames (70 to the left and 70 to the right of the current
frame + current frame) was found optimal for arousal recognition from audio.
Shorter context is necessary for valence while it is recognizing from video.

A further dimensionality reduction can follow the stacking of context frames.
A standard technique is to project the temporal trajectories of features to the dis-
crete cosine transform (DCT) bases. We observed, that for systems using bottle-
neck features, it is beneficial to perform DCT reduction to the first 7 coefficients
for arousal, and the first 30 coefficients for valence. For recognition of valence
from video appearance features, the first 3 DCT coefficients were found optimal
on down-sampled feature trajectories (only every second frame was retained). For
all DCT projections, Hamming windowing of the trajectories was applied first.
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Fig. 3. Influence of the length of median filter applied after the regression.

4.2 Regression Model and Its Training

Linear regression is used on all single systems for arousal and all single systems
for valence except for processing video geometric features, where neural net-
work with one hidden layer is used (topology: 948–474–3). The regression can
be trained in different ways, as six different labels from 6 different annotators
plus another label as the gold standard (normalized and averaged as described
in [1]) are available. After experimenting, we empirically found that for training
arousal recognizer, data from annotators one and three give the best perfor-
mance. Those annotations seem diverse and with bigger variation. For valence,
we choose mostly annotators one, two and three, whose annotations seem more
consistent. Our single systems produce estimates of two values for arousal, and
three values for valence (trained to match the best annotators). A weighted aver-
age of these is then taken to produce one single value for arousal and one for
valence. The weights were determined experimentally.

4.3 Post-processing

The outputs from our initial regression models seemed very noisy with respect
to the reference. Median filter was used for smoothing and its optimum length
was investigated, see Fig. 3. For arousal, a longer filter (over approx. 7 s) than
for valence (over approx. 2 s) is needed.

4.4 Results and Comments

The final results of all investigated systems are summarized in Table 1 along
with the baselines in brackets. It is evident that in most cases, our results are
outperforming the baseline. They confirm our expectations—the recognition of
arousal is better from audio, while for valence, video features perform better.
Linear regression was used in all cases except for system processing video geo-
metric features. We trained a neural network with one hidden layer with topology
945–474–3 in this case.

The major improvements are listed below. Using long context—in particular
systems as long as 6–7 s, applying the median filter on the output and training on
the data from the particular annotators instead of training on the Gold Standard.
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Table 1. Comparison of single systems of different modalities, AV+EC 2015 baseline
results are in brackets.

Development Test

CCC Arousal Valence Arousal Valence

Audio 0.704 (0.287) 0.190 (0.069) 0.595 (0.228) 0.160 (0.068)

Video geometric 0.054 (0.231) 0.403 (0.325) 0.151 (0.162) 0.302 (0.292)

Video appearance 0.126 (0.103) 0.346 (0.273) 0.110 (0.114) 0.334 (0.234)

ECG 0.305 (0.275) 0.231 (0.183) -* (0.192) -* (0.139)

EDA 0.117 (0.078) 0.235 (0.204) 0.118 (0.079) 0.226 (0.195)

Bottlenecks 0.625 0.344 0.525 0.176

*Numeric error prevented us from finishing this evaluation, unfortunately we
have no longer access to the references of test data to re-evaluate them.

5 Bottle-Neck System Investigation

Inspired by the positive results of BN features on emotion recognition from
audio, we created another system using only bottleneck features for simultane-
ous recognition of both arousal and valence (multi-task). In this system, long—
up to 7 s (181 frames)—but downsampled context is used (only every 4th frame
was taken), then DCT is applied and 30 first bases are retained. This system is
also based on a simple linear regression. As a post-processing, median filter over
183 frames (7 s) for arousal and over 145 frames (6 s) for valence is used. The
results in Table 2 indicate, that multi-task training is more efficient than having
two single-task systems especially for the arousal prediction.

Table 2. Comparison of single- and multi-task systems based on Bottle-Neck features.

Development Test

CCC Arousal Valence Arousal Valence

Single-task* 0.625 0.344 0.525 0.176

Single-task** 0.390 0.343 0.296 0.174

Multi-task 0.699 0.376 0.596 0.293

*Parameters tuned for each modality,
**Identical parameters as in multitask.

6 Fusion

Tuning and optimization of all individual systems was performed, as described
in Sect. 4. Because of different sets of features and also different dimensions
of emotion, we ended up with systems different in the pre-processing, training
and post-processing. For fusion, we chose the two best single systems on arousal
and valence separately, the real outputs (not weighted averages) from those best
single systems were inputs for the fusion:
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Table 3. Parameters of the best single systems used for final fusion.

Arousal Valence

Audio Bottlenecks Video geometric Video appearance

Annotators 1 + 3 1 + 3 1 + 2 + 3 1 + 2 + 3

PCA From 102 to 13 Not reduced (80) Not reduced (316) From 84 to 70

Length of context 141 (5.6 s) 161 (6.4 s) 3 (0.1 s) 30 (1.2 s)

DCT coefficients 20 7 No reduction 3

Downsampling - - - 2

Table 4. Fusion system, AV+EC 2015 baseline results are in brackets

CCC Arousal Valence

Development 0.772 (0.476) 0.518 (0.461)

Test 0.660 (0.444) 0.504 (0.382)

– For arousal, we fused systems using audio features and Bottle-Necks. The
fusion was a linear regression.

– For valence, both video system outputs were used. The fusion was done on the
score level with a neural network with one hidden layer (topology: 486–243–1).

The system parameters selected for the final fusion are listed in Tables 3 and 4
contains the final fusion results. In all cases, comparison to baselines is favorable.

7 Conclusions

While the whole AV+EC evaluation was of interest for us, our focus was on
the audio, as this is the main modality we are working with—most of our work
is done in cooperation with contact centers that have no access to video or
physiological data. Arousal is well recognizable from audio feature sets provided
with AV+EC 2015 baselines, and we have improved the results by working on
the context, regressor training and post-processing. The AV+EC features also
combine favorably with the newly introduced Bottle-Neck features. For valence,
the best evaluation results were obtained with video features, but the two-output
Bottle-Neck structure is not far behind. We have also confirmed that simple
regressors (linear or NN) can be used for the emotion prediction task.
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